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ABSTRACT
Assembly of the actin cytoskeleton is an important part of formation of neurites
in developing neurons. Tropomodulin, a tropomyosin-dependent capping protein
for the pointed end of the actin filament, is one of the key players in this process.
Tropomodulin binds tropomyosin in two binding sites. Tmod1 and Tmod2,
tropomodulin isoforms found in neurons, were overexpressed in PC12 cells,
a model system for neuronal differentiation. Tmod1 did not affect neuronal
differentiation; while cells expressing Tmod2 showed a significant reduction in
the number and the length of neurites. Both tropomodulins bind short α-, γ -
and δ-tropomyosin isoforms. Mutations in one of the tropomyosin-binding sites
of Tmod1, which increased its affinity to short γ - and δ-tropomyosin isoforms,
caused a decrease in binding short α-tropomyosin isoforms along with a 2-fold
decrease in the length of neurites. Our data demonstrate that Tmod1 is involved
in neuronal differentiation for proper neurite formation and outgrowth, and that
Tmod2 inhibits these processes. The mutations in the tropomyosin-binding site
of Tmod1 impair neurite outgrowth, suggesting that the integrity of this binding
site is critical for the proper function of Tmod1 during neuronal differentiation.

Subjects Cell Biology, Molecular Biology, Neuroscience
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INTRODUCTION
Assembly and re-assembly of the actin cytoskeleton is an important part of neuritogenesis

(for reviews see, da Silva & Dotti, 2002; Stiess & Bradke, 2011). The ability of actin to

polymerize and depolymerize allows postmitotic neurons to migrate, and neurites,

neuronal appendages, to sprout. Proteins that control polymerization at the barbed

(fast-growing) ends and depolymerization at the pointed (slowly-growing) ends of actin

filaments are of great importance for cytoskeletal reorganization.

Tropomodulin (Tmod), a capping protein for the pointed end (Weber et al., 1994),

is one of the key players in this system. So far, little attention has been paid to Tmod
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function in neurons, mostly because it was believed that the most important things happen

at the barbed end, where continuous incorporation of actin subunits occurs. Barbed ends

face and push the distal membrane in growing neurites. The pointed end was labeled

only as the end where depolymerization occurred; capping of this end was not believed

to be crucial for neuritogenesis. However, recently it has been shown that Tmod plays an

important role as a negative regulator in neurite formation (Fath et al., 2011).

There are four known Tmod isoforms: Tmod1 is found mainly in erythrocytes, but

also in heart, skeletal muscle, brain, and many other tissues; Tmod2 is found in brain;

Tmod3 is expressed widely in various tissues; Tmod4 is found in skeletal muscle only

(Watakabe, Kobayashi & Helfman, 1996; Almenar-Queralt et al., 1999; Cox & Zoghbi, 2000;

Conley et al., 2001). Hyperactivity, reduced sensorimotor gating, and impaired learning

and memory were found in mice lacking Tmod2 (Cox et al., 2003). Tmod1 levels in

Tmod2 knockout mice increased drastically, probably to compensate for the absence of

Tmod2, while no change in the Tmod3 level was detected. In N2a neuroblastoma cells

(model system to study neuritogenesis), both Tmod1 and Tmod2 were expressed, but

levels of Tmod1 increased drastically starting 24 hours after induction of neuritogenesis

(Fath et al., 2011).

The Tmod molecule consists of two functionally and structurally distinct halves, a

disordered N-terminal domain, and a compact C-terminal domain (Kostyukova et al.,

2000; Krieger et al., 2002). In order to bind tightly to actin, Tmod requires tropomyosin

(Weber et al., 1994). There are two tropomyosin-binding sites located in the N-terminal

disordered domain (Kostyukova, Choy & Rapp, 2006).

Tropomyosins (TMs) are a family of rod-shaped, coiled-coil proteins that bind to both

grooves of the actin filament (for reviews see (Gunning et al., 2005; Martin & Gunning,

2008)). TMs are encoded by four genes, α, β, γ and δ. Alternative splicing of the genes

gives rise to many isoforms, organized by their molecular weight into two classes, short

(low molecular weight) and long (high molecular weight) TMs. Distribution of TM

isoforms depends on actin isoform localization as well as on the localization of other

actin-binding proteins (Gunning et al., 2005; Martin & Gunning, 2008). It is assumed that

the microtubule system is also involved in isoform sorting of TMs.

Several TM isoforms are expressed in neurons. Expression depends on the maturity of

the neuron and the stage of development. Of all the isoforms, TMBr3 (short α-TM) is the

most abundant, but it is expressed in mature neurons only. Other short TMs, TM4 (δ-TM)

and TM5NM1 (γ -TM), are expressed early. Expression of TM4 in neurons increases

immediately after birth and then declines (Had et al., 1994). Intracellular localization of

TM5NM1 changes from axonal to dendritic upon neuronal maturation (Weinberger et al.,

1996). Due to differential and strictly regulated patterns of TM expression, it is probable

that each isoform is responsible for distinct functions (Gunning et al., 2005; Martin &

Gunning, 2008).

Previously, we showed that Tmod-TM interactions are isoform specific (Uversky et

al., 2011). Dissociation constants were determined for complexes of synthetic TM and

Tmod peptides, which represent binding sites of different Tmod and TM isoforms.
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We found that binding for short γ - and δ-TMs is very weak in TM-binding site 1 of

Tmod1, compared to Tmod2. Changing two residues, Ala 21 and Glu 33 in site 1 of Tmod1

to Lys and Val, the corresponding residues in the Tmod2 sequence, resulted in an increase

of γ - and δ-TM binding. We suggested that the function of Tmod isoforms is regulated by

their affinity to TM isoforms. In this work, we studied the effects of A21K/E33V mutations

in the full-length Tmod1 on the formation of neurites and the binding of short brain TM

isoforms. We showed that these mutations caused a decrease in binding of short TMs

derived from the α-gene, and that they also caused a 2-fold decrease in the length of

neurites formed.

MATERIALS AND METHODS
Plasmid construction and mutagenesis
For transfection experiments and expression in Escherichia coli, mouse Tmod2 (accession

No. NM 016711) was subcloned into pReceiver-M55 with mCherry tag and into

pReceiver-B01 with His-tag (Genecopoeia, Rockville, MD), respectively. The plasmid

for mouse Tmod1 (accession No. NM 21883) subcloned into pEGFP-C1 was a generous

gift from Dr. Carol Gregorio (Arizona State University) previously used in (Tsukada et al.,

2011). The GFP-Tmod1 plasmid was used both for PC12 transfection and as a template for

mutagenesis. The pET(His)Tmod1 plasmid (Kostyukova et al., 2000) was used for Tmod1

expression in E. coli and as a template for mutagenesis. Site-directed mutagenesis was

performed using a QuikChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA).

The plasmids were amplified by PCR according to the manufacturer’s instructions with the

modification described in (Tsukada et al., 2011) using Pfu Ultra Hotstart DNA polymerase

(Agilent) and two complementary sets of oligonucleotides, which contain changed triplets.

To change Ala 21 to Lys in chicken or mouse Tmod1, the sets of oligonucleotides were

5′-GAA GAC AAG ATC CTC GGA AAG CTG ACG GAG GAA GAG CTC-3′ and 5′-GAG

CTC TTC CTC CGT CAG CTT TCC GAG GAT CTT GTC TTC-3′; or 5′-GAG GAT GAA

ATC CTG GGG AAG CTC ACA GAG GAG GAG C-3′ and 5′-GCT CCT CCT CTG TGA

GCT TCC CCA GGA TTT CAT CCT C-3′, respectively.

Then once a single mutation was introduced and confirmed for each plasmid, the

singly-mutated plasmid was then used as a template to introduce the second mutation.

To change Glu 33 to Val in chicken or mouse Tmod1, the sets of oligonucleotides were:

5′-CTC AGG AAG TTG GAG AAC GTG CTG GAA GAG CTG GAC-3′ and 5′-GTC CAG

CTC TTC CAG CAC GTT CTC CAA CTT CCT GAG-3′, or 5′-CTG AGG ACG CTG GAA

AAT GTG CTA GAT GAA CTA GAC-3′ and 5′-GTC TAG TTC A TCT AGC ACA TTT TCC

AGC GTC CTC AG-3′, respectively.

After PCR, the original plasmid was digested using DpnI. The digest was used to

transform E. coli maximum-efficiency DH5α (Invitrogen). Cells were grown in the

presence of 100 mg/L carbenicillin for all plasmids except the one for GFP-Tmod1, which

was grown in the presence of 50 mg/L kanamycin. After plasmid purification (using Qiagen

mini-prep kit), the presence of mutations was confirmed by DNA sequencing. Synthesis of
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all oligonucleotides was done by Integrated DNA Technologies Inc. (Coralville, Iowa), and

DNA sequencing was done by Genewiz (South Plainfield, NJ).

Tmod purification
Tmod1 (both wild type and mutant) was overexpressed in E. coli BL21 (DE3) pLysE

while Tmod2 was overexpressed in E. coli BL21 (DE3). Auto-inducible ZYP-5052 media

(Studier, 2005) containing 100 mg/L carbenicillin (plus 50 mg/L chloramphenicol for E.

coli BL21 (DE3) pLysE) was inoculated and cells were grown for 12–15 hours at 37 ◦C.

Cells were harvested by centrifugation at 8,000 rpm (Sorvall SLA-3000 Rotor), 4 ◦C, for

10 min. Pellets were re-suspended in 20 mM Tris-HCL, pH 7.0, 100 mM NaCl, containing

a protease inhibitor cocktail (Roche), containing 1 mM pefabloc, and 1 mM tosyl-L-lysine

chloromethyl ketone (TLCK). Re-suspended pellets were sonicated for 10 min on ice. The

homogenized solution was then centrifuged at 20,000 rpm (Sorvall SA-300 Rotor), 4 ◦C,

for 20 minutes and the supernatant was loaded onto a Superflow Ni-NTA agarose column

(Qiagen) equilibrated with 50 mM Na-phosphate, pH 6.8, containing 10 mM imidazole.

Once the protein was loaded, the column was washed with 50 mM Na-phosphate, pH 6.8,

containing 10 mM imidazole and 5 mM β-mercaptoethanol. Proteins were eluted by

a 50–250 mM imidazole gradient in the same buffer. Fractions containing Tmod were

combined, dialyzed overnight against 20 mM Tris-HCl, pH 8, containing 1 mM EDTA

and 1 mM DTT, and loaded on an anion-exchange column Poros HQ/L (PerSeptive

Biosystems) using an FPLC system (Pharmacia). Proteins were eluted by a 12–25%

(for Tmod1) or 10-30% (for Tmod2) NaCl gradient. Fractions containing Tmod were

combined and dialyzed against 20 mM Tris-HCl, pH 8, containing 1mM EDTA and 1mM

DTT. Protein purity was evaluated using SDS-PAGE.

Peptides
N-acetylated TM peptides (αTm1bzip, γTm1bzip, and δTm1bzip) were synthesized by the

Tufts University Core Facility (Boston, MA). Chimeric TM peptides designed for structural

and functional studies (Greenfield et al., 2001; Kostyukova, 2007; Meshcheryakov et al.,

2011) contain 19 N-terminal residues of short α-, γ -, or δ-TM respectively, encoded by

exon 1b. To stabilize the coiled-coil structure, each peptide contained an additional 18

C-terminal residues of the GCN4 leucine Zipper domain. Quality of the synthetic peptides

was confirmed using mass spectroscopy; molecular weights of the peptides were the same

as the predicted ones.

Isoelectric points of TM peptides were calculated using protparam http://web.expasy.

org/protparam/. Concentrations of proteins and peptides were determined both by using

the BCA protein assay kit (Pierce) and by measuring their difference spectra in 6 M

guanidine-HCl between pH 12.5 and 7.0, using the extinction coefficients of 2357 per

tyrosine and 830 per tryptophan at 294 nm as in (Kostyukova, Hitchcock-Degregori &

Greenfield, 2007). Standard deviations of concentrations determined by the two methods

were 20% for Tmod2 and between 4 and 16% for TM peptides.
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Binding experiments
Binding was detected using native gel electrophoresis in 9% polyacrylamide gels that

were polymerized in the presence of 10% glycerol without SDS. To prepare complexes for

loading onto gels, stock solutions of 12 µM Tmods were mixed with TM peptides in a 1:2

molar ratio in 20 mM Tris-HCl, pH 8.0, containing 1 mM DTT and 1 mM EDTA. Presence

(≤100 mM) or absence of NaCl did not affect binding results. Sample loading buffer (125

mM Tris-HCl, pH 6.8, 40% glycerol, 0.01% bromophenol blue) was added to the samples

to a Tmod final concentration of 7.5 µM. Running buffer for electrophoresis contained

25 mM Tris-HCl and 192 mM glycine. For titration, TM peptides were added at different

ratios (up to 3:1) to the stock solution of Tmod2. Samples were analyzed by staining native

polyacrylamide gels with Coomassie R-250 and quantified using a ChemiDoc XRS+ with

Image Lab Software (BioRad). Density of the complex bands was normalized in order to

average results of several titrations.

Cell culture and imaging
Undifferentiated PC12 cells were grown in DMEM (Invitrogen) supplemented with 5%

fetal bovine serum (FBS, Invitrogen) and 10% horse serum (HS, Invitrogen), and were

sub-cultured every three days. For neuronal differentiation, PC12 cells were grown on

100 µg/ml poly-D-lysine–coated 8-well plates or 35-mm culture dishes (ibidi LLC)

in DMEM supplemented with 0.5% FBS, 1% HS, and 100 ng/ml nerve growth factor

(NGF, invitrogen). PC12 cells were transfected with GFP-Tmod1 WT, GFP-Tmod1

A21K/E33V, mChFP-Tmod2, or GFP-actin using lipofectamin 2000 (Invitrogen) according

to the manufacturer’s instructions. Twenty-four hours after transfection, neuronal

differentiation was induced and neurite outgrowth was monitored on day 3 and day 6

on a laser scanning confocal microscope LSM710 (Zeiss) with a 63x oil immersion lens

(Zeiss). Images were acquired with Zen software (Zeiss) and the number and length of

neurites were analyzed in Imaris software (Bitplane). Statistical analysis was performed by

One-way ANOVA.

RESULTS
A21K and E33V mutations in Tmod1 cause decrease in neurite
length
Mutagenesis of Ala21 to Lys and Glu33 to Val in the Tmod1 fragment, Tmod1s1, increased

the affinity of this fragment for TM peptides (Uversky et al., 2011). Tmod1s1 corresponded

to the TM-binding site 1 of Tmod1 (res. 1-38). TM chimeric peptides, γTM1bzip and

δTM1bzip, contained the N-terminal sequences of short TM isoforms TM5NM1 and

TM4, respectively. To study the effects of this changed affinity on neurite formation,

these mutations were introduced in full-length GFP-Tmod1. The mutant was expressed

in PC12 cells, a model system for neuronal differentiation (Greene & Tischler, 1976) and

functional assessment of neurite outgrowth (Guillaud et al., 1998), to test its effect on

neurite formation and extension.
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We first checked expression of GFP-Tmod1 and mChFP-Tmod2 in PC12 cells. Both

GFP-Tmod1 and mChFP-Tmod2 were successfully expressed and localized in both

the cell body and neuronal extensions in differentiated PC12 cells (Fig. 1A); however,

mChFP-Tmod2 appeared be more restricted to the shaft of the neurites, while GFP-Tmod1

localized in the shaft and at the very end of the growth cones (Fig. 2A).

We next observed the effect of GFP-Tmod1 and mChFP-Tmod2 overexpression on

neurite formation and outgrowth of PC12 cells, three and six days after NGF induction.

Overexpression of GFP-Tmod1 did not affect neuronal differentiation when compared

with overexpression of GFP alone (data not shown), but overexpression of mChFP-

Tmod2 impaired neuronal differentiation of PC12 cells (Figs. 1A and 1B). PC12 cells

expressing GFP-Tmod1 showed proper neurite outgrowth after three and six days

of NGF-induced neuronal differentiation. On the other hand, PC12 cells expressing

mChFP-Tmod2 showed a significant reduction in the number (4-fold) and the length

(3 to 10-fold) of neurites (Figs. 1C and 1D).

Additionally, we co-expressed GFP-Tmod1 and mChFP-Tmod1 in PC12 cells and

checked their effect on neuronal differentiation. Interestingly, co-expression of Tmod1

and Tmod2 did not impair NGF-induced neuronal differentiation after three days

(Fig. 2A). The number (3.1± 0.6,n = 20) and length (61.3± 8.3 µm,n = 20) of neurites

were similar to those observed in Tmod1 over-expressing cells (Figs. 1C and 1D). Tmod2

did not localize with actin filaments in the tips of neurites of PC12 cells over-expressing

mChFP-Tmod2 and GFP-actin (Fig. 2B).

We further checked the effect of A21K and E33V mutations in GFP-Tmod1 on PC12

cell’s neuronal differentiation. PC12 cells overexpressing GFP-Tmod1[A21K/E33V] did

not exhibit a significant decrease in the number of neurites per cell; however, the average

length of neurites decreased approximately 2 to 3-fold (Figs. 1A–1C). Interestingly,

GFP-Tmod1[A21K/E33V] shared a similar localization pattern with mChFP-Tmod2 (data

not shown).

Effect of the mutations in full-length Tmod1 on binding TM iso-
forms
Experiments that demonstrated increased Tmod1 binding to short non-muscle TM

isoforms were performed using synthetic TM and Tmod peptides (Uversky et al., 2011).

Residues 7–14 of short TMs form the binding site for Tmod (Vera et al., 2000). Therefore

the data obtained for TM peptides, which contain 19 N-terminal residues, may be

extrapolated to full-length TMs. Tmods contain two TM-binding sites; changes in one

site may or may not affect TM-binding properties of the full-length molecule.

To explore the effect of the changes on full-length Tmod1, A21K and E33V mutations

were introduced into full-length, His-tagged Tmod1. TM-binding properties of purified

mutant Tmod1[A21K/E33V] and wild-type Tmod1 and Tmod2 were analyzed using native

gel-electrophoresis (Fig. 3). Three TM peptides, αTM1bzip, γTM1bzip and δTM1bzip,

were used in this experiment. All of them contained TM N-terminal sequences encoded

by exon 1b of α, γ , and δ-genes, respectively. Tmods alone and mixed with TM peptides

were loaded on native gels. TM peptides cannot be seen on native gels; they are positively
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Figure 1 Confocal imaging illustrating the effect of Tmod expression on PC12 neuronal differentia-
tion. (A) PC12 cells over-expressing GFP-Tmod1 wild-type, GFP-Tmod1 mutant, and mChFP-Tmod2
after three days of NGF-induced neuronal differentiation. Bar = 20 µm. (B) PC12 cells over-expressing
GFP-Tmod1 wild-type, GFP-Tmod1 mutant and mChFP-Tmod2 after six days of NGF-induced neuronal
differentiation. Bar= 50 µm. (C) Bar graphs showing the number of neurites per cell and (D) the average
length of neurites in PC12 cells (continued on next page...)
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Figure 1 (...continued)

over-expressing GFP-Tmod1 WT (n= 55), GFP-Tmod1 A21K/E33V (n= 48) and mChFP-Tmod2 (n=
45) three days (dark grey bars) and six days (light grey bars) after NGF-induced neuronal differentiation.
Error bars in C) and D) represent sd (*: p< 0.01 and **: p< 0.0005; One-way ANOVA).

Figure 2 Localization and distribution of Tmod2 in PC12 cells. A) Co-expression of mChFP-Tmod2
and GFP-Tmod1 in PC12 cells after 3 days of NGF-induced neuronal differentiation. Tmod2 does not
co-localize with Tmod1 in the growth cones (arrowheads). Bar = 20 µm. B) Co-expression of mChFP-
Tmod2 and GFP-actin in PC12 cells after 3 days of NGF-induced neuronal differentiation. Tmod2 does
not co-localize on actin filaments in the tip of the neurites (arrowheads) or membrane ruffles (arrow).
Bar= 20 µm.

charged and do not enter a gel unless they are in a complex with Tmod (isoelectric points

of αTM1bzip, γTM1bzip and δTM1bzip are 9.98, 9.82, and 9.82, respectively). Binding

positively charged TM peptides decreased Tmod mobility in gels; therefore, a shift of bands

corresponding to the formed complexes was observed.
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Figure 3 Complex formation between Tmods and TM peptides detected by shift in native gel-
electrophoresis. Tmod and TM peptides were mixed at 1:1 ratio. Tmod (lane 1), Tmod and αTM1bzip
(lane 2), Tmod and γTM1bzip (lane 3), Tmod and δTM1bzip (lane 4). TM peptides cannot be seen in
gels because of high isoelectric points. Arrow indicates the additional complex band.

Compact bands were formed for the mixtures of both Tmod1 and Tmod2 with

αTM1bzip, (Fig. 3, lane 2) indicating formation of a stable complex. Tmod1 has been

shown to bind an αTM1bzip peptide at both sites (Kostyukova, Choy & Rapp, 2006). Al-

though Tmod1 also has two binding sites for γTM1bzip, formation of a complex with only

one γTM1bzip peptide bound to site 2 can be detected using native gel-electrophoresis

(Kostyukova, Hitchcock-Degregori & Greenfield, 2007). Binding one peptide instead of

two resulted in higher electrophoretic mobility of the Tmod1/γTM1bzip band on the

gel, and resulted from the weak affinity of γTM1bzip to site 1. The similar position of

the band for the Tmod1/δTM1bzip complex, indicated that only one δTM1bzip peptide

was bound to Tmod1 under these conditions (Fig. 3A, lane 4). A smear, which appeared

under the Tmod1/γTM1bzip and Tmod1/δTM1bzip bands, can be explained by complex

dissociation during electrophoresis, indicating weaker affinities of Tmod1 with these TM

isoforms (Fig. 4A, lanes 3–4).

Mutations A21K and E33V were designed based on previous data (Uversky et al., 2011)

to enhance interaction of Tmod1 with short γ - and δ-TMs in site 1. With these mutations,

we expected to see a band with the mobility of the band formed by Tmod1 and αTM1bzip.

However, we saw no change of mobility for the complexes of Tmod1[A21K/E33V] with
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Figure 4 Titration of Tmod2 by TM peptides αTM1bzip (A), γ TM1bzip (B) and δTM1bzip (C). Arrows
indicate complexes, arrowheads indicate Tmods.

γTM1bzip and δTM1bzip (Fig. 4B, lanes 3, 4). Unexpectedly, rather than a single band, for

the complex of Tmod1[A21K/E33V] with αTM1bzip, an additional lower band appeared

(Fig. 3B, lane 2). The usual band representing a complex of Tmod1[A21K/E33V] with two

αTM1bzip was also observed. The increased mobility of the additional band indicated

formation of a complex with one TM peptide. Therefore, these mutations decreased the

affinity of Tmod1 for the αTM1bzip in site 1, but did not affect the formation of the

complex of Tmod1 with the two other TM peptides at least that can be detected by native

gel-electrophoresis.

The mobilities of the Tmod2/γTM1bzip and Tmod2/δTM1bzip bands were slightly

greater than the mobility of Tmod2/αTM1bzip (Fig. 3C). The difference may be explained

either by the slightly higher isoelectric point of αTM1bzip or by binding only one peptide.

Titration of Tmod2 by TM peptides
To find out how many TM molecules bind to Tmod2, Tmod2 was titrated with αTM1bzip,

γTM1bzip, and δTM1bzip (Fig. 4). In all cases, the Tmod2 band disappeared completely

at a 1:1 molar TM/Tmod ratio, indicating that at this ratio all Tmod2 molecules were in

a complex with one TM peptide. Complex formation between Tmod2 and αTM1bzip
was different than with the two other peptides. The intensity of the Tmod2/αTM1bzip
band continued to increase gradually, reaching maximum at a 2:1 ratio. It was more

difficult to understand if the intensity of complex bands for Tmod2/γTM1bzip and

Tmod2/δTM1bzip also continued to increase after disappearance of Tmod2 band. To

clarify this, the change of the complexes in the mixture was monitored by scanning and

quantifying the complex bands in native gels. The normalized density of the complexes

is shown in Fig. 5 as a function of the TM/Tmod molar ratio. All curves demonstrate

saturation at a 2:1 ratio. This result may be explained if binding of Tmod2 to all peptides

was not cooperative and all Tmod2 molecules bind one TM peptide first, in a site that has

a higher affinity; then a second peptide starts to bind. The change in the position of the
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Figure 5 Density dependence of the complex bands on the amount of TM peptide added (TM/Tmod
molar ratio). Error bars show standard deviation (n= 3).

complex band also confirms this explanation. Mobility of the complex band at a 1:1 ratio is

slightly higher than at a 2:1 ratio (Fig. 4).

DISCUSSION
TM5NM1, TM4 and TMBr3 are short TM isoforms specific to neurons. Location and

development profiles of these isoforms were studied in rats using isoform-specific

antibodies (Had et al., 1994; Weinberger et al., 1996; Schevzov et al., 2005; Martin &

Gunning, 2008). There is a low level of TMBr3 at birth with an increase after day 10 and

the maximum level at days 21-35. Levels of TM4 are high at birth and reach a maximum

at day 10, followed by decreasing levels. It was shown that in growing embryonic neurons,

TM4 was concentrated in the cell body and the growth cones located at the distal ends of

neurites. In embryonic neurons, TM5NM1 is localized in the growth cones, but cannot be

found in cell bodies. In adult neurons, both TM5NM1 and TM4 localize in the cell body

while TMBr3 was found in the axon and presynaptic area.

Tmod2 was found in the brain along with Tmod1 as a TMBr3-binding protein and

was identified as a new Tmod isoform specific for neurons (Watakabe, Kobayashi &

Helfman, 1996). Tmod2 is detected at embryonic day 14 and reaches adult levels before

birth. Watakabe et al. also tested binding of Tmod1 and Tmod2 to several TM isoforms:

TM5a, TM5NM1, TMBr3 and TM4. They found strong binding of both Tmod1 and

Tmod2 to TM5a, TMBr3 and TM5NM1. Weak binding to TM4 was detected for Tmod1

and no TM4 binding was detected for Tmod2. However, we showed that Tmod2 binds

TM4. This conclusion is supported by our results with δTM1bzip and the drastic increase

in Tmod2’s ability to cap actin filaments in the presence of full-length TM4 (data not

shown). Therefore, binding to all these isoforms should be important for Tmod2 function

in neurons.
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Originally the chimeric peptide αTM1bzip was designed to study the structure and

function of TM5a/5b, the short non-muscle α-TMs (Greenfield et al., 2001; Kostyukova,

2007; Meshcheryakov et al., 2011). TM5a was reported in brain tissue (Schevzov et al.,

2005) with a polyclonal a/9d antibody that cross-reacted with TM5NM1. However, the

monoclonal a/9d antibody, which did not cross-react with TM5NM1, did not detect TM5a

(Schevzov et al., 2011); therefore, most likely this TM isoform is not specific for neurons.

Two other short TM isoforms, TMBr2 and TMBr3, result from splicing of the α-gene

and share the same N-terminal region encoded by exons 1b, 3, 4 and 5 (Gunning et al.,

2005). Therefore, the Tmod-binding properties of αTM1bzip, which contains the sequence

encoded by exon 1b, may be attributed to all these isoforms.

Our present results regarding the localization of overexpressed Tmod1 and Tmod2

are in agreement with the literature investigating localization of Tmod1 and Tmod2 in

cultured neurons (Fath et al., 2011). Fath and coauthors showed that Tmod2 was localized

in the cell body and central domain of the growth cone and most of it was diffuse and not

associated with actin filaments during early neuritogenesis. Unlike Tmod2, most of Tmod1

was co-localized with actin filament bundles in lamellipodia and growth cones.

Knockdown of Tmod2 in N2a neuroblastoma cells increased the percentage of cells with

neurites (no change in number of neurites) and the length of neurites was increased 2-fold

(Fath et al., 2011). Knock-down of Tmod1 had no effect on the percentage of cells with

neurites, but increased the number of neurites per cell and slightly decreased their lengths.

It was concluded that Tmod2 negatively regulates neurite formation and extension; and the

decreases in neurite formation and elongation observed in Tmod2 over-expressing PC12

cells presented here, strongly confirm and support the above hypothesis.

Fath and co-authors (Fath et al., 2011) suggested that Tmod2’s ability to bind G-actin

(Fischer et al., 2006; Yamashiro et al., 2010) might explain the inhibition of neurite growth,

because Tmod2 sequesters free actin monomers in the cytoplasm. However, in our

experiments, co-expression of Tmod1 and Tmod2 did not change the number and length

of neurites; therefore, the sequestering activity of Tmod2 did not affect neurite growth.

The slight decrease in neurite number and the 2-fold decrease of neurite length that

resulted from the A21K/E33V mutation in TM-binding site 1 of Tmod1, indicate that

the difference in TM-binding abilities is important for the different functions of Tmod

isoforms. Unexpectedly, the A21K/E33V mutation in Tmod1, that was supposed to

increase binding to TM5NM1 and TM4 in site 1 (Uversky et al., 2011), also decreased

binding of αTM1bzip and therefore of a short α-TM, TMBr3. However, actin filaments in

the growth cone are associated with TM5NM1 and TM4 while TMBr3 is expressed only in

adult neurons. We assume the most likely it is the change in binding TM5NM1 and TM4

that caused the decrease in neurite length.

Our present data on the over-expression of Tmod1 WT, Tmod1[A21K/E33V] and

Tmod2 in PC12 cells clearly argue that Tmod1 is involved in neuronal differentiation

for proper neurite formation and outgrowth, and that Tmod2 inhibits such neuronal

differentiation. In fact, it is possible that an adequate balance between Tmod1 and

Tmod2 levels may regulate actin polymerization in the growth cone during neuronal
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differentiation in order to promote neurite extension. Tmod1 may be required at the tip of

growth cones whereas Tmod2 may be necessary within the shaft of the neurite. Mutations

in the TM binding site of Tmod1 significantly impair neurite outgrowth, suggesting that

the integrity of this binding domain is critical for the proper function of Tmod1 during

neuronal differentiation.
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