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Abstract
Objective  We used radiomics feature–based machine learning classifiers of apparent diffusion coefficient (ADC) maps to 
differentiate small round cell malignant tumors (SRCMTs) and non-SRCMTs of the nasal and paranasal sinuses.
Materials  A total of 267 features were extracted from each region of interest (ROI). Datasets were randomized into two sets, 
a training set (∼70%) and a test set (∼30%). We performed dimensional reductions using the Pearson correlation coefficient 
and feature selection analyses (analysis of variance [ANOVA], relief, recursive feature elimination [RFE]) and classifications 
using 10 machine learning classifiers. Results were evaluated with a leave-one-out cross-validation analysis.
Results  We compared the AUC for all the pipelines in the validation dataset using FeAture Explorer (FAE) software. The 
pipeline using RFE feature selection and Gaussian process classifier yielded the highest AUCs with ten features. When the 
“one-standard error” rule was used, FAE produced a simpler model with eight features, including Perc.01%, Perc.10%, 
Perc.90%, Perc.99%, S(1,0) SumAverg, S(5,5) AngScMom, S(5,5) Correlat, and WavEnLH_s-2. The AUCs of the training, 
validation, and test datasets achieved 0.995, 0.902, and 0.710, respectively. For ANOVA, the pipeline with the auto-encoder 
classifier yielded the highest AUC using only one feature, Perc.10% (training/validation/test datasets: 0.886/0.895/0.809, 
respectively). For the relief, the AUCs of the training, validation, and test datasets that used the LRLasso classifier using five 
features (Perc.01%, Perc.10%, S(4,4) Correlat, S(5,0) SumAverg, S(5,0) Contrast) were 0.892, 0.886, and 0.787, respectively. 
Compared with the RFE and relief, the results of all algorithms of ANOVA feature selection were more stable with the AUC 
values higher than 0.800.
Conclusions  We demonstrated the feasibility of combining artificial intelligence with the radiomics from ADC values in the 
differential diagnosis of SRCMTs and non-SRCMTs and the potential of this non-invasive approach for clinical applications.
Key Points
• The parameter with the best diagnostic performance in differentiating SRCMTs from non-SRCMTs was the Perc.10% ADC value.
• Results of all the algorithms of ANOVA feature selection were more stable and the AUCs were higher than 0.800, as com- 
   pared with RFE and relief.
• The pipeline using RFE feature selection and Gaussian process classifier yielded the highest AUC.
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GLCM	� Gray-level co-occurrence matrix
GLRLM	� Gray-level run-length matrix
GP	� Gaussian process
LDA	� Linear discriminant analysis
LR	� Logistic regression
LRLasso	� Logistic regression via Lasso
ML	� Machine learning
NB	� Naive Bayes
PCC	� Pearson correlation coefficient
RF	� Random forests
RFE	� Recursive feature elimination
SMOTE	� Synthetic minority oversampling technique
SRCMTs	� Small round cell malignant tumors
SVM	� Support vector machine
TA	� Texture analysis
WAV	� Wavelet transform

Introduction

Malignant tumors of the nasal and paranasal sinuses are 
rare, comprising less than 1% of all malignancies and about 
3% of head and neck malignancies [1, 2]. This tumor group 
includes small round cell malignant tumors (SRCMTs) 
and non-SRCMTs. SRCMTs constitute a specific group 
of malignancies in the nasal and paranasal sinuses based 
on neuroectodermal differentiation, soft tissue differentia-
tion, and hematopoietic differentiation. Rhabdomyosarcoma 
(RMS), malignant melanoma (MM), olfactory neuroblas-
toma (ONB), neuroendocrine carcinoma (NEC), and lym-
phoma are included in this group. Non-SRCMTs constitute 
another common group of malignant tumors in the nasal 
and paranasal sinuses based on epithelial differentiation and 
include squamous cell carcinoma (SCC) and adenoid cystic 
carcinoma (ACC) [3]. Distinguishing these two groups is 
elemental because some are managed primarily with radia-
tion, whereas others are managed solely with chemotherapy. 
Still others are managed with conservative medical therapy, 
local surgery, exenterative surgery, and multimodal therapy, 
indicating that therapeutic decisions, surgical planning, and 
prognoses are different for the various tumor types and man-
agement strategies [4].

Varying according to the pathology and cellularity of the 
tissue because of the limited diffusion of water molecules, 
apparent diffusion coefficient (ADC) values have been used 
to discriminate malignant from benign nasal and paranasal 
sinus tumors and to differentiate various histopathologic 
types of malignant sinonasal tumors [5–10]. However, con-
ventional magnetic resonance imaging (MRI) has limita-
tions of its own when differentiating between SRCMTs and 
non-SRCMTs. Under the circumstances, as texture analy-
sis (TA) techniques, by using mathematically defined fea-
tures[11], can analyze pixel distributions, intensities, and 

dependencies, it can provide a wealth of information beyond 
what can be seen with the human eye and thus can be used 
to characterize SRCMTs and non-SRCMTs, quantitatively.

As a branch of artificial intelligence, machine learning 
(ML) includes various algorithms that can enhance diag-
nosis, treatments, and follow-up results in neuro-oncology 
medicine by analyzing huge complex datasets [12, 13]. 
More importantly, not depending on user experience, ML 
is more objective than other conventional analyses and has 
good repeatability. To achieve the optimal predictive ability 
and clinical utility, in the present study, we compared three 
feature selection methods and an array of ML algorithms. 
To our knowledge, no studies using TA and ML for differ-
entiating sinonasal SRCMTs from non-SRCMTs have been 
reported. To bridge this gap, this retrospective study was 
intended to evaluate the potential value of the ML-based 
ADC texture analysis for distinguishing SRCMTs from non-
SRCMTs by using various state-of-the-art ML algorithms.

Materials and methods

Patients

We used the surgical pathology database from January 1, 
2018, to November 1, 2020, at our hospital. Exclusion cri-
teria were (1) patients who received treatments before sur-
gery and (2) inadequate image quality. All the methods were 
performed in accordance with the relevant guidelines and 
regulations, and informed consent was waived. This study 
was approved by the Institutional Ethics Review Committee 
of our hospital.

Image acquisition

Patients were examined with a 3-T MR scanner (Sie-
mens Skyra) with standard head coil. MRI scan protocols 
included the following: axial T2WI (TR/TE= 5000/117 
ms, matrix=256 x 256, field of view=24 x 24cm, thick-
ness=5 mm and intersection gap =1mm); axial DWI 
(spin echo-echo planar imaging) (b = 0 and 1000 s/mm2, 
TR/TE = 3200/70 ms, matrix = 160 × 160, flip angle 90°, 
field of view = 24 × 24 cm, thickness = 5 mm, intersection 
gap = 1 mm).

Textural feature extractions

MaZda v. 4.7 software (The Technical University of 
Lodz, Institute of Electronics, http://​www.​eletel.​p.​
lodz.​pl/​mazda/) was used for the analyses. We used the 
limitation of dynamics to μ ± 3δ (μ: mean gray-level 
value, δ: standard deviation) [14] to achieve reliable 
results regarding MRI texture classifications. Regions 
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of interest (ROIs) were drawn on ADC images. The 
largest lay was selected using a T2WI image reference. 
Two physicians with more than 10 years of experience 
delineated the ROIs manually along the lesion edges, 
and the lesion was filled in with a red marker, excluding 
various necrotic and cystic regions (Fig. 1). In total, 
267 feature values and corresponding histogram maps 
were extracted for each ROI. The number of radiomics 
features based on feature classes is presented in Table 1, 
including (i) nine histogram features based on the pixel 
counts in an image with a specific gray-level value [15], 
(ii) 220 Gy-level co-occurrence matrix (GLCM) features 
based on the extracted statistical information about the 
distribution of pixel pairs [16], (iii) 20 Gy-level run-
length matrix (GLRLM) features obtained by searching 
the image for runs having the same gray-level value in a 
pre-defined direction [17], (iv) 5 auto-regressive model 
(ARM) features based on the weights associated with four 
neighboring pixels and the variance of the minimized 
prediction error, (v) 8 wavelet transform (WAV) features 
on texture frequency components extracted from the 
energies computed within the channels [18], and (vi) 5 
absolute gradient statistics (AGS) features based on the 
spatial variation of gray-level values across the image 
[15]. Multiple GLCMs were computed into the 0°, 45°, 

90°, 135°, and z-axis directions and 1, 2, 3, and 4 pixels. 
Multiple GLRLMs were computed along four different 
angles (horizontal, vertical, diagonal 45, and diagonal 
135).

Feature selections

Computer-generated random datasets were used to 
assign 70% of the datasets to the training set and the 
rest (30%) of the datasets to the independent test set. 
FeAture Explorer software (FAE; V 0.3.6) was developed 
using the Python programming language (3.7.6) (https://​
github.​com/​salan​668/​FAE). First, the synthetic minority 
oversampling technique (SMOTE) was used to balance 
the training dataset. This method worked by taking each 
minority class sample, introducing synthetic examples 
along the line segments and joining any or all of the 
nearest k minority class neighbors. The neighboring 
points were randomly chosen depending on the amount 
of oversampling required. The dataset was normalized 
using Z-score normalization, which subtracted the mean 
value and divided the standard deviation for each feature. 
Second, a Pearson correlation coefficient (PCC) was 
used for each pair of features to reduce the dimensions 
of the row space of the feature matrix [19]. If the PCC 

Fig. 1   a shows axial ADC of a 36-year-old male patient with SCC. b 
Corresponding ROI, (c) parts of 267 feature values, and (d) histogram 
maps are shown. (e) shows axial ADC of a 44-year-old male patient 

with ONB. (f) Corresponding ROI, (g) some of 267 feature values, 
and (h) histogram maps are shown
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was above 0.99, one of features was randomly removed. 
Lastly, the analysis of variance (ANOVA), relief [20], 
and recursive feature elimination (RFE) were utilized 
for feature selections. ANOVA is a common method 
that explores the significant features corresponding 
to the labels. Relief selects sub-datasets and finds 
relative features according to the recursive labels. RFE 
is intended to select features based on a classifier by 
recursively considering a smaller set of features. The 
range of the number of features was set from 1 to 20.

Classifications

The classification performances were tested with 10 ML 
algorithms based on Python code with scikit-learn library 
(https://​scikit-​learn.​org/), including the support vector 
machine (SVM), linear discriminant analysis (LDA), auto-
encoder (AE), random forests (RF), logistic regression (LR), 
logistic regression via Lasso (LRLasso), ada-boost (AB), 
decision tree (DT), Gaussian process (GP), and naive Bayes 
(NB) (Table 2). SVM searches for an optimal separating 

Table 2   The parameters of the algorithms

Algorithms Parameters

SVM C = 1.0, kernel = ‘rbf’, degree = 3, gamma = ‘scale’, coef0 = 0.0, shrinking = True, probability = False, tol = 0.001, cache_size = 200, 
class_weight = None, verbose = False, max_iter =—1, decision_function_shape = ‘ovr’, break_ties = False, random_state = None

AE hidden_layer_sizes = (100), activation = ‘relu’, *, solver = ‘adam’, alpha = 0.0001, batch_size = ‘auto’, learning_rate = ‘constant’, 
learning_rate_init = 0.001, power_t = 0.5, max_iter = 200, shuffle = True, random_state = None, tol = 0.0001, verbose = False, 
warm_start = False, momentum = 0.9, nesterovs_momentum = True, early_stopping = False, validation_fraction = 0.1, 
beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, n_iter_no_change = 10, max_fun = 15,000

LDA solver = ‘svd’, shrinkage = None, priors = None, n_components = None, store_covariance = False, tol = 0.0001
RF n_estimators = 100, *, criterion = ‘gini’, max_depth = None, min_samples_split = 2, min_samples_leaf = 1, min_weight_frac-

tion_leaf = 0.0, max_features = ‘auto’, max_leaf_nodes = None, min_impurity_decrease = 0.0, min_impurity_split = None, 
bootstrap = True, oob_score = False, n_jobs = None, random_state = None, verbose = 0, warm_start = False, class_weight = None, 
ccp_alpha = 0.0, max_samples = None

LR penalty = ‘l2’, *, dual = False, tol = 0.0001, C = 1.0, fit_intercept = True, intercept_scaling = 1, class_weight = None, ran-
dom_state = None, solver = ‘lbfgs’, max_iter = 100, multi_class = ‘auto’, verbose = 0, warm_start = False, n_jobs = None, l1_
ratio = None

LRLasso alpha = 1.0, *, fit_intercept = True, normalize = False, precompute = False, copy_X = True, max_iter = 1000, tol = 0.0001, warm_
start = False, positive = False, random_state = None, selection = ‘cyclic’

AB base_estimator = None, *, n_estimators = 50, learning_rate = 1.0, algorithm = ‘SAMME.R’, random_state = None
DT criterion = ‘gini’, splitter = ‘best’, max_depth = None, min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_

leaf = 0.0, max_features = None, random_state = None, max_leaf_nodes = None, min_impurity_decrease = 0.0, min_impurity_
split = None, class_weight = None, ccp_alpha = 0.0

GP kernel = None, *, optimizer = ‘fmin_l_bfgs_b’, n_restarts_optimizer = 0, max_iter_predict = 100, warm_start = False, copy_X_
train = True, random_state = None, multi_class = ‘one_vs_rest’, n_jobs = None

NB alpha = 1.0, binarize = 0.0, fit_prior = True, class_prior = None

Table 1   Texture analysis methods and the corresponding texture features

Method Texture feature parameters

Histogram (9) Mean, variance, skewness, kurtosis, and percentiles (1%, 10%, 50%, 90%, and 99%)
Gray-level co-occurrence matrix (GLCM) (220) Angular second moment (AngScMom), contrast, inverse different moment (IDM), entropy 

(Ent), correlation (Correlat), sum of squares (SumOfSqs), sum average (SumAverg), sum 
variance (SumVarnc), sum entropy (SumEntrp), difference variance (DifVarnc), difference 
entropy (DifEntrp) along the 0°, 45°, 90°, 135°, and z‐axis directions and 1, 2, 3, and 4 
pixels

Gray‐level run‐length matrix (GLRLM) (20) Run-length nonuniformity (RLNonUni), gray-level nonuniformity (GLevNonU), long run 
emphasis (LngREmph), short run emphasis (ShrtREmp), fraction of image in runs (Frac-
tion) of four different angels (horizontal, vertical, diagonal 45, and digonal135)

Auto‐regressive model (ARM) (5) Teta1, Teta2, Teta3, Teta4, Sigma
Wavelet transform (WAV) (8) Energy computed from the low–low frequency band within the first image scale 

(WavEnLL_s-1), WavEnLH_s-1, WavEnHL_s-1, WavEnHH_s-1, WavEnLL_s-2, 
WavEnLH_s-2, WavEnHL_s-2, WavEnHH_s-2

Absolute gradient statistics (AGS) (5) Absolute gradient mean (GrMean), variance (GrVariance), skewness (GrSkewness), kurtosis 
(GrKurtosis), nonzeros (GrNonZeros)
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hyperplane between classes, which maximizes the margin. C 
stands for regularization parameter. The strength of the regu-
larization is inversely proportional to C. AE classification is 
based on neural networks (NN), which is a network of highly 
interconnected processing units that process information by 
their dynamic state responses to external inputs. LDA with 
a linear decision boundary was generated by fitting class 
conditional densities to the data and using Bayes’ rule. 
Solver uses singular value decomposition recommended 
for data with a large number of features. RF consists of a 
large number of individual decision trees that operate as an 
ensemble. Each individual tree outputs a class prediction 
and the class with the most votes represents the model’s pre-
diction. The number of trees in the forest was 100. In most 
cases, the larger the number, the better the performance. 
LR explains the relationship between one dependent binary 
variable and one or more independent variables regressing 
for the probability of a categorical outcome using a logis-
tic function. Lasso-LR is able to get a better model which 
can do high-dimensional statistics. Alpha is equivalent to 
an ordinary least square with defaults to 1.0. AB generates 
H hypotheses through an ensemble of learning algorithms. 
The output of the learning algorithms is incorporated into a 
weighted sum that represents the final output of the boosted 
classifier. DTs of supported criteria are “gini” for the Gini 
impurity and “entropy” for the information gain. GP was 
based upon Laplace approximation. The kernel was none, 
specifying the covariance function of the GP. NB applies 
Bayes’ theorem with the naive assumption of conditional 
independence between the features. Setting alpha = 1.0 is 
called Laplace smoothing.

Evaluations

The results were evaluated using a leave-one-out cross-val-
idation (LOOCV) test. Using LOOCV, learning sets were 
created by taking all the samples except one that was used as 
the validation set. The accuracy, sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value 
(NPV) were also calculated at a cutoff value that maximized 
the value of the Youden index. The area under the receiver 
operator characteristics curve (AUC) of the classification 
results was calculated for each tested condition (Fig. 2).

Results

Of the 168 consecutive patients with a pathologic diagnosis 
of SRCMT and non-SRCMT over a 2-year period between 
January 2018 and November 2020, 16 were excluded with 
poor-quality images on MRI (7 were excluded due to the 
visible artifacts from dental work, 2 due to motion artifacts, 
and 7 due to visible artifacts from the bone-air interface). 

A total of 152 patients were finally selected for the study. 
There were 66 patients with SRCMT and 86 patients with 
non-SRCMT, specifically RMS (n = 14), lymphoma (n = 20), 
MM (n = 10), NEC (n = 14), ONB (n = 8), SCC (n = 62), 
and ACC (n = 24). There were 88 males and 64 females 
in the whole cohort. The mean age of all the patients was 
54.28 years, ranging from 13 to 87 years. Seventy percent 
of the datasets were in the training set (106 patients; 46 with 
SRCMT and 60 with non-SRCMT) and 30% in the inde-
pendent test set (46 patients; 20 with SRCMT and 26 with 
non-SRCMT).

SMOTE was used to automatically generate 14 synthetic 
SRCMT samples in order to overcome the influence of 
imbalanced dataset on the classifier fitting. We compared 
the AUC of all the pipelines on the validation dataset with 
FAE. The pipeline using RFE feature selection and a GP 
classifier yielded the highest AUCs using ten features. When 
the “one-standard error” rule was used, FAE also produced a 
simpler model with eight features [21]. The ROC curves are 
shown in Fig. 3. The AUCs of the training, validation, and 
test datasets achieved 0.995, 0.902, and 0.710, respectively. 
FAE-selected features were Perc.01%, Perc.10%, Perc.90%, 
and Perc.99% from the histogram; S(1,0) SumAverg, S(5,5) 
AngScMom, and S(5,5) Correlat from gray-level GLCM; 
and WavEnLH_s-2 from wavelets transform (WAV).

As for ANOVA, the pipeline using the AE classifier 
yielded the highest AUC using one feature with a “one-
standard error” rule, as shown in Fig. 4. The AUCs of the 
training, validation, and test datasets achieved 0.886, 0.895, 
and 0.809, respectively. The FAE-selected feature was 
Perc.10% from the histogram (F = 84.24, p < 0.001).

As for relief, the pipeline using the LRLasso classi-
fier yielded the highest AUC using five features. Features 
selected by FAE were Perc.10% and Perc.01% from histo-
gram, and S(4,4) Correlat, S(5,0) SumAverg, and S(5,0) 
Contrast from GLCM; weights were 1.09, 1.07, 0.86, 0.82, 
and 0.76, respectively. When the “one-standard error” rule 
was used, FAE also produced a simpler model with only 
one feature; the ROC curves are shown in Fig. 5. The AUCs 
of the training, validation, and test datasets achieved 0.892, 
0.886, and 0.787, respectively. The feature selected from the 
histogram with FAE was Perc.10%.

Using the RFE feature selection, the AUCs of the train-
ing, validation, and test datasets of the 10 ML algorithms 
were greater than 0.640 (Fig. 6A). The optimal algorithm in 
the validation datasets was GP, whose AUC was 0.902. In 
all the algorithms, the AUCs of training datasets were better 
than those of validation datasets whose AUCs were greater 
than those of the test datasets.

Using ANOVA feature selection, the AUCs of the train-
ing, validation, and test datasets of ten machine learning 
algorithms were greater than ~ 0.800 (Fig. 6B). The optimal 
algorithm in the validation datasets was AE, whose AUC 
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was 0.895. Compared with RFE and relief, the results of 
all the algorithms of ANOVA feature selection were more 
stable.

Using relief feature selection, the AUCs of the training, 
validation, and test datasets of nine ML algorithms were 
greater than ~ 0.700 except AE (Fig. 6C). The optimal algo-
rithm in the validation datasets was LRLasso, whose AUC 
was 0.886. In the nine algorithms except AE, the AUCs 
of training datasets were better than those of validation 
datasets, whose AUCs were greater than those of the test 
datasets.

In addition to the three feature selection methods, we also 
compared and listed the optimal AUCs of different ML clas-
sifications in the validation dataset (Table 3).

Discussion

This study investigated the potential value of the ADC tex-
ture analysis for distinguishing SRCMTs from non-SRCMTs 
by using various state-of-the-art ML algorithms. The key 
findings are as follows: (1) the pipeline using RFE feature 
selection and Gaussian process classifier yielded the highest 
AUC. (2) The parameter with the best diagnostic perfor-
mance in differentiating SRCMTs from non-SRCMTs was 
the Perc.10% ADC value. (3) Results of all the algorithms 
of ANOVA feature selection were more stable and the 
AUCs were higher than 0.800, as compared with RFE and 
relief. (4) TA and ML appear to be the most useful in dif-
ferentiating standard ADC images of maximum solid tumor 

Fig. 2   A schematic diagram 
for the whole radiomics and 
machine learning pipeline
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components routinely acquired with high accuracy of 0.793 
to 0.859.

Previous studies have shown that ADC value of 
malignant sinonasal lesions was significantly lower 
than that of benign lesions [10, 22–25] as major parts 
of malignant tumors were composed of high cellularity 
whereas ADC is inversely correlated with tissue cellularity. 
Consistent with this notion, Sumi et al. reported lymphomas 
had smaller ADCs than did well-differentiated SCC 
nodes in the neck [26]. Maeda et al. found a statistically 

significant difference in ADC values between SCCs and 
lymphomas in the head and neck as lymphoma cells have 
relatively high nuclear-to-cytoplasm ratios and are densely 
packed [27]. Some other studies reported ADC values of 
poorly differentiated and undifferentiated carcinomas were 
significantly lower than those of moderately differentiated 
and well-differentiated carcinomas of the pharynx and nasal 
and paranasal sinus [9, 28]. In addition, ADC levels of 
SRCMTs were lower than of non-SRCMTs, reflecting their 
cellular characteristics (undifferentiated cells with high 

Fig. 3   Model performance generated using recursive feature elimina-
tion. a Receiver operating characteristic (ROC) curves of this model 
using different datasets. b FeAture Explorer (FAE) software sug-

gested a candidate eight-feature model according to the “one-standard 
error” rule. c The contribution of features in the final model

Fig. 4   Model performance generated using the analysis of variance 
(ANOVA). a Receiver operating characteristic (ROC) curves of this 
model using different datasets. b FeAture Explorer (FAE) software 

suggested a candidate one-feature model according to the “one-stand-
ard error” rule. c The contribution of features in the final model
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cell attenuation, relatively small-sized nuclei, and scant 
cytoplasm) [8, 29]. In this study, the common parameter 
used to differentiate SRCMTs from non-SRCMTs was 
Perc.10% in the three feature selection methods. GLCM and 
wavelets were the other two parameters using RFE feature 
selection to differentiate them. These parameters were first-
order, second-order, and higher order statistics which were 
described as the distribution of individual voxel values, 
statistical interrelationships between voxels with similar or 
dissimilar contrast values, and texture frequency component 
data extracted from the energy computed within channels, 
respectively. This indicates that histogram-based ADC 
parameters are more sensitive to histopathological features 
in sinonasal malignant tumors. We suspect that the cause 
of the efficacy of Perc.10% ADC lies in that it reflects the 
complex intratumoral microstructures and heterogeneity in 

the whole tumor, taking a hypoxic lesion around the tiny 
necrotic tissue, for example.

There would always be some features which are less 
important on sample sets. The least important features are 
pruned from current set of features. RFE feature selection 
addresses the problem by automatically removing these fea-
tures. That procedure is recursively repeated on the pruned 
set until the desired number of features to select is eventually 
reached. GP classification is a nonparametric method based 
on the Laplace approximation and is used for approximating 
the non-Gaussian posterior using the Gaussian method. It 
can easily handle various problems, such as an insufficient 
capacity for the classical linear method, complex data types, 
and the curse of dimensions [30]. In this study, we used an 
RFE feature selection and GP classifier in a LOOCV loop to 
boost their performance on very high-dimensional datasets, 

Fig. 5   Performance of model generated by relief. a Receiver operat-
ing characteristic (ROC) curves of this model using different datasets. 
b FeAture Explorer (FAE) software suggested a candidate one-feature 

model according to the “one-standard error” rule. c The contribution 
of features in the final model

Fig. 6   Areas under the curve (AUCs) looking at different datasets. Feature selections using (a) recursive feature elimination (RFE), (b) analysis 
of variance (ANOVA), and (c) relief
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achieving a 0.830 accuracy, 0.867 sensitivity, 0.783 specific-
ity, and 0.902 AUC.

Our study has limitations. First, as the SRCMTs stud-
ied were of various histologic types, subgroup analyses in 
more details should be performed in future studies after 
obtaining a larger sample size and a careful consideration 
of the study groups. Second, as the texture-analyzing soft-
ware analyzed only two-dimensional images, three-dimen-
sional analyses which can better reflect the texture features 
of the entire tumor would be one of the directions of our 
future research. Finally, as only ADC maps were chosen, 
in our further studies, we will propose a multiparametric 
MRI investigation including ADC, T2-weighted MRI, and 

dynamic contrast-enhanced MRI involving early and delayed 
phases to generate a robust model to differentially diagnose 
SRCMTs and non-SRCMTs by segmenting precisely three-
dimensional tumor regions in a larger sample.

Conclusions

In this study, we investigated the feasibility of combining 
artificial intelligence and radiomics features from ADC val-
ues to differentially diagnose SRCMTs and non-SRCMTs. 
As it is non-invasive, this approach has a promising potential 
for future applications in clinical medicine.

Table 3   The optimal area under the receiver operator characteristics 
curve (AUC), 95% confidence interval (CI), standard error, accuracy, 
Youden index, sensitivity, specificity, accuracy, positive predictive 

value (PPV), and negative predictive value (NPV) of all algorithm 
classifications with leave-one-out cross-validation

SVM, support vector machine; LDA, linear discriminant analysis; AE, auto-encoder; RF, random forests; LR, logistic regression; LRLasso, logis-
tic regression via Lasso; AB, ada-boost; DT, decision tree; GP, Gaussian process; NB, naive Bayes

Feature set AUC​ 95% CIs Std Acc Youden Index Sen Spe PPV NPV

Zscore_PCC_ANOVA_1_AE 0.895 [0.8260–0.9533] 0.033 0.840 0.513 0.833 0.848 0.877 0.796
Zscore_PCC_ANOVA_3_LDA 0.891 [0.8212–0.9481] 0.032 0.840 0.367 0.850 0.826 0.864 0.809
Zscore_PCC_ANOVA_3_LRLasso 0.887 [0.8114–0.9512] 0.035 0.849 0.359 0.883 0.804 0.855 0.841
Zscore_PCC_ANOVA_8_SVM 0.885 [0.8100–0.9461] 0.034 0.830 0.586 0.767 0.913 0.920 0.750
Zscore_PCC_ANOVA_3_LR 0.884 [0.8103–0.9449] 0.035 0.840 0.388 0.883 0.783 0.841 0.837
Zscore_PCC_ANOVA_1_NB 0.878 [0.8025–0.9444] 0.036 0.840 0.403 0.833 0.848 0.877 0.796
Zscore_PCC_ANOVA_3_RF 0.878 [0.7977–0.9457] 0.038 0.859 0.520 0.867 0.848 0.881 0.830
Zscore_PCC_ANOVA_4_GP 0.869 [0.7940–0.9343] 0.036 0.821 0.482 0.817 0.826 0.860 0.776
Zscore_PCC_ANOVA_3_AB 0.865 [0.7867–0.9337] 0.038 0.802 0.529 0.683 0.957 0.954 0.698
Zscore_PCC_ANOVA_5_DT 0.811 [0.7298–0.8842] 0.039 0.811 1.000 0.817 0.804 0.845 0.771
Zscore_PCC_RFE_10_GP 0.902 [0.8379–0.9519] 0.029 0.830 0.498 0.867 0.783 0.839 0.818
Zscore_PCC_RFE_1_AE 0.895 [0.8260–0.9533] 0.033 0.840 0.513 0.833 0.848 0.877 0.796
Zscore_PCC_RFE_8_RF 0.894 [0.8251–0.9525] 0.033 0.849 0.565 0.833 0.870 0.893 0.800
Zscore_PCC_RFE_3_LDA 0.891 [0.8208–0.9478] 0.032 0.840 0.367 0.850 0.826 0.864 0.809
Zscore_PCC_RFE_3_LRLasso 0.886 [0.8107–0.9502] 0.035 0.849 0.359 0.883 0.804 0.855 0.841
Zscore_PCC_RFE_1_SVM 0.883 [0.8073–0.9460] 0.035 0.821 0.672 0.733 0.935 0.936 0.729
Zscore_PCC_RFE_3_LR 0.883 [0.8096–0.9449] 0.035 0.840 0.388 0.883 0.783 0.841 0.837
Zscore_PCC_RFE_1_NB 0.878 [0.8025–0.9444] 0.036 0.840 0.403 0.833 0.848 0.877 0.796
Zscore_PCC_RFE_3_AB 0.865 [0.7867–0.9337] 0.038 0.802 0.529 0.683 0.957 0.954 0.698
Zscore_PCC_RFE_9_DT 0.808 [0.7304–0.8795] 0.039 0.811 1.000 0.833 0.783 0.833 0.783
Zscore_PCC_Relief_5_LRLasso 0.886 [0.8108–0.9483] 0.035 0.849 0.359 0.883 0.804 0.855 0.841
Zscore_PCC_Relief_5_LDA 0.884 [0.8088–0.9435] 0.033 0.840 0.332 0.883 0.783 0.841 0.837
Zscore_PCC_Relief_5_SVM 0.883 [0.8077–0.9454] 0.035 0.830 0.511 0.817 0.848 0.875 0.780
Zscore_PCC_Relief_5_LR 0.882 [0.8055–0.9454] 0.035 0.830 0.417 0.850 0.804 0.850 0.804
Zscore_PCC_Relief_3_GP 0.880 [0.8054–0.9423] 0.035 0.840 0.552 0.800 0.891 0.906 0.774
Zscore_PCC_Relief_3_NB 0.875 [0.7950–0.9423] 0.037 0.830 0.362 0.817 0.848 0.875 0.780
Zscore_PCC_Relief_2_AE 0.871 [0.7907–0.9373] 0.037 0.821 0.441 0.817 0.826 0.860 0.776
Zscore_PCC_Relief_19_RF 0.869 [0.7947–0.9347] 0.035 0.821 0.645 0.767 0.891 0.902 0.746
Zscore_PCC_Relief_5_AB 0.855 [0.7652–0.9254] 0.040 0.821 0.513 0.767 0.891 0.902 0.746
Zscore_PCC_Relief_9_DT 0.786 [0.7069–0.8678] 0.041 0.793 1.000 0.833 0.739 0.807 0.773
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