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Abstract
The genetic diversity and population structure of Vibrio vulnificus isolates from Korea and

Taiwan were investigated using PCR-based assays targeting putative virulence-related

genes and multilocus sequence typing (MLST). BOX-PCR genomic fingerprinting identified

52 unique genotypes in 84 environmental and clinical V. vulnificus isolates. The majority (>

50%) of strains had pathogenic genotypes for all loci tested; moreover, many environmental

strains had pathogenic genotypes. Although significant (p < 0.05) inter-relationships among

the genotypes were observed, the association between genotype and strain source (envi-

ronmental or clinical) was not significant, indicating that genotypic characteristics alone are

not sufficient to predict the isolation source or the virulence of a given V. vulnificus strain
and vice versa. MLST revealed 23–35 allelic types per locus analyzed, resulting in a total of

44 unique sequence types (STs). Two major monophyletic groups (lineages A and B) corre-

sponding to the two known lineages of V. vulnificus were observed; lineage A had six STs

that were exclusively environmental, whereas lineage B had STs from both environmental

and clinical sources. Pathogenic and nonpathogenic genotypes predominated in MLST lin-

eages B and A, respectively. In addition, V. vulnificus was shown to be in linkage disequilib-

rium (p < 0.05), although two different recombination tests (PHI and Sawyer’s tests)

detected significant evidence of recombination. Tajima’s D test also indicated that V. vulnifi-
cusmight be comprised of recently sub-divided lineages. These results suggested that the

two lineages revealed by MLST correspond to two distinct ecotypes of V. vulnificus.

Introduction
Vibrio vulnificus is a halophilic, Gram-negative, curved, rod-shaped bacterium frequently
found in marine environments (e.g., estuarine and coastal waters) as well as in molluscan shell-
fish (e.g., oysters and clams) as part of the normal microflora [1–3]. V. vulnificus is also an
important human pathogen, infection by which mainly occurs through the consumption of
contaminated seafood and occasionally through open wounds exposed to contaminated
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seawater [1, 3, 4]. Although most data regarding the epidemiology of V. vulnificus infection are
for the United States of America (USA) [2, 5–8], human infections with V. vulnificus have also
been reported in many other countries [9–16]. The most fatal consequence of V. vulnificus
infection is primary septicemia, which has a mortality rate of over 50% in immunocompro-
mised individuals [2, 5, 17]. Due to the high mortality rate of V. vulnificus infection, V. vulnifi-
cus contamination is a serious food safety issue in regions where seafood (especially raw
oysters) consumption is common. Until recently, studies of V. vulnificus focused mainly on the
virulence factors that confer its remarkable pathogenicity. The V. vulnificus virulence factors
identified to date include capsular polysaccharide (CPS) [18, 19], lipopolysaccharide (LPS) [20,
21], hemolysin [22, 23], the RtxA1 toxin [24, 25], and other molecules involved in iron acquisi-
tion and the formation of pili and flagella [26–29]. To evaluate and predict the virulence of dif-
ferent V. vulnificus strains, several genotyping methods have been developed [30–38].
Although genotyping studies are not a substitute for animal models for evaluating the virulence
of V. vulnificus strains, such studies provide valuable information regarding the distribution of
V. vulnificus genotypes.

Since most cases of V. vulnificus infection have been reported primarily in the Gulf Coast
region of the USA [39–42] and in specific regions of Asia [10, 43–45], environmental factors,
geographic factors, and seafood consumption patterns of inhabitants in these regions could all
play an important role in V. vulnificus epidemiology. Interestingly, V. vulnificus infection is
most prevalent in temperate coastal regions [3, 46, 47]. Moreover, the majority (>70%) of V.
vulnificus infections in Korea occur on the southwest coast, whereas V. vulnificus infection is
very rare on the east coast [48–50]. This is a striking observation, since the dietary preferences
of the inhabitants of the southwest coast and the east coast are quite similar. Additionally, in
Taiwan, most reported cases (>90%) of V. vulnificus-induced illness have occurred in the
southern part of Taiwan [10]. The prevalence of virulent strains might vary by geographic
region, although the proportion of susceptible individuals might also vary within a region
according to socioeconomic status or other factors [6].

Extensive studies of V. vulnificus virulence factors have been performed using highly viru-
lent strains (CMCP6, MO6-24/O, and YJ016) isolated in Korea, the United States, and Taiwan
[51–53]. However, the natural populations of V. vulnificus have been poorly characterized,
especially the V. vulnificus populations found in Asian countries. The genotypic distribution
patterns of V. vulnificus have been investigated mainly in the Gulf Coast region [54–57], while
other studies have examined the genetic diversity of V. vulnificus in the northeastern United
States and in European countries [35, 36, 58, 59]. In this study, we investigated the genetic
diversity of V. vulnificus strains isolated in Taiwan and Korea. These strains were subjected to
PCR-based genotypic characterization of putative virulence factors and to multilocus sequence
typing (MLST) using seven genetic loci. The association between the genotypic characteristics
of V. vulnificus strains and their source of origin, as well as the population structure of V. vulni-
ficus as inferred from the MLST data, are reported here.

Materials and Methods

Bacterial strains, biochemical tests, and general molecular techniques
A total of 84 strains of V. vulnificus (hereafter referred to as VV) originating from the United
States, Taiwan, and Korea were included in this study (Table 1). Clinical strains (n = 21) had
been previously isolated from hospitalized patients with septicemia [51–53, 60–64], whereas
environmental strains (n = 63) were isolated from seawater, seafood, and tidal mudflat samples.
Three clinical strains whose genomes had been sequenced (CMCP6, MO6-24/O, and YJ016)
[51, 53, 64] were used as reference strains. All VV strains were routinely cultured in Luria-
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Table 1. Vibrio vulnificus strains used in this study.

Strain Isolation sourcea Country of isolation Referenceb Strain Isolation sourcea Country of isolation Referenceb

ATCC 29307 C United States 70, ATCC SC9613 E (crab) Korea 58, 59

CG108 E Taiwan 60 SC9624 E (shell) Korea 58, 59

CG110 E Taiwan 60 SC9629 E (clam) Korea 58, 59

CG122 E Taiwan 60 SC9631 E (clam) Korea 58, 59

CG21 E Taiwan 60 SC9641 E (octopus) Korea 58, 59

CG26 E Taiwan 60 SC9648 E (clam) Korea 58, 59

CG27 E Taiwan 60 SC9649 E (shell) Korea 58, 59

CG33 E Taiwan 60 SC97100 E (conch) Korea 58, 59

CG46 E Taiwan 60 SC97114 E (tidal mudflat) Korea 58, 59

CG54 E Taiwan 60 SC97116 E (crab) Korea 58, 59

CG55 E Taiwan 60 SC97118 E (tidal mudflat) Korea 58, 59

CG57 E Taiwan 60 SC97126 E (oyster) Korea 58, 59

CG58 E Taiwan 60 SC9716 E (seawater) Korea 58, 59

CG62 E Taiwan 60 SC9717 E (tidal mudflat) Korea 58, 59

CG64 E Taiwan 60 SC9720 E (tidal mudflat) Korea 58, 59

CNUH94-6 C Korea 58, 59, CNUH SC9721 E (seawater) Korea 58, 59

CMCP6 C Korea 68 SC9728 E (seawater) Korea 58, 59

CN7 C Korea 58, 59, CNUH SC9729 E (seawater) Korea 58, 59

CN8 C Korea 58, 59, CNUH SC9730 E (tidal mudflat) Korea 58, 59

CN9 C Korea 58, 59, CNUH SC9731 E (seawater) Korea 58, 59

CNUH94-3 C Korea 58, 59, CNUH SC9733 E (fish) Korea 58, 59

CNUH94-4 C Korea 58, 59, CNUH SC9737 E (tidal mudflat) Korea 58, 59

CS91133 C Korea 58, 59, CNUH SC9738 E (oyster) Korea 58, 59

MO6-24/O C United States 67 SC9740 E (seawater) Korea 58, 59

NV1 E Taiwan 60 SC9761 E (oyster) Korea 58, 59

NV101 E Taiwan 60 SC9763 E (seawater) Korea 58, 59

NV15 E Taiwan 60 SC9766 E (clam) Korea 58, 59

NV18 E Taiwan 60 SC9771 E (shell) Korea 58, 59

NV22 E Taiwan 60 SC9793 E (seawater) Korea 58, 59

NV24 E Taiwan 60 SC9794 E (tidal mudflat) Korea 58, 59

NV28 E Taiwan 60 SC9795 E (seawater) Korea 58, 59

NV31 E Taiwan 60 V-15 C Korea 58, 59, CNUH

NV33 E Taiwan 60 V-16 C Korea 58, 59, CNUH

NV37 E Taiwan 60 V-19 C Korea 58, 59, CNUH

NV42 E Taiwan 60 WK13 C Korea 58, 59, WKUH

NV43 E Taiwan 60 WK15 C Korea 58, 59, WKUH

NV55 E Taiwan 60 WK16 C Korea 58, 59, WKUH

NV61 E Taiwan 60 WK20 C Korea 58, 59, WKUH

NV63 E Taiwan 60 WK22 C Korea 58, 59, WKUH

NV69 E Taiwan 60 WK3 C Korea 58, 59, WKUH

NV72 E Taiwan 60 WK6 C Korea 58, 59, WKUH

NV78 E Taiwan 60 YJ016 C Taiwan 69

a C and E denote clinical (human patient with septicemia) and environmental (seawater, seafood, and tidal mudflat) sources, respectively.
b Literature or additional information (e.g., strain provider). ATCC, American Type Culture Collection; CNUH, Chonnam National University Hospital,

Korea; WKUH, Won Kwang University Hospital, Korea. i, Hollis et al. [61]; ii, Wong et al. [123]; iii, Kim et al. [62] and Lee et al. [63]; iv, Kim et al. [51]; v,

Wright et al. [52]; vi, Shao and Hor [60].

doi:10.1371/journal.pone.0142657.t001
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Bertani medium, either with or without 2.5% NaCl (LB or LBS), at 37°C. Frozen stocks were
stored at -80°C in LBS with 70% (vol/vol) glycerol.

VV strains were biotyped using the following biochemical tests: i) indole production from
tryptophan (indole reaction), ii) putrescine production from orinithine (ornithine decarboxyl-
ation, ODC reaction), and iii) o-nitrophenol production from o-nitrophenyl-β-D-galactopyra-
noside (ONPG reaction). Biotypes were assigned according to the methods of Tison et al. [65]
and Bisharat et al. [66] (biotype 1, positive for indole and ODC reactions; biotype 2, negative
for indole and ODC reactions; biotype 3, ONPG-negative).

Genomic DNA was extracted from bacterial cultures in exponential growth phase using
Genomic-Tip kits (Qiagen, Valencia, CA, USA) according to the manufacturer's protocol and
stored in sterile water at -20°C until use. Unless specified otherwise, all other general experi-
mental procedures were performed according to a standard laboratory manual [67].

BOX-PCR genome fingerprinting
Repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprinting of the VV strains
was carried out with a BOX-A1R primer (BOX-PCR) according to the protocol of Cho and
Tiedje [68], with minor modifications. Similarity matrices of whole densitometric curves of the
gel tracks were calculated using the pairwise Pearson's product-moment correlation coeffi-
cients (r values) [69] as described by Rademaker et al. [70]. Cluster analyses of the similarity
matrices were performed using the unweighted pair group method with arithmetic averages
(UPGMA).

Genotypic characteristics
Representative strains that were selected based on the UPGMA clustering of their BOX-PCR
fingerprinting patterns were subjected to genotype analyses. Six genetic loci, pilF (pilus-type IV
assembly gene), vcg (ORF no. VV0401, virulence-correlated gene of strain YJ016), viuB (vulni-
bactin gene), vuuA (ferric vulnibactin receptor), vvhA (VV hemolysin gene), and CPS (capsular
polysaccharide) alleles were analyzed according to the methods of Roig et al. [30], Rosche et al.
[71], Panicker et al. [72], Kim et al. [73], Kaysner and DePaola [74], and Han et al. [75], respec-
tively. Associations between genotypic characteristics and strain origin (environmental or clini-
cal), as well as associations among the genotypic characteristics themselves, were evaluated
with the chi-square (χ2) test and Fisher's exact test (α = 0.05).

Multilocus sequence typing (MLST)
Representative strains of BOX-PCR types (Table 2) were subjected to MLST of seven genetic
loci. These loci included six housekeeping genes that encoded glutamine synthetase (glnA), glu-
cose-6-phosphate isomerase (glp), DNA gyrase subunit B (gyrB), malate-lactate dehydrogenase
(mdh), dihydroorotase (pyrC), and recombinase A (recA), in addition to a virulence-associated
gene encoding VV hemolysin (vvhA) (details described in S1 Table). vvhA was included to sup-
plement the phylogenetic information collected from the housekeeping genes with information
from a VV-specific gene. Partial sequences of the MLST loci were obtained using specific
primer pairs and the amplification conditions described in the PubMLST database [76] for glp,
mdh, and pyrC; by the conditions described by Gutacker et al. [77] for glnA and recA; and by
the conditions described by Kotetishvili et al. [78] for gyrB. PCR amplicons were sequenced
using an ABI3700 DNA analyzer (Applied Biosystems, Foster City, CA, USA). DNA sequences
of each gene were aligned with CLUSTALW [79]. No gaps (indels) were introduced into any
of the alignments, and no manual editing was performed.
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Table 2. Genotypic characteristics of representative Vibrio vulnificus strains as assessed by BOX-PCR genomic fingerprinting.

BOX-PCR profile
no.a

Representative
strainb

No. of
strainsc

Soruce of
isolationd

16S rRNA
typee

CPS
typee

vcg
typee

pilFe viuBe vuuAe

1 SC9629 2 E A NAf E - - -

2 NV22 2 E A NA C - - -

3 SC9729 1 E A 2 E - - -

4 SC9740 1 E A NA E - - -

5 SC9613 1 E A NA E + g - -

6 CNUH94-4 1 C B 1 C + - +

7 V-16 1 C B 2 C + - +

8 CN8 2 C B 1 C + + +

9 CN7 1 C B 1 C + + +

10 YJ016 2 C B 2 C + + +

11 SC9733 1 E B 1 C + - +

12 CG122 1 E B NA C + + -

13 CG55 2 E B 2 C + + +

14 CG108 1 E B 1 C + + +

15 SC9648 1 E B 2 C + - +

16 SC9720 1 E B 2 C + - +

17 SC9761 1 E A 2 E + - +

18 NV63 2 E B 2 C + + +

19 SC9737 1 E B 1 C + + +

20 NV72 2 E B 2 C + + +

21 CG27 4 E B 1 C + - +

22 CG26 2 E B 1 C + + +

23 SC97118 4 E B 2 C + + +

24 WK22 2 C B 1 C + + +

25 NV101 1 E B NA C - - -

26 WK20 4 C B 1 C + + +

27 V-19 1 C B 1 C + + +

28 SC9717 1 E B 1 C + + -

29 CG33 1 E B 1 C + - +

30 CG62 2 E B 2 C + + +

31 NV42 1 E B 1 C + + +

32 CG21 1 E B 1 C + + +

33 SC9794 1 E B 1 C + - +

34 NV37 3 E B 1 C - + -

35 SC9730 1 E B 2 C + + -

36 SC9649 2 E B 2 C + + +

37 CNUH94-3 1 C B 1 C + - +

38 SC9721 1 E B 2 C + + -

39 NV43 1 E B 1 C + + -

40 NV28 3 E B NA C + + -

41 NV31 2 E B NA C + - -

42 NV18 1 E B NA C + + -

43 SC9766 3 E B NA C + - -

44 WK15 2 C B 1 C + + +

45 WK6 1 C B 1 C + + +

46 CG64 1 E B 1 C + + +

(Continued)
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The seven multiple sequence alignments were concatenated, and phylogenetic reconstruc-
tion was performed from the concatenated sequence of the MLST loci. A phylogenetic tree was
inferred from the concatenated sequence using the neighbor-joining (NJ) algorithm imple-
mented in MEGA software (ver. 5) [80]. The evolutionary distances between the sequences
were calculated according to the Jukes-Cantor (JC69) substitution model [81]. The tree topol-
ogy was statistically evaluated by 1,000 bootstrap resamplings and was further confirmed using
the maximum likelihood (ML) algorithm (general time reversal [GTR] + gamma [Γ] distribu-
tion model) implemented in the high performance computing version of RAxML [82]. Phylo-
genetic analyses were also performed for individual genes, as described above, to determine the
alleles of each gene (S1 Fig).

An allelic type (AT) was defined as a unique combination of polymorphisms within a gene.
Each AT was assigned an arbitrary number. A sequence type (ST) was defined as a unique
combination of ATs within the concatenated sequences (seven genes combined) according to
START (ver. 2) [83]. Each ST was also assigned an arbitrary number.

Tests of neutrality, linkage disequilibrium, and recombination
From the ATs, a number of descriptive properties were determined for each gene. The number
of polymorphic sites, the number of parsimonious sites, the nucleotide diversity (π, average
pairwise nucleotide difference per site) [84], the average number of nonsynonymous substitu-
tions per nonsynonymous site (dN), the average number of synonymous substitutions per syn-
onymous site (dS), and Tajima's D statistic [85] for each gene were calculated using DNASP
(ver. 5.1) [86]. To investigate whether positive (or negative) selection had occurred at the pro-
tein level, the ratio of dN to dS was calculated (dN/dS< 1, negative selection; dN/dS = 1, no
selection; dN/dS> 1, positive selection). Tajima's D statistic was used to test the neutrality of
the observed DNA polymorphisms under the assumption that the Tajima D values exhibit a β
distribution (D< 0, high level of low frequency polymorphisms compared with the expected
level in a neutral model [possibly due to population size expansion after a bottleneck or selec-
tive sweep]; D> 0, low level of polymorphisms compared with the expected level [possibly due
to population size contraction or balancing selection]; D = 0, observed level of polymorphisms
similar to the expected level [possibly due to genetic drift-mutation equilibrium]) [85, 87].

Table 2. (Continued)

BOX-PCR profile
no.a

Representative
strainb

No. of
strainsc

Soruce of
isolationd

16S rRNA
typee

CPS
typee

vcg
typee

pilFe viuBe vuuAe

47 NV1 3 E B 1 C + + +

48 SC9793 1 E B 1 C + + +

49 MO6-24/O 2 C B 1 C + + +

50 ATCC29307 1 C B 2 C + - +

51 CMCP6 1 C B 1 C + - +

52 WK13 2 C B 1 C + - +

a As shown in Fig 1.
b Selected randomly, with the exception of the reference clinical strains CMCP6, MO6-24/O, and YJ016.
c Number of strains belonging to each BOX-PCR profile.
d C, clinical source; E, environmental source.
e Determined according to the methods of Nilsson et al. [37], Han et al. [75], Roche et al. [71], Roig et al. [30], Panicker et al. [72], and Kim et al. [73].
f Not amplified.
g PCR amplicon with the expected size.

doi:10.1371/journal.pone.0142657.t002
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Multilocus linkage disequilibrium between alleles (nonrandom association of alleles at mul-
tiple loci) [88] was examined by determining the index of association (IA 6¼ 0, disequilibrium;
IA = [VO/VE] - 1, where VO = observed variance and VE = expected variance) using START
(ver. 2) [83]. Since IA depends on sample size (i.e., the number of loci used), the standardized
version of IA (ISA = [V0/VE—1]/[L-1], where L = the number of loci) [89] was also determined.
Statistical significance levels of IA and ISA were measured using a randomization test with 1,000
iterations.

Recombination analyses for the genes analyzed by MLST were performed according to the
method described by Martin et al. [90]. The overall evidence of recombination at each locus
was assessed by determining the F statistic (pairwise homoplasy index, PHI) [91]. The PHI test
detects recombination by comparing the frequency of phylogenetically incompatible site-pairs
with the frequency of such site pairs expected in the absence of recombination [90]. The PHI
test was performed with SPLITSTREE (ver. 4.13) [92]. Window size (W) was set to 100 bases
(FW = 100), and the statistical significance of FW values were assessed using a permutation test
with 1,000 iterations (H0 [no recombination, FW 6¼ 0] rejected at α = 0.05 in favor of H1

[recombination]), as recommended by Bruen et al. [91]. Individual recombination events for
each locus were inferred from evidence of gene conversions (fragments of DNA sequence that
are copied onto another fragment of DNA sequence) [93] as detected by Sawyer's runs test
[94]. This test identifies the DNA fragment shared by two sequences via ancestral gene conver-
sion and was performed using GENECONV (www.math.wustl.edu/~sawyer). The statistical
significance of detecting the shared fragment (intragenic conversion) was measured using a
permutation test with 10,000 iterations. A single recombination event was defined as a group
of fragments linked to the same 5' and/or 3' breakpoints, as described by Nightingales et al.
[95] and den Bakker et al. [96]. After statistical assessment of recombination, all ST sequences
were used to generate a Neighbor-Net network [97] tree depicting the evolutionary relation-
ships between VV strains (ST sequences) with ancestral recombination events [90]. The Neigh-
bor-Net network based on weighted splits in multiple sequence alignment was constructed
using SPLITSTREE (ver. 4.13) [92]. The JC69 substitution model [81] used in the bifurcating
phylogenetic tree was used to calculate the evolutionary distances in the Neighbor-Net net-
work, and the network topology was evaluated by 1,000 bootstrap resamplings. All other calcu-
lations were performed according to the SPLITSTREE manual.

Nucleotide sequence accession numbers
The nucleotide sequences of the 16S RNA gene, glnA, glp, gyrB,mdh, pyrC, recA, and vvhA
have been deposited at NCBI GenBank under the accession numbers KP223857-KP223908,
KP223909-KP223960, KP223961-KP224012, KP224013-KP224064, KP224065-KP224116,
KP224117-KP224168, KP224169-KP224220, and KP224221-KP224272, respectively.

Results and Discussion

Collection of biotype 1 strains
Consistent with the finding that biotype 1 strains have been primarily identified as responsible
for human infection [1, 2], all clinical strains in our collection belonged to biotype 1. However,
all of our environmental strains also belonged to biotype 1, regardless of the isolation source
(e.g., seawater, seafood, or tidal mudflat). Unlike the biotype 1 strains, which have been found
worldwide in the marine environment (including brackish water) as well as in patients with
septicemia [2], VV strains belonging to biotypes 2 and 3 have been reported to occupy special-
ized ecological niches. Biotype 2 strains were primarily found as eel (genus Anguilla) pathogens
[65, 77, 98]. Although biotype 3 strains have been reported to cause wound infection in
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humans, to date these infections have been limited to persons handling fish (genus Tilapia) in
Israel at freshwater fish farming sites [66, 99]. Thus, we may not have obtained any biotype 2
or 3 strains because none of our environmental strains were obtained from such specialized
environments.

However, the use of 'biotyping' in the taxonomy of VV is somewhat controversial. Recently,
Broza [100] challenged the classification of VV strains by the biotype scheme because of the
ambiguity of this scheme as observed by Biosca et al. [101] for indole-positive, eel-infecting VV
strains. Although indole, ODC, and ONPG findings are certainly useful to some extent and are
still widely used for taxonomic tests to differentiate sub-species groups of VV, we agree that
classification systems of VV based on only three enzymatic reactions might not properly reflect
the exquisite taxonomic patterns of VV. Nonetheless, the scope of our study was somewhat
conservative in that it was confined to VV biotype 1. Thus, we recognize that our results might
not adequately reflect the entire span of genetic diversity or population structure of VV.

BOX-PCR
Prior to in-depth analyses, the VV strains were subjected to BOX-PCR genomic fingerprinting
to identify clonal strains (VV strains with identical BOX-PCR fingerprinting patterns) in our
collection (Fig 1). To determine a cut-off value to define a unique BOX-PCR fingerprinting
pattern (BOX-PCR type), two strains (CMCP6 and ATCC 29307) were subjected to multiple
rounds of BOX-PCR. A comparison of the resulting fingerprinting patterns resolved on inde-
pendent gels yielded an average similarity coefficient (r value) of 0.96 (range, 0.92–0.98), which
is consistent with other studies [68, 70, 102]. Thus, a similarity value of 0.90 or more was cho-
sen to indicate strains of the same BOX-PCR type. The cut-off level used in the UPGMA cluster
analysis of BOX-PCR genomic fingerprinting patterns corresponded to a genomic DNA-DNA
similarity of> 95% [103], suggesting that strains belonging to the same BOX-PCR type in this
study can be regarded as nearly identical strains at the genomic DNA level.

Cluster analysis identified a total of 52 BOX-PCR types (Fig 1 and Table 2); the majority
(58%) of these were singletons (one member strain per BOX-PCR type), indicating that the
intra-species diversity of VV as assessed by BOX-PCR fingerprinting could be higher than that
observed in this study (Fig 1 and Table 2). Rarefaction analysis of the BOX-PCR results using
the Chao-1 estimator [104, 105] suggested that there could be around 30 additional BOX-PCR
types (Chao-1 estimate, 84.7). Based on the numbers of identified BOX-PCR types, the envi-
ronmental VV strains (41 BOX-PCR types) seemed to be more diverse than the clinical strains
(16 BOX-PCR types). However, this simple comparison might not be sufficient to draw an ade-
quate conclusion regarding the relationship between diversity and strain source, since three
times more environmental strains than clinical strains were included in our collection. More-
over, the evenness indices (J, normalized form of diversity index [0–1 scale] based on Shan-
non's entropy H) [106] for the environmental strains and clinical strains were 0.868 and 0.870,
respectively (for all strains, J = 0.864), indicating that the diversity of the clinical strains as
revealed by BOX-PCR fingerprinting was comparable to that of the environmental strains.

Associations between isolation source and genotypic characteristics
To determine the genotypes of our VV strains, 52 representative strains of BOX-PCR types
were subjected to PCR-based genotyping assays. These assays detected polymorphisms at
seven genetic loci (the 16S rRNA gene and the pilF, vcg, viuB, vuuA, vvhA, and CPS alleles)
(Table 2) suggested to be predictive of pathogenicity (with the exception of vvhA). All VV
strains examined in this study were positive for vvhA. Since vvhA has been shown to be carried
by all VV strains isolated to date and could be a hallmark of the VV species itself [107], this
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Fig 1. UPGMA cluster analysis of BOX-PCR genomic fingerprints of Vibrio vulnificus strains. r values
are expressed as percentages. The dashed line indicates the cutoff level (90%). Closed circles denote
representative strains selected from each of the unique fingerprinting profiles for subsequent analyses.

doi:10.1371/journal.pone.0142657.g001
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gene was excluded from further analysis. Specifically, the 16S rRNA genotype B, CPS genotype
1, vcg genotype C, and positive PCR results for pilF, viuB, and vuuA have all been reported to
be associated with pathogenicity [30, 37, 71–75]. Thus, these genotypes were designated as 'P'
genotypes in the present study. In contrast, the alternative genotypes for these loci (16 rRNA
genotype A, CPS genotype 2, vcg genotype E, and negative PCR results for pilF, viuB, and
vuuA) were all designated as 'N' genotypes. Although a single genotype was not assumed to
indicate the virulence potential of VV, our designations (P vs N genotypes) have an advantage
over the original designations (e.g., A or B, 1 or 2, C or E, positive or negative) in that they pro-
vide an unified designation scheme with an indication (P, pathogenic; N, nonpathogenic) of
the possible relationship to the virulence potential of VV strain based on the current
knowledge.

The majority (> 50%) of the VV strains in our collection were found to have P genotypes
for all loci tested (16S rRNA type B, 88.5%; CPS type 1, 51.9%; vcg type C, 90.4%; pilF +, 88.5%;
viuB +, 59.6%; vuuA +, 62.2%). No hybrid ribotypes for the 16S rRNA genotype (type AB)
[108] were observed. The CPS genotype could not be determined for 10 strains (19%) because
no PCR amplification products were obtained using the primer pairs suggested by Han et al.
[107]. As reported in numerous studies [30–36], all clinical strains in our collection exhibited P
genotypes for the 16S rRNA gene, pilF, vcg, and vuuA. However, some (40% and 20%) of the
clinical strains exhibited N genotypes for viuB and CPS, respectively. This finding is particu-
larly interesting because even the well-studied clinical strains CMCP6 and YJ016 exhibited N
genotypes for these two loci. In contrast, the clinical strain MO6-24/O exhibited P genotypes
for all loci tested. Another noteworthy finding was that many of the environmental strains
tested exhibited P genotypes for a number of loci. Less than half of the environmental strains
exhibited N genotypes for viuB and vuuA loci (40.5% and 43.2%, respectively), and only a
small fraction of the environmental strains exhibited N genotypes for the 16S rRNA gene
(16.2%), CPS (32.4%), pilF (16.2%), and vcg (13.5%).

Although many studies have reported that VV genotype correlates with strain origin (i.e., P
genotypes with clinical sources and N genotypes with environmental sources) [32, 34, 37, 71,
72, 108–111], our genotyping findings contradict this conclusion. Statistical analysis using the
chi-square (χ2) test (α = 0.05) indicated that the association between genotype and strain
source was not significant for any genotype, with the exception of vuuA (Table 3). For vuuA,
Fisher's exact test also failed to reject the null hypothesis of random association (p< 0.05).
While a significant association (p< 0.05, χ2 test; p< 0.05, Fisher’s exact test) was observed
between the vuuA genotype and the strain origin, the degree of association expressed as a

Table 3. Associations between Vibrio vulnificus strain origin (clinical or environmental) and
genotype.

Genea χ2 test p
value

Fisher's exact test p
value

Association index (simple matching
coefficient)

16S
rRNA

0.097 0.165 0.404

CPS 0.113 0.180 0.571

pilF 0.097 0.165 0.404

vcg 0.134 0.305 0.385

viuB 0.971 � 1 0.462

vuuA 0.002 b 0.002 0.596

a Genes used for genotyping.
b Significant associations are designated in bold.

doi:10.1371/journal.pone.0142657.t003
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simple matching coefficient indicated that only around 60% of all VV strains showed the
expected association (vuuA-P types from clinical sources and vuuA-N types from environmen-
tal sources). A marginal association (p = 0.097) was observed for the 16S rRNA and pilF geno-
types, with degrees of association< 50%. Our results are consistent with those of a recent
study of VV strains isolated in Japan [38]. In this study, P genotypes for the 16S rRNA gene,
CPS, and vcg dominated both in clinical strains and in environmental strains. In addition, the
prevalence of the P genotype for the 16S rRNA gene in environmental VV strains isolated in
Korea has also been reported [112]. The genotypes of VV might exhibit distinct geographical
patterns of distribution, as noted by Reynaud et al. [36]. This hypothesis could explain the dis-
crepancy between our results and those of previous studies; however, this hypothesis still
requires further testing.

Associations among genotypic characteristics
We next determined whether the genotypes of different loci correlated with one another. Sig-
nificant (p< 0.05, χ2 test; p< 0.05, Fisher’s exact test) associations were observed between the
genotypes of all tested loci, with the exception of CPS (Table 4 and S2 Table). The inter-rela-
tionships between the 16S rRNA gene, the pilF genotype, and the vcg genotype were particu-
larly strong. Strikingly, the genotypes of these three loci agreed more than 90% with each other.
Consistent with our results, a significant association between the 16S rRNA gene and the vcg
genotype was reported in a study by Thiaville et al. [34], which was also performed with bio-
type 1 strains. In their study, 16S rRNA type A and vcg type E strains were defined as 'profile 1'
strains, whereas 16S rRNA type B and vcg type C strains were defined as 'profile 2' strains.
They concluded that profile 2 strains were more likely to cause lethal systemic infection, but
suggested that genotype alone could not sufficiently predict the pathogenicity of a given VV
strain because of the many observed exceptions (e.g., nonpathogenic strains with profile 2). In
our study, all clinical strains were profile 2 strains; however, most environmental strains
(83.8%) were also profile 2 strains.

Multilocus sequence typing (MLST)
MLST of our VV strains revealed 23–35 (average, 28) allelic types (ATs) per locus analyzed (S1
Fig and S3 Table), resulting in a total of 44 unique combinations of ATs. Each unique combina-
tion of ATs was defined as an MLST sequence type (ST) in this study (S3 Table). The nucleo-
tide diversity (π) of each gene (average, 0.021; range, 0.015–0.030) (Table 5) was comparable to
MLST data previously obtained for pathogenic bacteria, including VV [36, 95, 113–116].
Among the genes analyzed, the highest nucleotide diversity was observed for pyrC (π = 0.030),

Table 4. Associations between genotypic characteristics (lower left half, χ2 test p value; upper right half, simple matching coefficient).

Genea 16S rRNA CPS pilF vcg viuB vuuA

16S rRNA 0.690 0.923b 0.981 0.712 0.769

CPS 0.052 0.643 0.690 0.595 0.643

pilF < 0.001 0.666 0.904 0.673 0.808

vcg < 0.001 0.052 < 0.001 0.692 0.750

viuB 0.002 0.495 0.023 0.004 0.596

vuuA 0.003 0.430 < 0.001 0.012 0.346

a Genes used for genotyping.
b Significant associations are designated in bold.

doi:10.1371/journal.pone.0142657.t004

Genetic Diversity of Vibrio vulnificus

PLOSONE | DOI:10.1371/journal.pone.0142657 November 23, 2015 11 / 23



which also contained the largest number (n = 71) of polymorphic sites (Table 5). On the other
hand, recA showed the lowest nucleotide diversity (π = 0.015), even though it had the largest
number (n = 35) of ATs. Despite its low nucleotide diversity, the high allelic diversity of recA
can be explained by the even distribution over many polymorphic sites of a relatively small
number of nucleotide substitutions in the recA sequence, which also resulted in recA having
the highest number of singleton ATs. The dN/dS ratios for all genes analyzed were much lower
than 1 (average, 0.010; range, 0.001–0.020), indicating that synonymous substitutions predom-
inated over nonsynonymous substitutions (Table 5). Thus, we conclude that negative (purify-
ing) selection acted against amino acid substitutions in these genes (negative selection on the
protein level). This conclusion was expected, because six of the seven genes analyzed by MLST
were functionally constrained housekeeping genes. A putative virulence-associated gene, vvhA,
was also shown to be under negative selection pressure (dN/dS = 0.009). The Tajima's D values
for all genes analyzed fell within a confidence interval of zero (e.g., -1.8< 95% CI< +2.0 and
-1.6< 90% CI< +1.7 for 28 ATs), under the assumption that the Tajima's D values followed a
β distribution [85], and hence were considered insignificant (Table 5). Thus, mutations on the

Table 5. Characteristics of the genes analyzed by MLST.

Group Gene No. allelic types (ATs) No. of polymorphic
sites

No. of parsimonious
site

Average nucleotide
diversity (πa)

dNb dSc dN/dS Tajima's Dd

Total No. of
singletones

Total glnA 21 12 (57%) 30 19 0.020 0.001 0.081 0.007 -0.200

glp 27 16 (59.3%) 53 43 0.023 0.001 0.097 0.008 0.244

gyrB 25 10 (40%) 38 26 0.018 0.001 0.075 0.011 0.180

mdh 23 13 (56.5%) 35 25 0.016 0.001 0.058 0.011 0.299

pyrC 32 24 (75%) 71 53 0.030 0.002 0.116 0.020 0.413

recA 35 23 (65.7%) 59 40 0.015 0.000 0.061 0.001 -0.455

vvhA 23 10 (43.5%) 36 31 0.024 0.001 0.101 0.009 0.674

Average 26.6 15.4 (57.9%) 46 33.9 0.021 0.001 0.084 0.010

Lineage A glnA 4 2 (50%) 5 0 0.006 0.000 0.026 0.000 -0.797

glp 6 6 (100%) 15 7 0.010 0.000 0.044 0.000 -0.034

gyrB 5 4 (80%) 9 2 0.007 0.000 0.030 0.000 -0.526

mdh 4 3 (75%) 14 1 0.011 0.001 0.039 0.026 -0.624

pyrC 6 6 (100%) 11 3 0.007 0.001 0.026 0.026 -0.440

recA 6 6 (100%) 14 4 0.007 0.000 0.027 0.000 -0.666

vvhA 4 3 (75%) 5 1 0.006 0.003 0.015 0.180 -0.212

Average 5 4.3 (86%) 10.4 2.6 0.008 0.001 0.030 0.033

Lineage B glnA 17 10 (58.8%) 19 15 0.015 0.000 0.062 0.006 0.266

glp 20 9 (45%) 40 28 0.017 0.001 0.071 0.013 -0.318

gyrB 19 5 (26.3%) 26 15 0.012 0.000 0.052 0.004 -0.475

mdh 19 10 (52.6%) 26 19 0.014 0.000 0.054 0.004 0.461

pyrC 25 17 (68%) 58 36 0.022 0.003 0.082 0.031 -0.320

recA 28 16 (57.1%) 41 23 0.009 0.000 0.038 0.003 -1.005

vvhA 18 6 (33.3%) 22 19 0.015 0.001 0.064 0.008 0.335

Average 20.9 10.4 (49.8%) 33.1 22.1 0.015 0.001 0.060 0.010

a Average pairwise nucleotide difference per site.
b Average number of nonsynonymous substitutions per nonsynonymous site.
c Average number of synonymous substitutions per synonymous site.
d No Tajima’s D value was significantly deviated from zero (p > 0.10).

doi:10.1371/journal.pone.0142657.t005
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DNA level with no effect on fitness can explain most of the observed polymorphisms. In fact,
as expected from the very low dN values (0.000–0.002), the amino acid sequences encoded by
each gene showed at least 99.5% pairwise identity.

When all 44 STs (concatenated sequences) were subjected to phylogenetic reconstruction,
two major phylogenetic groups, each of which exhibited a bootstrap confidence level> 80%,
were observed in both the NJ tree and the ML tree (Fig 2A). This subdivision of VV into two
intra-species lineages is consistent with previous studies [32, 36, 37, 71, 113]. One group was
comprised of six STs that originated exclusively from environmental sources, while the other
group was comprised of 37 STs that originated either from environmental sources or from clin-
ical sources (Table 1 and S3 Table). We designated the former group as MLST lineage A and
the latter group as MLST lineage B; these two MLST lineages corresponded to previously recog-
nized lineages of VV [115] (S2 Fig). We did not consider ST-30 (representative strain, SC9733)
as belonging to either of these monophyletic groups because of the low bootstrap confidence
level (< 50%) of the internal node of ST-30. In spite of the close relationship between ST-30
(average genetic distance, 0.016 ± 0.002) and the MLST B lineage, no assignment was made for
ST-30 in order to avoid making either lineage polyphyletic. As mentioned above for the strain
sources in each of the MLST lineages, the association between MLST lineage (A or B) and isola-
tion source (clinical or environmental) was not significant (p = 0.146, χ2 test; p = 0.309, Fisher’s
exact test). However, significant (p< 0.05, χ2 test; p< 0.05, Fisher’s exact test) associations
were observed between MLST lineage and genotype. Specifically, the N-type and P-type strains
predominated in MLST lineages A and B, respectively (Pearson's association coefficient F =
0.409–1.000). The MLST A and B lineages were comprised exclusively of N-type strains and P-
type strains, respectively, especially for the 16S rRNA gene. The average nucleotide diversity of
MLST lineage B (π = 0.015 ± 0.004) was significantly greater than that of MLST lineage A (π =
0.008 ± 0.002) (p< 0.05, t-test) (Table 5) as reflected in their phylogenetic branching patterns
(Fig 2A). The inter-group genetic distance between lineages A and B (0.033 ± 0.002) exceeded
the average nucleotide diversities of both lineages. The average dN/dS ratio of MLST lineage A
was slightly higher than that of MLST lineage B (Table 5), although this difference was not sig-
nificant (p> 0.05, t-test). Interestingly, MLST lineage B appeared to be further divided into
two sub-lineages, one containing the reference strains CMCP6 (ST-17) and MO6-24/O (ST-1)
and the other one containing the reference strain YJ016 (ST-22). However, these sub-groupings
exhibited low bootstrap confidence levels (< 50%).

Linkage analysis
We found that VV was in linkage disequilibrium; that is, VV exhibited a clonal population
structure with infrequently recombining 'clonal' STs as opposed to frequently recombining
'sexual' STs. When all 44 STs were tested for linkage disequilibrium between alleles using the
index of association (IA) [88], both the conventional and standardized IA values were signifi-
cantly different from zero (IA = 0.643, p< 0.05; ISA = 0.107, p< 0.05), indicating nonrandom
association between alleles (linkage disequilibrium) (Table 6). Maynard-Smith et al. described
a continuum of bacterial population structures, ranging from strictly clonal (e.g., Neisseria
gonorrhoeae, IA = 0.04) to panmictic (e.g., Pseudomonas syringae, IA = 18.35) [88]. Compared
with these data, VV appears to exhibit weakly clonal population structure. However, the
degrees of linkage disequilibrium (IA) estimated by Maynard-Smith et al. [88] were calculated
based on electrophoretic types (ETs), which were determined by multilocus enzyme electro-
phoresis (MLEE). Since these values ultimately depend on amino acid sequence, the degree of
linkage disequilibrium measured for VV in the present study could be underestimated (skewed
toward linkage equilibrium). This is because our IA values were calculated based on STs that
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Fig 2. Phylogenetic relationships of V. vulnificus strains based on the concatenated sequences of seven genetic loci. The phylogenetic distances of
each concatenated sequence were calculated using the Jukes-Cantor (JC69) model, and the trees were constructed using the neighbor-joining (NJ)
algorithm and the neighbor-net network (NN) algorithm (panels A and B, respectively). The numbers at the nodes in the NJ tree indicate the bootstrap scores
(as percentages) and are shown for frequencies at or above the threshold of 50%. Bootstrap scores are not shown in the NN tree for tree legibility, but are
given in the text. The scale bar represents the expected number of substitutions per nucleotide position.

doi:10.1371/journal.pone.0142657.g002
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were determined by MLST, which depends on nucleotide sequence. Boyd et al. [117] reported
that changes of around 26 nucleotides were required to influence the electrophoretic mobility
of housekeeping enzymes. Despite this underestimation, the IA for VV determined in the pres-
ent study was significantly deviated from zero. We hypothesize that VV would exhibit a highly
clonal population structure if its IA value was determined from ETs, because only a very limited
number of ETs are available for each locus due to the high level of amino acid sequence identity
between ATs (99.8–100%, almost fixed alleles on the protein level).

Consistent with our results, Bisharat et al. [115] reported a clonal population structure for
VV, although a different association statistic was used for the linkage analysis. A closely related
species, V. cholerae, has also been shown to exhibit a clonal population structure [118] with an
IA value (ISA = 0.143, p< 0.05) close to that observed in the present study. The clonal popula-
tion structure observed for the VV STs in the present study could be explained by insufficient
recombination between STs, resulting in a high level of association between alleles, as proposed
by Maynard-Smith et al. [119]. The rate of recombination of large chromosomal segments
might not be sufficient to randomize the genomes or separate the clonal association of the VV
strains analyzed in the present study. Interestingly, when the two MLST lineages were consid-
ered separately, the STs belonging to MLST lineage A showed no evidence of linkage disequi-
librium (ISA = 0.015, p> 0.05), while MLST lineage B still showed significant linkage
disequilibrium (ISA = 0.099, p< 0.05). However, we cannot exclude the possibility that the
linkage equilibrium observed for MLST lineage A might be due to insufficient sampling, as
reflected by the high frequency of singleton ATs.

Inconsistent with the observed results of linkage analysis, ancestral recombination events in
the genes used in MLST were detected with two different tests for recombination, the PHI test
for overall evidence of recombination and Sawyer's runs test for individual recombination
events [91, 94] (Table 7). The PHI test detected significant evidence of recombination (permu-
tation p value< 0.05) in glp, gyrB,mdh, pyrC, and vvhA when all STs were tested. The same
result was observed for MLST lineage B, but the PHI statistic could not be calculated for a num-
ber of genes in MLST lineage A due to the lack of phylogenetically informative (parsimonious)
sites (Table 5). Sawyer's test, a more conservative test for recombination events, also detected
evidence of recombination for four genes (glnA, glp, gyrB, and pyrC) (Table 7). However, break-
point analysis identified only a limited number of recombination events. Although 1–25 DNA
fragments (segments) were shared by paired sequences via ancestral gene conversions, only
1–4 (and usually only one) recombination events were identified within MLST lineage B and
between MLST lineages A and B. Moreover, Sawyer's test did not detect any recombination
events within MLST lineage A. This finding supports our skeptical view for the linkage equilib-
rium observed for MLST lineage A.

Table 6. Multilocus linkage disequilibrium analysis of Vibrio vulnificus.

VO VE IA (p value) ISA (p value)

All sequence types (STs) 0.539 0.328 0.643 (p < 0.001)a 0.107 (p < 0.001)

Lineage A STs 0.543 0.498 0.091 (p = 0.619) 0.015 (p = 0.572)

Lineage B STs 0.676 0.425 0.592 (p < 0.001) 0.099 (p < 0.001)

VO, observed variance of the number of loci at which two STs differ (K) [88].

VE, expected variance of K [88].

IA, index of association (IA = [VO/VE]-1) [88].

ISA, standardized index of association ([ISA = IA/[L-1], where L = the number of loci) [89].
a Significant linkage disequilibrium groups are marked in bold.

doi:10.1371/journal.pone.0142657.t006
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Concluding Remarks
We hypothesize that the clonal population structure of VV, which comprised STs with some
recombination potential, may be influenced by ecological factors that restrict the breakdown of
linkage disequilibrium. Consistent with this hypothesis, V. cholerae andHaemophilus influenza
have been shown to maintain clonal population structures, even though these organisms are
naturally transformable [88, 118, 120]. Alternatively, VV could be comprised of distinct eco-
types [121], between which recombination is limited. According to the ecotype model of bacte-
rial species, in which distinct ecotypes evolve primarily by periodic selection or selective sweep,
alleles are likely to be in significant linkage disequilibrium [122]. The two MLST lineages (or
certain ST groups) of VV might correspond to two (or multiple) ecotypes of VV, either of
which could be a derived/ancestral ecotype. Although Tajima's D values in the present study
were not significantly deviated from zero (Table 5), the positive values observed for all VV STs
are consistent with this hypothesis because Tajima's D test tends to produce positive values for
a sub-dividing population. Neighbor-Net network analysis further revealed that recombination
between MLST lineages A and B was relatively rare compared with recombination within
MLST lineage B (Fig 2B). Considering the star-shaped topology and the many cyclic branches
near the root of MLST lineage B, this lineage may have undergone rapid clonal expansion after
a period of frequent recombination. We speculate that MLST lineage B, or at least some STs in
MLST lineage B, correspond to the pathogenic lineage (or pathogenic ecotypes) of VV, since
all of our clinical strains belonged to MLST lineage B, and P genotypes predominated in MLST
lineage B. The predominance of lineage B strains with P genotype characteristics in our strain

Table 7. Analysis of overall recombination (PHI test) and individual recombination events (Sawyers’ runs test).

Gene PHI test p value Sawyer's runs testa

Total Within lineages Simulated p valueb No. of fragmentsc No. of recombination eventsd

Total Within lineages Between lineages Multiplee

A B A B A-B

glnA 0.213 NDf 0.836 0.013 1 1 0 1 0 0

glp 0.001g 0.004 < 0.001 0.001 25 1 0 0 0 1

gyrB < 0.001 ND < 0.001 0.005 8 1 0 0 1 0

mdh 0.041 ND 0.003 0.561 0 0 0 0 0 0

pyrC < 0.001 1.000 < 0.001 0.002 12 4 0 3 1 0

recA 0.490 0.256 0.901 0.109 0 0 0 0 0 0

vvhA 0.002 ND < 0.001 0.274 0 0 0 0 0 0

Sum 46 7 0 4 2 1

a Gene conversion test for recombination between ancestors of sequences in an alignment (global inner recombination) [94, 95]. Global outer

recombination events were not detected.
b Global p value obtained using 10,000 permutations.
c Fragment shared by two sequences in the alignment via ancestral gene conversion [94]. Only fragments that significantly (p < 0.05) implied

recombination events were counted.
d Groups of fragments linked to the same 5' and/or 3' breakpoints were classified as a single recombination event as described by Nightingales et al. [95]

and den Bakker et al. [96].
e Recombination events both between and within lineages.
f Not determined due to the lack of parsimonious sites.
g Significant (p < 0.05) support for recombination.

doi:10.1371/journal.pone.0142657.t007
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collection also suggests the prevalence of potentially pathogenic strains in the marine environ-
ment in East Asia. However, for this suggestion to be experimentally supported, the pathoge-
nicity of our strains should be determined using an animal model. In addition, a more
extensive MLST analysis of VV, incorporating many more genetic loci, would help clarify the
population structure of VV. Inferring phylogenetic relationships from the core genome of VV
as constructed from both clinical strains and environmental strains would also help meet this
goal. Until recently, studies of VV have focused mainly on clinical strains, especially the well-
characterized strains CMCP6, MO6-24/O, and YJ016. It is therefore very important for future
studies to include a comprehensive group of environmental strains and to integrate in vivo
pathogenicity results with genomic data. This approach will enable a better understanding of
the evolutionary patterns and pathogenesis of this notorious marine pathogen.
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