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Abstract: This paper proposes and implements a dedicated hardware accelerated real-time face-mask
detection system using deep learning (DL). The proposed face-mask detection model (MaskDetect)
was benchmarked on three embedded platforms: Raspberry PI 4B with either Google Coral USB TPU
or Intel Neural Compute Stick 2 VPU, and NVIDIA Jetson Nano. The MaskDetect was independently
quantised and optimised for each hardware accelerated implementation. An ablation study was
carried out on the proposed model and its quantised implementations on the embedded hardware
configurations above as a comparison to other popular transfer-learning models, such as VGG16,
ResNet-50V2, and InceptionV3, which are compatible with these acceleration hardware platforms. The
ablation study revealed that MaskDetect achieved excellent average face-mask detection performance
with accuracy above 94% across all embedded platforms except for Coral, which achieved an average
accuracy of nearly 90%. With respect to detection performance (accuracy), inference speed (frames
per second (FPS)), and product cost, the ablation study revealed that implementation on Jetson Nano
is the best choice for real-time face-mask detection. It achieved 94.2% detection accuracy and twice
greater FPS when compared to its desktop hardware counterpart.

Keywords: computer vision; COVID-19 mitigation; deep neural network; embedded systems; face-
mask detection; hardware acceleration

1. Introduction

The world faces its greatest pandemic since the 1918 influenza pandemic, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2; COVID-19). After the first confirmed
cluster in December 2019 [1], COVID-19 garnered global attention. The global economy
weakened as government responses, such as lockdowns and the shutdown of businesses,
put regular daily life on hold. With international travel slowdown, the Air Transport Asso-
ciation (ATA) projected a 2020 loss of passenger carriage revenue of up to USD 314 billion
compared to 2019 (IATA Economics’ Chart of the Week: “recovery in air travel expected
to lag economic activity”—https://www.iata.org (accessed on 13 February 2022)). The
International Monetary Fund (IMF) reported a drop in global GDP of −3% from 6.3% in
January 2020, rendering this a greater recession than both the Great Depression and the
2009 financial crisis [2]. Mental health, the economy, and global politics have all seen
negative consequences as a result. The prevalence of adverse psychiatric outcomes among
the general public such as anxiety and depression was greater than that before the out-
break [3]. Many nonessential workers with lower financial status are more susceptible to
financial hardships due to job loss [4,5]. With these negative consequences, it is vital that
the pandemic ends as quickly as possible. Mass vaccinations are taking place, and they
have been effective at reducing hospitalisations and deaths. However, nonpharmaceutical
interventions in the form of social distancing and mask mandates are still very impor-
tant [6]. As such, countermeasures such as mask-wearing compliance must be employed
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to slow the spread of the virus and its new variants. It is the simplest and most popular
measure for stopping the spread of the virus. However, it is only effective if most people
(>70%) agree to adhere to it [7]. Those who do not adhere to the recommendations allow
for the virus to spread and lengthen the pandemic’s effects. Thus, there must be a way
to enforce the mask-wearing policy without requiring a tremendous amount of resources
behind it. In this direction, the contributions of this research are proposing a novel auto-
mated face-mask detection solution that is cost-effective and was designed for embedded
hardware with dedicated machine-earning workload accelerators. This work offers the
following contributions.

1. A cost-effective technological solution is proposed for automatic face-mask detection.
It exploits computer-vision (CV)-based face detection in conjunction with machine-
learning strategies to build an integrated system that classifies detected faces as having
a mask on or not. Such a system, which is provided as an open-source or a commercial
product, can be implemented in many public and private sectors and businesses in
order to ensure that the local population is adhering to mask-wearing policies.

2. Three hardware-specific quantised models were built and benchmarked for further
real-time system implementations.

3. A thorough ablation study was conducted to prove the effectiveness of the proposed
face-mask detection system on embedded hardware. The proposed model’s perfor-
mance was also compared with that of other state-of-the-art DL approaches using
evaluation metrics of accuracy, inference time, memory footprint, and cost.

The rest of this paper is organised as follows. Section 2 describes key works from the
literature. Section 3 outlines important background details. Section 4 elaborates on the
proposed model and its benchmarking on various hardware platforms. Section 5 analyses
the experiments. Lastly, Section 6 concludes the paper with future research directions.

2. Literature Review

Face-mask detection is fundamentally intertwined with facial recognition due to their
visual and technological overlap. The foundation laid by facial recognition technologies
over the past decade can directly translate to the new implementations of face-mask
detection. For example, Mercurio [8] utilises the MediaPipe framework and some of its
prebuilt solutions for building models for this task. The MediaPipe framework allows
for easy use and optimised machine-learning algorithms for a wide range of hardware.
The authors chose the hand, face mesh, and pose solutions for the real-time processing of
the input video feed. Chavda et al. [9] described the difficulties with manually tracking
face-mask compliance and suggested a solution built on a multistage convolutional neural
network (CNN) targeted for a specific CCTV camera. Their architecture was composed of
two unique CNNs, one for face detection and one for mask classification. The authors noted
that this approach allowed for them to build on high-performing pretrained face-detection
models, such as Dlib [10] or RetinaFace [11]. Once a face is detected at the first stage,
an intermediate process is carried out for region-of-interest (ROI) extraction along with
image resizing and normalisation. Once image patches had been collected, the authors
applied three preproduced classifiers to classify them as “mask” and “no mask”. A unique
aspect of their approach is that their model classified cases such as improperly worn masks
and hand-covering faces as “no mask” to achieve more accurate classification performance.
Liu et al. [12] proposed a classifier based on a single-shot detector (SSD) architecture.
While this construct suggests only one model, a more accurate description is explained
as using the base model of VGG-16 for feature extraction and then truncating the model
prior to classification. After this truncation, a variety of feature layers are added, and a
custom model is built with MobileNetV2, ResNet50, and Xception for the final classification.
Wu et al. [13] proposed a face-mask detection method to monitor whether people wear
face masks in a right way in public.The feature extractor combined the Res2Net module
and deep residual network to extract information from the input by utilising a hierarchical
convolutional structure, deformable convolution, and nonlocal mechanisms. An enhanced
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path aggregation network (En-PAN) was applied for feature fusion. In addition, localisation
loss was adopted in the model training phase, and the Matrix NMS method was used
in the inference stage to improve detection efficiency. Song et al. [14] recommended a
face-mask detection and facial-recognition system that supports mask position and type
detection. The authors introduced a stacking ensemble model learning framework based
on machine-learning feature extraction, deep-learning models, and transfer learning as key
algorithm support for the developed system.

With the growing demand for faster and more robust DL-based systems, many
resources and efforts are applied to hardware-based improvements. Such hardware-
accelerated implementations are projected to reach a USD 67 billion market in the coming
years (from hundreds of use cases, https://www.mckinsey.com/ (accessed on 13 February
2022)). For instance, Reuther et al. [15] surveyed this new frontier and provided a high-level
overview of how different methods and classes of accelerators perform with respect to
computational throughput and power consumption. The authors described how different
architectures support different application areas, ranging from low-power chips designed
for edge applications to neuromorphic research chips [16]. Hardware acceleration is im-
portant for COVID-19-related systems (such as face-mask detection) because it enhances
the efficiency and processing speed of software systems compared to software running
on a general-purpose central processing unit [17]. This helps in achieving the necessary
processing speed for real-time face-mask detection results. Thus, this research explored
three instances of hardware acceleration of a light DL-based face-mask detection model,
and benchmarked their performance and costs. The COVID-19 research space includes
studies that help in streamlining the supply chain for COVID-19-related equipment such
as face masks and ventilators. For example, Riaz et al. [18] proposed algorithms to help
in selecting proper ventilator manufacturers for patients with COVID-19. Compared with
related research, this is the only study that provides detailed cost analysis to help the
industry adopt the most cost-effective solution on the basis of its needs. Furthermore, we
built three different hardware-specific quantised models that were compared for further
real-time industrial implementations.

3. Background

This section provides a brief overview of key methodologies and strategies used in
this work.

3.1. Deep Neural Network (DNN)

A DNN is an information-processing paradigm that was inspired by the way in which
biological nervous systems such as the brain process information. DNNs are composed of a
large number of highly interconnected processing elements or neurons that simultaneously
work to solve a specific problem. DNNs can be trained for a variety of tasks, but are often
resource-intensive, especially with larger networks [19]. A simple solution to this is to
convert the model into a simpler but equivalent model that can run on optimised hardware.
However, due to limited support of the model topology, pretrained models that had been
confirmed to run on these optimised hardware can be tailored to a specific use-case via
transfer learning and model quantisation.

3.2. Transfer Learning (TL)

TL is the process of taking a model that is already fully trained and adding new layers
that are retrained using a custom problem dataset [20,21]. This allows for the quick training
and deployment of robust models without using massive amounts of training data and
resources. For a mask-detection system, DNN-based classification models such as ResNet50
or MobileNetV2, which are pretrained on a large dataset such as ImageNet, can be quickly
trained on a dataset for face-mask detection problems.

https://www.mckinsey.com/
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3.3. Quantisation

A fully trained DL model such as a DNN contains a very large number of parameters
and weights. The larger the network is, the more parameters it comprises. Hence, the size
of a DNN poses a problem during deployment on a small system for on-device applications,
for example, mask detection using Raspberry Pi. In order to fit a DL model on a low-end
embedded platform and improve its inference efficiency without much compromise on
accuracy, it is crucial to follow a systematic strategy to compress networks. To this end,
model quantisation and knowledge distillation or transfer-learning strategies were success-
fully used for model optimisation [22,23]. In this work, the former was exploited. Model
quantisation represents the weights of a DL model using a smaller data format by switching
from 32-bit floats to 8-bit integers. This dramatically reduces memory consumption and
computational costs, and also allows for compatibility between model and acceleration
hardware, such as Coral Edge TPU, which operates using 8-bit integers. There are two
widely used key quantisation strategies in hardware acceleration, as outlined below.

1. Dynamic range quantisation: This statically quantises parameters from floating points
to integers and dynamically quantises activations during inference. At inference,
weights are converted from 8-bits of precision to floating points and computed using
floating-point kernels. This conversion is performed once and cached to reduce
latency. To further improve latency, dynamic-range operators dynamically quantise
activations on the basis of their range to 8-bits, and perform computations with 8-bit
weights and activations. This optimisation provides latency close to fully fixed-point
inference. However, outputs are still stored using floating-point, so that the speed-up
with dynamic-range OPS is less than that of full fixed-point computation.

2. Full integer quantisation: This method statically quantises all weights and activations
to INT8; therefore, it achieves the least latency during inference. In order to statically
reduce precision to 8 bits, the method requires a small representative dataset. This is a
generator function that provides a set of input data that is large enough to represent
typical values. It allows for the converter to estimate a dynamic range for all variable
data. After the representative dataset is created, the model is converted into a TFLite
model (https://www.tensorflow.org/lite/convert/ (accessed on 2 February 2022))
and is hence quantised.

4. Proposed System

Figure 1 overviews the proposed hardware implementations of the face-mask detection
system, which consists of the three following subsystems: video input, face detection,
and mask detection. The video-input subsystem is essentially the video-input acquisition
module where camera hardware is initialised, and images are captured using the OpenCV
library and are sent to the second subsystem. The face-detection subsystem is responsible
for face detection and ROI extraction. This subsystem is implemented using a face-detection
algorithm from the MediaPipe API. The API analyses the video feed and retrieves landmark
detection data that are used to calculate the ROI and extract a face image. The extracted
image is then sent to the third subsystem, the mask-detection system (MDS). The MDS is
responsible for classifying whether a face is wearing a mask or not. The classification is
then sent back to MediaPipe where a labeled bounding box is drawn onto the input image
and displayed in real time. The mask detection module, which is the proposed custom
CNN model, is called MaskDetect. While running on the Raspberry Pi 4 computational
platform, MaskDetect was accelerated on the hardware level using either Coral USB TPU or
Intel Neural Compute Stick 2. While running on Jetson Nano, MaskDetect was accelerated
using 128 Maxwell cores.

https://www.tensorflow.org/lite/convert/
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Figure 1. Overview of the proposed face-mask detection system that considers the combination
of NVIDIA Jetson Nano 2 GB, Coral Edge TPU, Raspberry Pi4 Model B 8 GB, and INCS2 for
three different hardware implementations. Video input module provides live video stream to the
face-detection subsystem (FDS). FDS extracts facial regions from the input and sends them to the
mask-detection subsystem (MDS). MDS uses proposed optimised hardware-specific MaskDetect to
classify inputs. Classification is sent back to FDS, which then uses it to create a labeled bounding box
onto the final output feed.

4.1. Proposed MaskDetect

Figure 2 depicts the proposed CNN-based face-mask classification model that is
suitable for any type of spatial data such as images. In this case, it accepted an RGB video
frame with dimensions of 128 × 128, and used the first five convolutional layers to perform
feature extraction and the remaining top layers for classification, as the final layer was
two-way output using a softmax activation function. Each convolutional operation uses a
3 × 3 kernel with no zero padding and stride of 1 followed by a maxpooling operation with
a kernel size of 2× 2 and stride of 2. Thus, through these repeated operations of convolution
and subsampling, the final convolutional layer generates 256 output feature maps with a
spatial dimension of 4 × 4. It is then flattened and connected to a 512-neuron dense layer.
The penultimate layer is also a dense layer with 128 neurons. Convolutional and fully
connected layers (except the classifier layer) use ReLU as the nonlinear activation function.
Thus, the model had a total of 983,330 trainable parameters (cf. Table 1). The model was
trained for 5 epochs using a categorical cross-entropy loss function and the Adam optimiser
with a batch size of 32. The model’s performance was compared to that of other pretrained
architectures that were compatible with the acceleration hardware used in this study, and it
is discussed in Section 5.

Table 1. Comparative performance analysis of various models on a desktop computational platform
with Intel I7-8650U CPU 1.9 GHz and 16 GB RAM.

Model Name Classification
Accuracy

Model Size in
Memory (MB) Number of Parameters Inference

Time (s)

MaskDetect
(baseline) 0.942 11.5 983,330 0.046

VGG16 0.987 43.8 4,945,858 0.049
ResNet-50V2 0.990 143.0 27,825,583 0.050
ResNet-50V2 0.974 103.0 22,917,794 0.055

Note: implementations of VGG16, ResNet-50V2, and ResNet-50V2 are based on pretrained ImageNet models
available on open-source Keras libraries-Module:tf.keras.applications—https://tensorflow.google.cn/api_docs/
python/tf/keras/applications/ (accessed on 10 February 2022).

https://tensorflow.google.cn/api_docs/python/tf/keras/applications/
https://tensorflow.google.cn/api_docs/python/tf/keras/applications/
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Figure 2. Illustration of proposed MaskDetect, which consists of five convolutional layers. The output
feature map’s spatial dimensions and number of generated feature maps are shown to the side of
and below each layer, respectively. Each conv. layer uses standard nonlinear activation function
ReLU, followed by maxpooling operation with kernel size of 2 × 2. At the top, there are two fully
sequentially connected layers. The final layer is two-way output with softmax.

4.2. Deployment on Embedded Platforms

This work aims to implement a face-mask detection system that could be deployed
in any environment without needing a high-performance computing platform. Thus, we
carried out a market search on cost-effective commercial off-the-shelf (COTS) embedded
platforms that were suitable for this work. Through this market study and empirical
analysis, we identified the following hardware platforms in which the optimised face-mask
detection inference model could be deployed: Intel Neural Compute Stick 2, NVIDIA Jetson
Nano, and Google Coral Edge TPU. Algorithm 1 summarises the model deployment steps
tailored to the specific embedded devices above.

Algorithm 1: Algorithmic summary of model deployment tailored to specific
embedded devices used in this work

Input: Verified face-mask detection DL model after model building, training,
and validation on HPC (in this case, a desktop)

if INCS2 then
Apply OpenVino DL model optimiser with OpenCV API;
Output: Compressed model in float16 precision deployed on an INCS2 hosted

on a Raspberry Pi 4
end
if NVIDIA Jetson Nano then

Apply TensorFlow-TensorRT (TF-TRT) inference optimisation from the
TensorFlow ecosystem;

Output: Compressed model on 128 CUDA cores in float32 precision
end
if Google Coral Edge TPU then

Apply quantisation-aware training using TF-light;
Output: 8-bit quantized model

end

4.2.1. Intel Neural Compute Stick 2 (INCS2)

This accelerator is a Movidius Myriad X vision processing unit (VPU) that is dedicated
to image-based applications and inference. The 16 programmable vector microprocessors
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allow for concurrent vision pipelines with up to 1 TPOS of computing performance. Al-
though the form factor of a USB stick would not be traditionally perceived as an embedded
system, the idea is to provide an affordable and accessible tool to help in developing and
prototyping systems before moving to large-scale manufacturing with integrated compo-
nents. This lends itself to advanced mobile vision applications such as drones and, in our
case, remote monitoring.

INCS2 provides accelerated inference performance on DNNs using Intel’s OpenVino
toolkit. Intel provides working pretrained models through the Open Model Zoo repository,
which can be converted into a compatible intermediate representation (IR) format with the
OpenVino inference engine. Custom models from DL programming paradigms Tensorflow,
Caffe, and PyToch can also be converted provided that all operations in the network are
supported by the inference engine. Using the OpenVino model optimiser, MaskDetect
was converted into a float16 precision model stored in its IR format. Using the OpenVino-
OpenCV API, MaskDetect was deployed on the INCS2 hosted on Raspberry Pi 4.

4.2.2. NVIDIA Jetson Nano

The Jetson Nano provides a complete hardware solution for accelerating DNN work-
loads for embedded applications. The Tensorflow-TensorRT API provides translation utility
to accelerate face-detection and mask-classification models on its 128 CUDA cores. Using
the API, MaskDetect was converted into an optimised float32 TensorRT model and executed
using the TensorFlow library. This implementation was the simplest since it did not require
an additional hardware accelerator, unlike Coral and INCS2. NVIDIA’s GPUs are used to
accelerate these kinds of workloads, and NVIDIA provides a rich set of documentation for
rapid testing.

4.2.3. Coral Edge TPU

This system utilises the Google Coral Edge TPU for MaskDetect acceleration. Coral
is a general-purpose machine-learning platform for edge applications. It can execute
TensorFlow Lite models, which are lightweight and resource-efficient when compared to
their TensorFlow counterparts. Due to its small form factor and limited resources, the coral
stick requires an 8-bit quantised model for faster performance. There are two ways to
run models on Coral: (1) finetuning pretrained models by using pretrained models and
finetuning them depending on application; and (2) quantising custom models, where the
custom model must be quantised and compiled using the Edge-TPU compiler for Coral.
In this work, the latter technique was adopted. Before it could be deployed on the Coral
USB, MaskDetect had to first undergo quantisation-aware training (QAT) in order to retain
its performance as a full-integer quantised model. This is the process of retraining a model
with quantisation-aware layers and a subset of training data in order for the model to
adjust the layer’s parameters, such that performance is similar to that of the full-size float32
model. Once QAT is completed, MaskDetect is converted into a TFLite model using the
TensorFlow Lite converter. The TFlite model was later compiled using the Coral Edge-TPU
compiler for optimisation required for the Coral USB stick.

4.3. Transfer-Learning Models

In order to deploy MaskDetect, we had to ensure that all its components were compat-
ible with TFLite Edge-TPU, OpenVino, and TensorRT conversions. This may not always be
possible, so we could alternatively use pretrained models that are already compatible with
the acceleration hardware and retrain them to our specific application using TL (Tensor-
Flow models on the Edge-TPU, https://coral.ai (accessed on 2 February 2022)). Pretrained
VGG16, ResNet-50V2, and InceptionV3 models were chosen due to their classification abili-
ties and compatibility with different acceleration hardware platforms. Their original output
classifier layers were removed, and a new classifier layer was added. These models were
then finetuned for 2 epochs using our face-mask detection dataset. After retraining, models
were ready to be optimised for the acceleration hardware platforms. In the case of the Coral

https://coral.ai
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Edge-TPU, due to INT8 hardware, models had to undergo quantisation-aware training or
there was a risk of worsening the models’ detection performance.

5. Experimental Analysis
5.1. Datasets

The data distribution of the samples used in this study is shown in pie charts in Figure 3.
A total of 3843 samples containing 1915 images of faces with masks and 1928 images of
faces without masks were split with an 8:2 ratio to form training and validation sets,
respectively. The testing set also comprised a mutually exclusive set of 1376 images,
containing 690 samples of faces with masks and 686 samples of faces without masks. A
few samples from the datasets are shown in Figure 4. Due to privacy and logistic issues
relating to in-person data collection, we could not directly collect data samples from real
environments, so we harvested freely licensed sample images containing the categories
described above from the Google search engine. The key focus of this study is more on the
embedded implementation of a face-mask detection system than actual data collection.

Figure 3. Dataset description: (A) data-sample and (B) total class distribution.

Figure 4. Sample images from dataset used in this study to train and validate the proposed model
(A) without and (B) with mask.

5.2. Data Preprocessing

This study exploits the following data preprocessing operations.

• Resizing: images were resized into a uniform size of 128 × 128, as the proposed
MaskDetect requires uniform input dimensions;

• Normalisation: pixel intensity values were normalised to [−1, 1] for the best results
from ReLu activations;

• Labeling: categorical labels were one-hot encoded.
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Experimental analysis included developing and testing multiple models with different
hardware accelerations. Using a high-end desktop hardware and DL models, real-time
face-mask detection and classification are easily achievable. However, these models are
unable to perform in real time when operating on embedded hardware, i.e., resource-
limited computational platform [24]. In this study, desktop-based implementation was the
baseline. The desktop consisted of an Intel I7-8650U CPU 1.9 GHz, and 16 GB RAM with a
retail cost of approximately USD 409 (CPU Product Specifications—https://ark.intel.com
(accessed on 14 January 2022)), which is referred to as BaseCost. The performance of the
accelerated MaskDetect models was then compared with the baseline implementation.

5.3. Desktop-Based Implementations and Analysis

First, all desktop-based implementations were analysed. The MaskDetect, VGG16,
ResNet-50V2, and InceptionV3 models’ performance is shown in Table 1.

The accuracy performance of MaskDetect was slightly worse than that of the retrained
VGG16, ResNet-50V2, and InceptionV3, with the largest difference being 4.8% when com-
pared to Resnet-50V2. These results show that the proposed lightweight (11.5 MB) MaskDe-
tect model could provide comparable performance with a huge reduction in the total
number of trainable parameters, resulting in faster inference speed. The model achieved an
inference time of 46 ms, which was faster than that of all other transfer-learning models.
This inference speed is suitable for real-time applications. This is vital for embedded
hardware-based deployments, as there are often little available memory and few compu-
tational resources. Given the results, MaskDetect is an ideal choice for deployment on
any dedicated embedded hardware. Thus, we extended the implementation on various
platforms via model quantisation, and analyse performance in the following subsections.

5.4. Quantisation Analysis

Quantisation was utilised in this work in order to compress the neural network. This
compression facilitated the deployment of the system for hardware acceleration. In this
work, quantisation compressed the weight of the DL model by switching from 32-bit floats
(FP32) to 8-bit integers (INT8). This helped the system in accomplishing two objectives.
First, achieving a large reduction in computational time and memory requirements. Second,
facilitating compatibility between model and acceleration hardware. Table 2 compares
the performance of the optimised MaskDetect model achieved via quantisation-aware
training with that of the desktop-based baseline model. Quantisation-aware training
drastically reduced the size of the model from 11.5 to 0.983 MB while improving face-mask
classification accuracy by 0.8%. Size in the table refers to the model’s memory occupation,
and classification accuracy was obtained using a computational desktop platform with an
Intel I7-8650U CPU 1.9 GHz and 16 GB RAM.

Table 2. Impact of quantisation-aware training.

Model Name Size (MB) Classification Accuracy

MaskDetect (baseline) 11.5 94.2%
QAT MaskDetect 0.983 95.0%

5.5. Extended Experiments on More Hardware Accelerations

This work mainly focuses on the implementation of the proposed face-mask detection
model MaskDetect on embedded hardware accelerators. Thus, MaskDetect was imple-
mented and accelerated on different embedded platforms that require different strategies
for model quantisation to be compatible with the targeted hardware. Thus, variation in the
quantisation pipeline and the hardware’s design methodology resulted in varying real-time
performance and detection accuracy, as shown in Table 3 and Figure 5. To meet a real-time
performance, this study focuses on frames-per-second (FPS) performance. Figure 6 shows
the qualitative results of the proposed MaskDetect’s baseline implementation.

https://ark.intel.com
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Table 3. Performance analysis of various implementations of MaskDetect regarding computa-
tional platforms.

Hardware Avg. FPS Accuracy Model Relative Cost Extra Hardware

Baseline 11 0.942 MaskDetect BaseCost No
Raspberry P14-B 3 0.942 MaskDetect 0.183 × BaseCost No
P14+Coral USB 19 0.904 MaskDetect_edgeTPU.tflite 0.330 × BaseCost Yes
P14+Intel NCS2 18 0.943 MaskDetect_IR 0.355 × BaseCost Yes

Jetson Nano 22 0.942 MaskDetect_TensorRT 0.147 × BaseCost No

Figure 5. Performance of MaskDetect running on different hardware configurations. Cost of each
hardware system measured relative to cost of baseline desktop. The former two hardware configura-
tions were with desktop-based MaskDetect; the latter were their optimised variants.

Figure 6. Sample outputs of baseline MaskDetect: (A) single-instance detection with mask off;
(B) single instance detection with mask on; (C) multi-instance detection output.
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1. Coral USB-based acceleration: This implementation accelerated the MaskDetect model
on Raspberry Pi 4 using the Coral Edge USB at a relative cost of approximately
0.33 BaseCost (Pi product specifications: https://www.pishop.us (accessed on 1
February 2022); Coral product specifications: https://coral.ai (accessed on 1 February
2022)). The MaskDetect-Coral configuration achieved the second fastest real time
performance (cf. Table 3) among the three hardware accelerated implementations,
which could be attributed to the INT8 quantisation of the model. The system achieved
average performance of 19 FPS, increasing the real-time performance of MaskDetect
by nearly 73%. However there was a slight reduction detection accuracy due to weight
quantisation, resulting in accuracy of 90.4%.

2. INCS2-based acceleration: This implementation accelerated the MaskDetect model on
Raspberry Pi 4 using INCS2 VPU at a relative cost of approximately 0.355 BaseCost
(Pi product specifications: https://www.pishop.us, (accessed on 1 February 2022)
INCS2 product specifications: https://store.intelrealsense.com (accessed on 1 Febru-
ary 2022)). The MaskDetect-INCS2 configuration achieved the second fastest real-time
performance of 18 FPS, increasing the performance of MaskDetect by nearly 64%.
Since the INCS2 model ruranns at FP16 quantisation, there was no measurable accu-
racy loss when compared to the original MaskDetect model.

3. Jetson Nano acceleration: This implementation accelerated the MaskDetect model on
the Jetson Nano Developer Kit using the 2 GB hardware version at a relative cost of
approximately 0.147 BaseCost (Jetson product specifications: https://www.amazon.
com (accessed on 1 February 2022)). This configuration provided the best real-time
performance of 22 FPS. This resulted in an increase of MaskDetect’s performance to
100%. Real-time performance was the quickest on the Jetson Nano due to its GPU
hardware, which is not available on Raspberry Pi. There was no measurable accuracy
loss, as the model used FP32 weights, matching the accuracy of the baseline model.

5.6. Cost Analysis

When comparing acceleration hardware with the desktop-based baseline (cf. Table 3),
experiments demonstrated that superior performance could be achieved at a fraction of
the cost. Both Coral USB and Intel NCS2 require additional hardware to function, while
Jetson Nano works as a standalone system. This gives the Jetson Nano a significant
technical advantage, as vertical integration allows for easier implementation. This also
allows for the implementation of the face-mask detection system at under half the cost of
the Coral and INCS2 implementations. NVIDIA’s documentation regarding deployment
and model conversion was significantly better than that of Google and Intel’s offerings,
allowing for much faster experimentations. Taking in these factors, the Jetson Nano design
is recommended by this work for a consumer-grade product. However, with a streamlined
system that optimises the entire software process aside from model inferencing, the INCS2
and Coral implementations could be expected to match or even outperform that of Jetson.
Future works will focus on this area of improvement.

6. Conclusions and Future Direction

Over the past two years, wearing a face mask became the best defence against COVID-
19 and other airborne viruses. This assumption is based on whether the public complies
with local and federal regulation regarding their use, particularity in indoor settings. This
research introduced a novel face-mask detection system designed for embedded hardware
with dedicated machine-learning workload accelerators. We designed and developed a
custom CNN model called MaskDetect that is capable of classifying in real time whether
or not an individual within an input video stream is wearing a mask. Implementations
focused on three unique hardware systems, namely, Google’s Coral USB, Intel’s NCS2,
and NVIDIA’s Jetson Nano. The performance and costs–benefits of these implementations
were thoroughly analysed. The NVIDIA Jetson Nano was the simplest and lowest-cost
solution in the design and implementation challenges while also providing the fastest

https://www.pishop.us
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https://store.intelrealsense.com
https://www.amazon.com
https://www.amazon.com
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real-time performance. A limitation of this work is that it considered only three hardware
platforms. Therefore, future research should experiment with more platforms to expand
the space of hardware acceleration. Future work could also add risk priority number
assessment. This preliminary research enables public and private industries and institutions
to deploy automated mechanisms to ensure face-mask compliance, and advance the field
of machine-learning accelerators and intelligent embedded computer-vision solutions.
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Abbreviations
The following abbreviations are used in this manuscript:

CV Computer vision
CNN Convolutional neural network
DL Deep learning
DNN Deep neural network
FPS Frames per second
FDS Face-detection subsystem
INCS2 Intel Neural Compute Stick 2
IR Intermediate representation
MDS Mask-detection system/subsystem
QAT Quantisation-aware training
ROI Region of interest
SSD Single-shot detector
TL Transfer learning
VPU Vision processing unit
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