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Background. Kidney renal clear cell carcinoma (KIRC) is a fatal malignancy of the urinary system. Autophagy is implicated in
KIRC occurrence and development. Here, we evaluated the prognostic value of autophagy-related genes (ARGs) in kidney renal
clear cell carcinoma.Materials and Methods. We analyzed RNA sequencing and clinical KIRC patient data obtained from TCGA
and ICGC to develop an ARG prognostic signature. Differentially expressed ARGs were further evaluated by functional as-
sessment and bioinformatic analysis. Next, ARG score was determined in 215 KIRC patients using univariable Cox and LASSO
regression analyses. An ARG nomogramwas built based onmultivariable Cox analysis./e prognosis nomogrammodel based on
the ARG signatures and clinicopathological information was evaluated for discrimination, calibration, and clinical usefulness.
Results. A total of 47 differentially expressed ARGs were identified. Of these, 8 candidates that significantly correlated with KIRC
overall survival were subjected to LASSO analysis and an ARG score built. Functional enrichment and bioinformatic analysis were
used to reveal the differentially expressed ARGs in cancer-related biological processes and pathways. Multivariate Cox analysis
was used to integrate the ARG nomogram with the ARG signature and clinicopathological information./e nomogram exhibited
proper calibration and discrimination (C-index� 0.75, AUC�>0.7). Decision curve analysis also showed that the nomogram was
clinically useful. Conclusions. KIRC patients and doctors could benefit from ARG nomogram use in clinical practice.

1. Introduction

Renal cell carcinoma (RCC) accounts for 2–3% of all adult
malignancies [1] and is one of the most lethal urologic
cancers [2]. RCC incidence is rising in the US and most
Western countries [3]. Kidney renal clear cell carcinoma
(KIRC) is the most common type of RCC [4]. Despite recent
treatment advances, KIRC survival is poor [5]. TMN staging
is a method of determining cancer prognosis and suggesting
treatment strategies. However, TMN does not consider
genetic features as its classification is based on clinico-
pathologic information [6–8]. /us, new markers for early
KIRC detection are needed for better outcomes.

Autophagy is an evolutionarily conserved process that
influences cellular homeostasis by degrading damaged or-
ganelles and intracellular content [9, 10]. Recent studies have
implicated autophagy in cancer occurrence and progression
[11–15]. However, whether an autophagy signature derived
from one or more autophagy-related genes (ARGs) can
predict long-term KIRC survival is unclear. Here, we used
TCGA data to compare ARG expression profiles in KIRC vs.
noncancer control tissue and assessed the ARG prognostic
value. An eight-ARG prognostic signature whose prognostic
value was independent of clinical factors was developed by
multivariate Cox regression analyses. Next, we constructed
and validated an eight-ARG prognostic model by integrating
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our newly established eight-ARG signature with classical
clinicopathological risk factors for survival prediction in
KIRC patients.

2. Materials and Methods

2.1.Autophagy-RelatedGenes (ARGs). /eARGs used in this
study were obtained from the Human Autophagy Database
(HADb, http://www.autophagy.lu/index.html), which in-
cludes information on the 232 known autophagy genes.

2.2. Patient Database. ARG expression data (mRNA) and
associated clinical information for KIRC patients were
downloaded from TCGA. /ese included data on 539 KIRC
tissues and 72 nontumor control tissue. Additional mRNA
data on nontumor tissues from 47 patients were downloaded
from the International Cancer Genome Consortium
(ICGC). /e following patient cases were excluded from the
analysis: (a) non-KIRC cases, (b) cases lacking mRNA data,
(c) cases with missing data, (d) cases with survival time <30
days, and (e) the race was white. Ultimately, 215 KIRC
patients were selected for further analysis.

2.3. Bioinformatic Analysis. To identify differentially
expressed ARGs between KIRC and nontumor samples, we
used edgeR package on R with false discovery rate (FDR)�

<0.05 and |log fold change (logFC)|>1 as cutoffs. Functional
and pathway enrichment analyses were done using clus-
terProfiler package. KEGG functional pathway analysis data
were visualized using the GOplot package. GO terms and
KEGG pathways with p �<0.05 were considered statistically
significant. Next, STRING (http://string-db.org/) and pro-
tein-protein interaction (PPI) network analyses of ARGs
were done and results with a score (median confidence)> 0.4
were visualized.

Principal component analysis (PCA) was used to cluster
KIRC patients into different groups using Consensu-
sClusterPlus package.

To estimate the prognostic value of ARGs, we performed
univariate Cox regression analysis on the 215 KIRC patients
using the survival package, with p �<0.05 indicating sta-
tistical significance. Next, least absolute shrinkage and se-
lection operator (LASSO) Cox regression analysis was used
to select potential ARGs from all significantly differentially
expressed ARGs identified by univariate Cox regression
analysis. LASSO Cox analysis was done using the glmnet
package. Risk score was calculated based on a linear com-
bination of ARG expression values after weighting regres-
sion coefficients. Patients were classified into low- and high-
risk groups using median risk score as cutoff.

2.4. Statistical Analysis. Kaplan–Meier (KM) analysis and a
two-sided log-rank test were used to determine overall
survival in different clusters or in the high- and low-risk
groups. Receiver operating curve (ROC) analyses using
survivalROC package evaluated the specificity and sensitivity
of prognosis prediction. Univariate and multivariate Cox

regression analyses were used to evaluate correlation be-
tween prognosis and the clinicopathological features in
KIRC patients.

An ARG-clinicopathologic nomogram based on multi-
variate analysis results was used to predict 1-, 3-, and 5-yearOS.
/e nomogram was subjected to 1000 bootstrap resamples for
internal validation of the analyzed database. Analysis of no-
mogram discrimination performance was determined by
concordance index (C-index) analysis, which predicts the
model’s prognostic value. Calibration plots were also used to
determine the nomogram’s prognostic value. Nomogram
calibration for 1-, 3-, and 5-year OS was done by comparing
observed survival with the predicted probability. Additionally,
a nomogram and calibration curve were developed on R using
the package rms. Decision curve analyses (DCAs) were used to
determine the nomogram’s clinical utility by quantifying net
benefit at various threshold probabilities in KIRC patients.
DCA for 1-, 3-, and 5-year OS was done using stdca and dca
packages. /ese analyses were done on R (version 3.5.3).

3. Results

3.1. Differentially Expressed Autophagy-Related Genes
(ARGs). A total of 220 ARGs were extracted and were
identified to represent between 119 nontumor KIRC tissues
and 539 KIRC tissues. Using FDR�<0.05 and |log (FC) | >1
as cutoffs, we identified 47 differentially expressed ARGs
(tumor vs. normal tissues). Of these, 40 were upregulated
and 7 were downregulated and were visualized on a scatter
plot (Figures 1(a) and 1(b)).

3.2. Functional Annotation and Protein-Protein Interaction
(PPI) Analysis. /e 47 differentially expressed ARGs were
subjected to GO and KEGG pathway analyses to determine
their biological functions. /is analysis identified the top
enriched terms in biological processes (BPs) as regulation of
endopeptidase activity, regulation of peptidase activity, and
regulation of cysteine-type endopeptidase activity involved
in apoptotic process. /e most enriched terms for cellular
components (CCs) were autophagosome, autophagosome
membrane, and inflammasome complex. /e most enriched
terms for molecular function (MF) were ubiquitin protein
ligase binding, ubiquitin-like protein ligase binding, and
peptidase regulator activity (Figure 2(a)). KEGG analysis
found the 47 differentially expressed ARGs to be highly
associated with human cytomegalovirus infection, auto-
phagy-animal, and HIF-1 signaling, among other pathways.
Furthermore, the z-score of enriched pathways more than
zero showed that most pathways were likely to be increase
(Figures 2(b) and 2(c)).

Protein-protein interaction (PPI) network analysis be-
tween the 47 differentially expressed ARGs was done using
STRING (Figure 3).

3.3. Consensus Clustering. To comprehend the distinct
clusters of ARGs with KIRC patients, consensus clustering
was performed to identify selection of adequate groups. We
found that k� 2 was up to the mustard of clustering stability
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(Figures 4(a)–4(e)). /us, KIRC patients could be grouped
into 2 clusters (cluster1 and cluster2). Comparison of the 2
clusters based on KIRC patient clinicopathological features
found no significant correlation between KIRC molecular
clusters and clinicopathological factors such as age, gender,
smoking, pharmaceutical, and pathological N orM. Notably,
cluster1 significantly correlated with lower grade
(p< 0.0001), stage (p< 0.05), or pathological T (p< 0.001)

(Figure 4(g)). Kaplan–Meier survival analysis of the 2
subgroups found significant prognostic differences between
KIRC patients (p< 0.0001), and cluster1 significantly cor-
related with better OS relative to cluster2 (Figure 4(f )).

3.4. Correlation betweenARGs andKIRC. Spearman analysis
of the correlation between the 47 differentially expressed
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Figure 1: Differentially expressed autophagy-related genes (ARGs) between 119 nontumor and 539 kidney renal clear cell carcinoma
(KIRC) samples. (a)/e volcano plot of the 47 differentially expressed ARGs (tumor (T) vs. normal tissues (N). Red and green indicate high
and low expression, respectively. (b) Hierarchical clustering of differentially expressed ARG expression levels. (c) Expression of the 47
differentially expressed ARGs.
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Figure 2: Functional annotation of the 47 differentially expressed ARGs. (a) Gene ontology analysis predicted relevant biological processes.
(b) Outer circle shows a scatter plot for each term’s logFC of the ARGs. (c) Heatmap of the relationship between ARGs and KEGG pathways.
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Figure 4: Continued.
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ARGs and KIRC and principal component analysis (PCA)
revealed a clear-cut distinction between cluster1 and cluster2
(see Supplementary 1).

3.5. Autophagy-Related Gene Score Building. Here, we
assessed the prognostic value of the 47 differentially
expressed ARGs in KIRC using univariate Cox regression
analysis. /is analysis indicated that 20 of the forty-seven
genes were strongly significantly associated with survival
(p�<0.05). Of these 20 ARGs, 12 ARGs were associated with
poor OS (hazard ratio�>1). /e rest were associated with
favorable OS (hazard ratio�<1) (Figure 5(a)). Finally,
LASSO Cox regression analysis identified 8 ARGs
(ATG16L2, ATG9B, BID, BIRC5, CX3CL1, ERBB2, HSPB8,
and SPHK1) as capable of predicting KIRC clinical outcomes
(Figure 5(b))./e selected 8 ARGs were then used to create a
risk assessment model and risk score determined as follows:
risk score� 0.028 × expression level of ATG16L2 +
0.032× expression level of ATG9B+ 0.047× expression level
of BID+ 0.044× expression level of BIRC5 + (−0.0036)×

expression level of CX3CL1+ (−0.012)× expression level of

ERBB2 + (−0.00099)× expression level of HSPB8+
0.047× expression level of SPHK1. Next, risk scores were
used to group the 215 patients into high- and low-risk
groups based on median risk score. KM analysis revealed
significant OS differences between the 2 groups (p � <0.001;
Figure 5(c)). To further explore utility of risk scores based on
ARG signature, the 215 patients were classified into 10
subgroups based on different patient clinicopathological
features. KM analysis showed that KIRC patients in the low-
risk group had significantly better OS relative to those in the
high-risk group in the 10 subgroups (p �<0.001, Figure 6).

3.6. Evaluation of the Predictive Performance of the Auto-
phagy-Related Gene (ARG) Signature Using ROC Analysis.
Receiver operating characteristic (ROC) curve analysis was
used to evaluate the predictive accuracy of 1-, 3-, and 5-year
survival in KIRC patients. /e AUC values for ROC curve
analysis of 1-, 3-, and 5-year ARG-based OS were 0.728,
0.729, and 0.784, respectively (Figures 5(d)–5(f)), indicating
that ARG risk scores outperform conventional clinical
prognostic factors in predicting long-term (5-year) but not
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Figure 5: Determination of risk scores for 215 KIRC patients using the 8-ARG risk signature. (a) Identification of a 20-ARG risk signature.
(b) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the 20 ARGs. (c) Kaplan–Meier survival analysis based on
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Figure 6: Continued.
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short-term survival (1- and 3-year) in KIRC patient OS,
highlighting ARG risk score as a novel KIRC prognosis
indicator.

3.7. Establishment of the Nomogram. Heatmap analysis of
the expression of the 8 ARGs in high- vs. low-risk groups
revealed significant differences in status (p �<0.001), gender
(p �<0.001), pathological grade (p �<0.001), pathological
stage (p �<0.001), pathological T (p � p< 0.001), patho-
logical M (p �<0.05), pathological N (p �<0.05), and cluster
(p �<0.01) (Figure 7(a)). Moreover, univariate Cox

regression analyses of the 8-ARG signature as an inde-
pendent KIRC prognostic factor showed that age, phar-
maceutical, pathological grade, pathological stage,
pathological T, pathological M, pathological N, cluster, and
risk score correlated with significant OS differences in KIRC
patients (Figure 7(b)). Multivariate analysis using the factors
mentioned earlier revealed that age, pharmaceutical, path-
ological N, and risk score remained significantly associated
with the OS (Figure 7(c)).

A prognostic nomogram to predict 1-, 3-, and 5-year OS
was established using multivariate analysis results. Total
points were calculated by integrating risk score, age, and
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Figure 6: Survival differences between high- and low-risk KIRC patients stratified by clinicopathological characteristics. (a), (b) Age; (c), (d)
gender; (e), (f ) smoking; (g), (h) pharmaceutical; (i), (j) pathological grade; (k), (l) pathological stage; (m), (n) pathological T; (o), (p)
pathological M; (q), (r) pathological N; (s), (t) cluster.
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Figure 7: Relationship between the risk score, clinicopathological features, and cluster1/2 subgroups in 215 KIRC patients. (a)/e heatmap
of the 8-ARG expression in low- and high-risk KIRC. Clinicopathological feature distribution was compared in low- vs. high-risk groups.
∗∗p �<0.01; ∗∗∗p �<0.001. Forest plot of univariate (b) and multivariate (c) Cox regression analyses in KIRC.
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Figure 8: Nomogram prediction of overall survival (OS) in KIRC patients. (a) /e prognostic nomogram for predicting 1-, 3-, and 5-year
OS. (b–d) ROC curve based on the prognostic nomogram for 1-, 3-, and 5-year OS. (e–g) Calibration plots for predicting patient 1-, 3-, and
5-year OS. (h–j) Decision curve analyses (DCAs) of the prognostic nomogram for 1-, 3-, and 5-year risk.
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pharmaceutical (Figure 8(a)). Considering the discrimina-
tion ability of the prognostic nomogram, ROC analysis was
conducted. /e results indicated that AUC for 1-, 3-, and 5-
year survival were 0.742, 0.792, and 0.856, suggesting that
the prognostic nomogram has higher prediction efficacy
(Figures 8(b)–8(d)). Moreover, the prognostic nomogram’s
C-index value of 0.75 (95% CI, 0.69–0.80) in all KIRC pa-
tients also indicated good discrimination.

Calibration curve analysis of the nomogram’s 1-, 3-, and
5-year survival prediction revealed satisfactory predictive
accuracy by the nomograms relative to actual observations
(Figures 8(e)–8(g)). /e nomogram’s 1, 3, or 5-year de-
cision curve analyses (DCA) showed that the more clini-
cally useful nomogram constructs predicted long-term
survival, especially 5-year survival, suggesting that if a
patient or doctor’s threshold probability was less than 83%,
using the nomogram to predict 3- to 5-year prognosis has
more benefit than completely ignoring the scheme for all
programs (Figures 7(h)–7(j)). However, 1-year DCA
showed a limited threshold probability range of about 18%
only, indicating that the prognostic nomogram was clini-
cally useful.

4. Discussion

Patient prognosis influences treatment decisions [16, 17].
ARGs have been implicated in numerous cancers, including
KIRC. In past studies, some ARGs have emerged as potential
KIRC prognostic factors [18–20]. For instance, BIRC5 is a
crucial antiapoptotic protein that positively correlates with
KIRC pathological grade and clinical stage [18]. As a mo-
lecular marker of tumor behavior and prognosis, ATG16L2
is associated with KIRC risk and patient outcome [19]. BID
is located on chromosome 22q11.21 and is an apoptosis-
related protein. CASP4 is reported to promote cell migration
by influencing actin cytoskeleton remodeling [20]. SPHK1
upregulation in renal cell carcinoma may promote cancer
progression, and its silencing may suppress cell proliferation
via reduced HIF-2α expression [21]. ATG9B expression
significantly correlates with TNM staging, distant metastasis,
and survival time of clear cell renal cell carcinoma patients
[22]. However, there is no consensus regarding its satis-
factory predictive performance due to limited sample size or
lack of data validating candidate ARGs as diagnostic and
prognostic biomarkers.

Numerous studies based on TCGA datasets show that
ARGs can predict OS in various cancers, including glioma
[23, 24], ovarian [25], breast [26], bladder [27], and colo-
rectal [28] cancer. Here, high-throughput RNA-seq data
from TCGA were analyzed to investigate the role of ARGs in
KIRC. In this study, we have constructed a useful nomogram
associated with the prognostic significance of ARG scores
and clinicopathologic information that can predict KIRC
patient survival. In differentially expressed ARGs, many
potential confounding factors were identified and estab-
lished high-risk and low-risk groups, which were signifi-
cantly related to OS of KIRC. Additionally, the
clinicopathologic factors of age, pharmaceutical, and path-
ological N were integrated into the prognostic nomogram,

creating a relatively accurate tool for predicting KIRC pa-
tients’ OS.

Our internal validation findings indicated the nomo-
gram’s convincing discrimination and calibration power.
Furthermore, an interval validation C-index�>0.7 con-
firmed the nomogram’s clinical prognostic accuracy.
However, it is still hard to determine when to use the
prognostic nomogram. DCA selects the best treatment
approach by analyzing various potential strategies, thereby
guiding clinical decisions [29, 30]. Here, we evaluated if the
prognostic nomogram could guide clinical decisions and
improve patient outcomes. /e 5-year decision curve
analysis showed high tolerance and threshold probability
(up to 83%), indicating that using the prognostic nomo-
gram to predict long-term survival enhanced patient
benefits.

Although the prognostic nomogram performs well in
predicting KIRC prognosis, this study has several limita-
tions. First, the patients in this cohort were not represen-
tative of all races affected by KIRC as the data were
exclusively obtained from TCGA and ICGC databases.
Secondly, because publicly available data are limited, clin-
icopathological characteristics were not analyzed compre-
hensively. /us, while the utility of the prognostic
nomogram was assessed comprehensively by an internal
validation using a bootstrap test, external validation was not
applied. Hence, our findings should be evaluated in pro-
spective clinical studies.

5. Conclusions

In conclusion, our study not only uncovered a novel 8-gene
signature as a potential biomarker of KIRC prognosis but
also provided a risk assessment model for KIRC prognosis.
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