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In brief

In this study, the authors sought to

identify potential new applications of

existing anti-cancer drugs beyond their

original medical indications. A deep

learning-based deconvolution model and

drug response prediction method using

cell line data were developed and then

transferred to deconvolute tumor

samples. By deconvoluting tumors into

cancer-type-specific cell lines, the model

predicted drug responses of tumors

using the proportions and drug sensitivity

data from those cell lines. The findings

resulted in suggestions for future

investigation of drug repurposing.
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THE BIGGER PICTURE Drug repurposing involves utilizing approved or investigational drugs beyond the
scope of the original medical application. This approach offers several advantages compared with devel-
oping entirely new drugs, including a lower risk of failure, a shorter development timeline, and lower invest-
ment costs. Using previous knowledge of drug sensitivity of cancer cell lines, we created a tumor convolu-
tionmodel to predict how tumors will respond to anti-cancer drugs. In this approach, a deep learningmodel
used single-cell gene expression profiles to deconvolute tumors into their constituent cancer cell lines; in
other words, the model represented tumors as a mixture of different cancer-type-specific cell lines in vary-
ing proportions. Subsequently, the deconvoluted proportions facilitated the prediction of tumors’ drug re-
sponses. Ultimately, these observations highlight the potential for deep learning applications in the area of
drug repurposing.
SUMMARY
Large-scale cancer drug sensitivity data have become available for a collection of cancer cell lines, but only
limited drug response data from patients are available. Bridging the gap in pharmacogenomics knowledge
between in vitro and in vivo datasets remains challenging. In this study, we trained a deep learning model,
Scaden-CA, for deconvoluting tumor data into proportions of cancer-type-specific cell lines. Then, we devel-
oped a drug response prediction method using the deconvoluted proportions and the drug sensitivity data
from cell lines. The Scaden-CAmodel showed excellent performance in terms of concordance correlation co-
efficients (>0.9 for model testing) and the correctly deconvoluted rate (>70% across most cancers) for model
validation using Cancer Cell Line Encyclopedia (CCLE) bulk RNA data.We applied themodel to tumors in The
Cancer Genome Atlas (TCGA) dataset and examined associations between predicted cell viability and
mutation status or gene expression levels to understand underlying mechanisms of potential value for
drug repurposing.
INTRODUCTION

Tumor heterogeneity is associated with cancer progression,

recurrence, and responses to drug treatments.1 Determining

the cell composition of tumors is the key to stratifying treatments

for cancer patients and developing personalized therapies.2

Pharmacogenomics, the science of uncovering the genetic de-
This is an open access article under the CC BY-N
terminants of drug responses,3 is a potential solution for stratifi-

cation and customization of cancer treatments. However, large-

scale drug response datasets are mainly derived from cancer

cell lines, with limited screening data from patient-derived xeno-

graft (PDX) models. Drug treatment data derived directly from

patients are either scarce, inconsistent, or hard to quantify

due to complex regimens for individual patients. Transferring
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pharmacogenomics knowledge from in vitro to in vivo settings

has been attempted to accelerate and improve drug treatment

in clinical settings.4–13

Gene expression profiling by RNA sequencing (RNA-seq) is

commonly used to characterize molecular traits. However, it

only measures the average gene expression across different

types of cells within samples and ignores the biological implica-

tions underlying differences among cells. Although changes in

cellular composition are among the main factors affecting

changes in gene expression, bulk RNA-seq methods cannot

offer accurate characterizations of this phenomenon.

Unlike conventional RNA-seq, single-cell technology is a

powerful tool for dissecting out distinct cell populations within

one sample. Nevertheless, the cost of single-cell experiments

is still much higher than conventional RNA-seq technology. It

would be more cost effective to dissect the composition of cells

within bulk RNA-seq data by using the knowledge from existing

single-cell RNA-seq data. Therefore, deconvolution of bulk RNA-

seq to infer cell populations could elucidate the biological mean-

ing of changes in gene expression. Previous studies have devel-

oped a few computational deconvolution methods to address

this issue.14–17 One study, using a deep learning-based model

called Scaden, reported excellent performance in cell type de-

convolution.14 Another recent paper explored tumor heteroge-

neity by deconvoluting breast cancers into breast cancer cell

lines and further applied the results to drug response predic-

tion.18 As more large-scale single cell datasets become avail-

able, using cell deconvolution models to analyze tumor samples

may bridge the gap of pharmacogenomics knowledge between

cell line data and tumor data.

In this study, we aimed to predict drug response through the

deconvolution of tumors by cancer cell lines. We developed

Scaden-CA, which we trained with a collection of single-cell

RNA (scRNA) data from cancer cell lines, to break down tumor

data from The Cancer Genome Atlas (TCGA) into cancer cell

lines with corresponding cancer types. We then implemented

an algorithm to combine the deconvoluted proportions with

drug sensitivity data from the Profiling Relative Inhibition Simul-

taneously in Mixtures (PRISM) dataset for predicting drug

response. Overall, our model addresses the need to transfer

pharmacogenomics knowledge from cancer cell lines to tumor

samples for predicting drug responses, thereby advancing the

development of cancer therapeutics.

RESULTS

Performance evaluation and improvement of the
deconvolution models
We adapted the deep learning-based model called Scaden14 to

deconvolute tumors into cancer cell lines and then used drug

response data from those cell lines to predict drug responses

of the tumors. We hypothesized that diverse cancer cell lines

may contain necessary genomic/cell type information to explain

the heterogeneity of patient tumor samples. Our model, termed

Scaden-CA, was developed in Python (under the TensorFlow/

Keras environment). We trained 18 models for 18 cancer types,

using simulated bulk RNA-seq data and a training process pro-

vided by the original Scaden model (Figure 1A). The number of

cell lines used in the models and the performance evaluated by
2 Patterns 5, 100949, April 12, 2024
the concordance correlation coefficient (CCC), mean absolute

error (MAE), and root-mean-square error (RMSE) are shown in

Table 1. Overall, Scaden-CA showed good deconvolution per-

formance in all cancers before cell line selection (CCC > 0.95

when number of cell lines % 16, MAE < 0.02 and RMSE < 0.03

across all cancer types, except for lung cancer; Table 1). In addi-

tion, we checked loss value during the steps of model training

and found that all cancer types converged, except for the model

for lung cancer (Figure S1).

The performance of Scaden-CA deteriorated when more cell

lines were included in data simulation, particularly for lung can-

cer. To improve performance with respect to lung cancer, we

first determined the optimal number of cell lines to be included

in the model and then applied mutation-guided selection criteria

to choose representative cell lines. The optimal number of cell

lines was determined by the interval of true proportion of simula-

tion data that showed low and stabilized percent error (Fig-

ure 1B). Percent error decreased markedly between intervals

of true proportion of 0–0.1 and 0.1–0.2. Since the optimal num-

ber of cell lines would likely be within this interval, we further

analyzed this interval and observed a decreasing and stabilizing

trend as the true proportions increased (Figure 1B).

To determine the optimal number of cell lines, we set a fluctu-

ation of percent error of less than 5% as the criterion for stabi-

lized percent error, which starts around the interval of a true pro-

portion of 0.04–0.05 (Figure 1B). If the average proportion of the

cell lines is between 0.04 and 0.05, then the number of cell lines is

about 20–25. We did not consider the last interval (0.9–1.0)

because, although it had the lowest percent error, this interval

implies the use of only one cell line, which does not meet our

goal of representing tumor heterogeneity by cancer cell lines.

Therefore, we decided to use 20–25 cell lines.

To further examine how numbers of cell lines affected the ac-

curacy of proportion estimation, we applied three mutation-

guided filtering criteria to reduce the number of cell lines (see

experimental procedures). The resulting model performance is

shown in Table 1. For most cancer types, the CCC, MAE, and

RMSE were maintained at similar levels, but the CCC for the

lung cancer model showed substantial improvement in all three

selection criteria compared with the model performance with 40

lung cancer cell lines. Among all three criteria, the one that

required cell lines to include actionable mutations defined by

the Oncology Knowledge Base (oncoKB) database, which was

reduced to 11 lung cancer cell lines, showed the largest improve-

ment (CCC = 0.986). However, since the Scaden-CA model can

resolve up to 20 cell lines, we decided to use the set of 19 cell

lines that covered the overlapped mutations between TCGA

and Cancer Cell Line Encyclopedia (CCLE) mutation data also

included in oncoKB (CCC = 0.941) for our lung cancer model.

Validation of the deconvolution model and assessment
of simulation method by CCLE
To validate whether the trained Scaden-CA model can accu-

rately predict cell line compositions, we applied the models to

CCLE bulk RNA data with corresponding cancer types to test

whether the cell lines could be correctly deconvoluted to them-

selves. The correctly deconvoluted rates (CDR; see experi-

mental procedures) are summarized in Figure 1C for each cancer

type. The best models were trained for sarcoma (>90%) and
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Figure 1. Model design and assessment of model performance

(A) Flowchart of the Scaden-CA deconvolution model and the drug prediction algorithm.

(B) Predictions of percent error across the 18 cancer types at different true cell proportions. The error bars indicate the standard error of the percent error.

(C) Boxplot for the validation results by CCLE bulk RNA data. Numbers in parentheses are the numbers of cell lines used in data simulation.

(D) Boxplot for the comparison results between the Scaden-CA and MuSiC2 simulation methods.

For the boxplots in (C) and (D), the box covers 50% of data from the first quartile to the third quartile. The line splitting the box in two represents the median value,

the whiskers extend from the box to the farthest data point lying within 1.5 times the interquartile range from the box, and the points outside of these ranges are

outliers.
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Table 1. Performance of Scaden-CA models by concordance correlation coefficient (CCC), mean absolute error (MAE), and root-mean-square error (RMSE) under different

criteria of cell line selection

All cell lines

Include mutations in oncoKB or

mutations on COSMIC cancer

driver genes

Include mutations that are

included in oncoKB

Include actionable mutations

that are included in oncoKB

Cancer type

Number of

cell lines CCC MAE RMSE

Number of

cell lines CCC MAE RMSE

Number of

cell lines CCC MAE RMSE

Number of

cell lines CCC MAE RMSE

Prostate cancer 2 0.999 0.0099 0.0164 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

Thyroid cancer 4 0.998 0.0114 0.0158 1 N/A N/A N/A 1 N/A N/A N/A 1 N/A N/A N/A

Bile duct cancer 4 0.998 0.0107 0.0149 2 0.999 0.0091 0.0152 2 0.999 0.0100 0.0165 2 0.999 0.0107 0.0169

Sarcoma 3 0.998 0.0097 0.0144 2 0.999 0.0089 0.0157 2 0.999 0.0103 0.0168 1 N/A N/A NA

Bladder cancer 6 0.996 0.0147 0.0193 4 0.998 0.0104 0.0145 3 0.999 0.0113 0.0161 2 0.999 0.0075 0.0133

Gastric cancer 6 0.996 0.0114 0.0155 6 0.996 0.0121 0.0162 3 0.998 0.0145 0.0203 2 0.999 0.0106 0.0177

Liver cancer 7 0.995 0.0117 0.0163 1 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

Kidney cancer 6 0.995 0.0172 0.0233 4 0.997 0.0153 0.0206 2 0.999 0.0106 0.0171 1 N/A N/A N/A

Esophageal cancer 7 0.991 0.0137 0.0187 4 0.998 0.0121 0.0159 3 0.998 0.0135 0.0187 0 N/A N/A N/A

Endometrial/uterine

cancer

10 0.988 0.0146 0.0214 9 0.991 0.0131 0.0178 7 0.995 0.0125 0.0171 7 0.991 0.0155 0.0216

Pancreatic cancer 11 0.987 0.0129 0.0181 4 0.998 0.0114 0.0155 3 0.999 0.0089 0.0130 3 0.999 0.0093 0.0133

Brain cancer 11 0.985 0.0147 0.0212 6 0.995 0.0145 0.0199 4 0.995 0.0198 0.0261 1 N/A N/A N/A

Ovarian cancer 14 0.980 0.0134 0.0195 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

Colon/colorectal

cancer

13 0.976 0.0135 0.0203 11 0.986 0.0132 0.0195 9 0.991 0.0126 0.0182 8 0.993 0.0124 0.0179

Breast cancer 14 0.975 0.0125 0.0190 9 0.992 0.0121 0.0172 8 0.994 0.0114 0.0163 6 0.995 0.0131 0.0181

Head and neck

cancer

13 0.969 0.0185 0.0276 7 0.983 0.0219 0.0304 4 0.996 0.0157 0.0223 2 0.999 0.0074 0.0124

Skin cancer 16 0.956 0.0178 0.0266 14 0.964 0.0169 0.0248 7 0.993 0.0138 0.0193 6 0.995 0.0132 0.0188

Lung cancer 40 0.649 0.0164 0.0258 30 0.845 0.0169 0.0245 19 0.941 0.0163 0.0240 11 0.986 0.0137 0.0197
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Unexplained variation between TCGA real tumor and pseudo bulk RNA data 
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Figure 2. Boxplot for the unexplained varia-

tions between TCGA pseudo-bulk and real-

bulk RNA data for evaluation of the Scaden-

CA model

The definition of the boxplot (box range, whiskers,

and outliers) is the same as described in Figure 1.
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gastric, liver, and bile duct cancers and the least accurate

models for colon/colorectal and head and neck cancers

(<60%). Almost all cell lines accounted for the largest proportion

of their own deconvolution results except for SNU1076 (a head

and neck cancer cell line; Figure S2).

Another essential part of the Scaden-CA model is the genera-

tion of training and testing pseudo-bulk RNA-seq data. We

compared the simulation methods used by Scaden-CA and

MuSiC219 (see experimental procedures), as shown in Figure 1D.

The unexplained variation (around 0.40–0.55) is mainly due to the

capability of the deconvolution model. The Scaden-CA simula-

tion method showed results comparable with the simulation

method used byMuSiC2, suggesting that our simulation method

can produce representative data from real-bulk RNA data for

model training. Taken together, these results suggested that

the Scaden-CA model provides good approximation of the po-

tential compositions of cancer cell lines based on RNA data.

TCGA tumor deconvolution to estimate unexplained
variation and to predict drug response
We applied the Scaden-CA model to TCGA samples to deconvo-

lute to proportions of cell lines and then inferred potential thera-

peutic treatments from cell line drug screening data. The resulting

proportions were hypothesized to represent tumor heterogeneity

by a diverse collection of cancer cell lines, which can be used to

predict drug responses (see experimental procedures).

Before applying our drug response prediction algorithm to

TCGA tumors, we first evaluated the capability of the deconvolu-
tion model. We calculated the unexplained

variation between the pseudo-bulk and

real-bulk RNA data in TCGA, as shown in

Figure 2. The unexplained variation ranges

from about 0.35 to 0.55 across 18 cancer

types, with colon/colorectal cancer

showing the lowestmean unexplained vari-

ation (�0.35) and brain cancer exhibiting

the highest mean unexplained variation

(�0.55). This may result from the existence

of other cells (e.g., immune cells and

normal cells) within TCGA tumors. We will

look for novel solutions in future studies

to improve the Scaden-CA model.

Predicting drug response of TCGA
tumor samples via deconvolution
and examination of mutation-drug
response associations
We then applied the drug response predic-

tion algorithm to deconvoluted TCGA tu-

mors and calculated the predicted drug

response by multiplying the deconvoluted
proportions of cell lines for each tumor with the drug response

of the corresponding cell lines (see experimental procedures).

We analyzed 7,781 tumor samples from 18 cancer types

(Table S1), and responses to 4,518 drugs were predicted by us-

ing the PRISM screen dataset.

After obtaining predicted drug responses, we first compared

all drug responses between wild-type or mutant samples in the

same cancer type. We split samples into wild-type or mutant

groups based on the mutation status of cancer driver genes

and then inspected the associations between the predicted

cell viability of the two groups with the mutation status, which

led to multiple cancer-gene-drug combinations. The mutant

group was defined as those with at least one mutation on the

gene being analyzed, and the wild-type group was the remaining

samples. We repeated these analyses for the Catalogue of So-

matic Mutations in Cancer (COSMIC) Cancer Gene Census

(CGC) genes, and the numbers of samples analyzed for these

combinations are listed in Table S1.

The results of all cancer-gene-drug combinations are shown in

Figure 3A. We defined the threshold of statistical significance for

cancer-gene-drug combinations as an adjusted p value less than

0.05. In Figure 3A, 182,565 (0.5%) of 37,442,652 combinations

passed the threshold across the 18 cancers, or �10,143 combi-

nations per cancer (Table S2). Brain cancer had the largest num-

ber of significant combinations (n = 30,032) while ovarian

cancer showed no significant combinations (Table S2), possibly

due to the limited sample size. We listed the top 5 statistically

significant cancer-gene-drug combinations for the cancers
Patterns 5, 100949, April 12, 2024 5
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Figure 3. Exploration of the impact of mutational alteration at the gene level to drug response through cancer-gene-drug combinations

(A) Cancer-gene-drug combinations across the 18 cancer types. The x axis indicates the drug response differences of log2 fold change betweenmutant and wild

type (WT) (Dlog 2FC), and the y axis indicates the negative logarithm of adjusted p values. The dots near the top left or top right are the combinations showing

statistical significance and higher differences of log2 fold change. Marked in red are the combinations showing extreme statistical significance. Numbers of

samples analyzed for these combinations are listed in Table S1 (column 4).

(B) Boxplot for the drug response data for the lung cancer-KEAP1-afatinib combination.

(C) Boxplot for the drug response data for the lung cancer-KEAP1-topotecan combination.

(D) Boxplot for the drug response data for the breast cancer-PIK3CA-alpelisib combination.

The definition of boxplots (box range, whiskers, and outliers) is the same as described in Figure 1. The p values are from t test; p values adjusted by Bonferroni

correction.
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with combinations that passed the filtering criteria (adjusted

p <0.05 and R 50 samples per group) in Table 2. These combi-

nations represent possible drug-target associations, and the

ones showing statistical significance are worth further experi-

mental validations.

Among the results shown in Figure 3A and with an adjusted

p value less than 10�50, 7 combinations showed statistical signif-

icance with drug response differences of log2 fold change be-

tween mutant and wild-type groups (Dlog 2FC) greater than

0.75 and 5 combinations with Dlog 2FC less than �0.5 (Table 2

and Figure S3). Among the 3 kidney cancer cases in the 5 com-

binations mentioned above, the HOXA11 gene is a tumor sup-

pressor gene that is frequently hypermethylated in renal cell car-
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cinoma (RCC) cell lines and primary RCC tumors,21 and theKLF4

gene may also suppress the growth of clear cell RCC.22 As for

the two drugs in the 3 combinations, both foretinib23 and JNJ-

2648158524 have been reported as having anti-tumor effects in

kidney cancers. Foretinib is an oral multikinase inhibitor with ac-

tivity in patients with papillary RCC,23 and JNJ-26481585,24 a

pan-histone deacetylase inhibitor, has antiproliferative activity

against a variety of solid tumors, including breast cancers.

For the head and neck cancer-FEN1-WYE-125132 combina-

tion, FEN1 overexpression was associated with poor survival in

head and neck cancers,25 but the associations among head and

neck cancer, FEN1, and the drug WYE-125132 remain unknown.

PPM1D expression is high in liver cancer and is significantly



Table 2. Top 5 cancer-gene-drug combinations for the 13 cancer types that passed the selection criteria (R50 samples per group and

p < 0.05) and combinations with statistical significance (adjusted p < 10–50 and Dlog 2FC < –0.5 or > 0.75) across all 18 cancers

Cancer type Gene Drug

Number of

mutated

samples

Number of WT

samples Dlog2FC

Adjusted p

of t test

Top 5 cancer-gene-drug combinations for the 13 cancers

Bladder cancer FGFR3 L-citrulline 61 345 0.0362 1.15 3 10�5

FGFR3 nolatrexed 61 345 �0.0729 1.27 3 10�5

FGFR3 colforsin 61 345 0.0455 1.44 3 10�5

FGFR3 GSK1070916 61 345 �0.1420 1.62 3 10�5

FGFR3 lafutidine 61 345 �0.0504 1.66 3 10�5

Brain cancer IDH1 BF2.649 404 257 �0.0188 4.94 3 10�52

IDH1 acebutolol 404 257 0.0235 8.61 3 10�50

IDH1 alogliptin 404 257 �0.0366 9.07 3 10�50

IDH1 silodosin 404 257 0.0194 9.71 3 10�50

IDH1 JDTic 404 257 �0.0196 1.30 3 10�49

Breast cancer TP53 bazedoxifene 266 523 0.0593 1.84 3 10�37

TP53 MM77 266 523 �0.0355 5.83 3 10�37

TP53 milacemide 266 523 0.0486 9.17 3 10�37

TP53 tedizolid 266 523 0.1269 1.79 3 10�36

TP53 chloramphenicol 266 523 0.0506 3.98 3 10�36

Colon/colorectal cancer BRAF alverine 53 326 �0.0343 7.10 3 10�13

BRAF homosalate 53 326 0.0245 2.85 3 10�12

BRAF sertindole 53 326 0.0489 3.09 3 10�12

BRAF disulfiram 53 326 �0.1245 4.61 3 10�12

BRAF idazoxan 53 326 �0.0963 5.24 3 10�12

Endometrial/uterine cancer PTEN deferiprone 292 201 �0.0257 1.04 3 10�32

PTEN propranolol-(R) 292 201 �0.0260 1.25 3 10�30

PTEN metocurine 292 201 �0.0246 5.13 3 10�30

PTEN KY02111 292 201 �0.0132 4.01 3 10�28

PTEN CGS-21680 292 201 �0.0260 6.63 3 10�27

Gastric cancer KMT2D bopindolol 73 339 �0.0156 1.97 3 10�7

KMT2D talarozole 73 339 0.0286 2.97 3 10�7

KMT2D phthalylsulfathiazole 73 339 0.0149 5.76 3 10�7

KMT2D ADX-47273 73 339 �0.0078 5.95 3 10�7

KMT2D CNX-774 73 339 0.0589 6.38 3 10�7

Head and neck cancer NSD1 acamprosate 58 441 �0.0718 3.78 3 10�12

NSD1 meisoindigo 58 441 �0.0875 4.11 3 10�11

NSD1 terconazole 58 441 �0.0459 5.56 3 10�11

NSD1 captopril 58 441 �0.0550 7.88 3 10�11

NSD1 cidofovir 58 441 0.0377 9.21 3 10�11

Kidney cancer VHL exatecan-mesylate 175 537 0.0583 3.45 3 10�47

VHL IB-MECA 175 537 0.0203 5.89 3 10�46

VHL eslicarbazepine-acetate 175 537 0.0171 1.41 3 10�45

VHL epacadostat 175 537 0.0228 2.06 3 10�45

VHL empagliflozin 175 537 0.0207 3.70 3 10�45

Liver cancer CTNNB1 SKF-77434 94 264 �0.0353 2.81 3 10�13

CTNNB1 EBPC 94 264 �0.0157 3.39 3 10�13

CTNNB1 prednisolone-hemisuccinate 94 264 �0.0269 4.35 3 10�13

CTNNB1 LY364947 94 264 �0.0428 9.02 3 10�13

CTNNB1 ADL5859 94 264 �0.0323 1.55 3 10�12

(Continued on next page)
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Table 2. Continued

Cancer type Gene Drug

Number of

mutated

samples

Number of WT

samples Dlog2FC

Adjusted p

of t test

Lung cancer KRAS setiptiline 157 829 0.0337 6.93 3 10�31

KRAS L-152804 157 829 0.0454 3.07 3 10�30

KRAS mirtazapine 157 829 0.0152 1.73 3 10�29

KRAS docosanol 157 829 0.0310 9.99 3 10�29

KRAS trans-4-

hydroxycrotonic-acid

157 829 0.0310 2.03 3 10-20

Pancreatic cancer KRAS eliglustat 111 59 �0.0212 3.35 3 10�10

KRAS AT13387 111 59 �0.1168 8.19 3 10�9

KRAS BVD-523 111 59 �0.0966 2.83 3 10�8

KRAS suramin 111 59 �0.0115 8.99 3 10�8

KRAS gedunin 111 59 0.0505 1.98 3 10�7

Skin cancer BRAF PHA-793887 242 223 �0.0780 2.26 3 10�7

BRAF WAY-170523 242 223 �0.0256 8.66 3 10�6

BRAF barasertib 242 223 �0.0413 3.33 3 10�5

BRAF 2,6-dimethylpiperidine 242 223 0.0136 1.84 3 10�4

BRAF apafant 242 223 �0.0139 2.66 3 10�4

Thyroid cancer BRAF AZD5438 291 199 0.0614 9.89 3 10�8

BRAF paliperidone 291 199 0.0316 1.21 3 10�7

BRAF betaxolol 291 199 0.0259 1.26 3 10�7

BRAF PHA-767491 291 199 0.0247 1.28 3 10�7

BRAF cefozopran 291 199 0.0135 1.41 3 10�7

Cancer-gene-drug combinations with statistical significance across 18 cancer types

Breast cancer ABI1 brefeldin A 2 787 1.004 1.88 3 10�274

PPP6C brefeldin A 2 787 0.999 9.98 3 10�273

ABI1 chloropyramine 2 787 0.829 4.36 3 10�259

PPP6C vorinostat 2 787 0.799 2.56 3 10�180

ABI1 vorinostat 2 787 0.799 2.18 3 10�128

ABI1 puromycin 2 787 1.095 1.95 3 10�109

ABI1 ONX-0914 2 787 0.891 1.18 3 10�50

Head and neck cancer FEN1 WYE-125132 2 497 �0.555 2.51 3 10�105

Kidney cancer HOXA11 foretinib 2 710 �0.588 5.24 3 10�219

HOXA11 JNJ-26481585 2 710 �1.059 3.91 3 10�96

KLF4 JNJ-26481585 2 710 �0.504 8.42 3 10�92

Liver cancer PPM1D P276-00 2 356 �0.505 2.15 3 10�69
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associated with poor prognosis,26 but the effects of P276-00 in

liver cancer and its association with PPM1D have not been

explored.

Among the 7 combinations with positive Dlog 2FC involving

breast cancers, PPP6C27 and ABI128 have low and high

expression in breast cancers, respectively, and each is linked

to poor survival.27,28 Brefeldin A, chloropyramine, and vorino-

stat have been tested in either breast cancer cell lines or clin-

ical trials and may have anti-tumor effects in breast can-

cers.20,29–34 The associations between these genes and

drugs in the combinations represent potential novel drug re-

purposing and merit further investigation and validation.

Aside from the novel combinations mentioned above, we

also confirmed known combinations (Figures 3B–3D). The mu-
8 Patterns 5, 100949, April 12, 2024
tation status of the KEAP1 gene modulates the response of afa-

tinib (adjusted p = 6:43310� 3) in lung cancers35 and confers

drug resistance to drugs such as topotecan in patients with

lung cancer (adjusted p = 6:72310� 10).36,37 PIK3CA mutations

may determine the responses of breast cancers to alpelisib

(adjusted p = 1:643 10� 14).38 These results were consistent

with previous studies, showing that our drug response predic-

tion algorithm can identify some known mechanisms affecting

drug responses.

We further examined statistically significant cancer-gene-drug

combinations to prioritize drug repurposing worthy of further

investigation (Table 3). Among these pairs, the breast cancer-

TP53-CYC116combinationmaybeworthyof further investigation.

A previous study suggested that an aurora kinase A/B/C inhibitor,



Table 3. Top 4 gene-drug pairs showing significance across all

cancer-gene-drug combinations

Gene Drug

Cancers showing significance

with the gene-drug pair

SMO SR-33805 Liver cancer,

Head and neck cancer,

kidney cancer,

esophageal cancer

TP53 CYC116 endometrial/uterine cancer,

colon/colorectal cancer,

lung cancer,

breast cancer

TP53 CD-437 endometrial/uterine cancer,

colon/colorectal cancer,

lung cancer,

breast cancer

TP53 dolastatin-10 endometrial/uterine cancer,

colon/colorectal cancer,

lung cancer,

breast cancer
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AMG900,39 preferentially inhibits the growth of breast cancer cell

lines with TP53 loss-of-function mutations. Since CYC116 is an

aurora kinase A/B inhibitor,40 it may also be highly active in breast

cancers or cell lines with TP53 loss-of-function mutations, but

further experiments are needed to validate the results.

Examination of somatic mutations and their influence in
drug response in cancers
To examine the effects of a specific amino acid (aa) change in a

cancer type, for each of the point mutations in all TCGA samples,

we compared patients with and without a specific somatic muta-

tion, resulting in multiple cancer-[gene, aa change]-drug combi-

nations. We identified 6,338,962 (1.7%) significant combinations

(of 382,034,170) with a p value less than 0.05 (Figure 4A), and

endometrial/uterine cancer had the largest number of significant

combinations (n = 2,265,656) (Table S2). Again, ovarian cancer

showed no significant combinations (Table S2). Examples of

top 5 statistically significant cancer-[gene, aa change]-drug

combinations passed the filtering criteria (adjusted p < 0.05

andR 50 samples per group) are shown in Table 4, including so-

matic mutations of R132H in IDH1 (brain cancer), E545K in

PIK3CA (breast cancer), G12C in KRAS (lung cancer), and

V600E in BRAF (skin and thyroid cancers). Among the results

shown in Figure 4A with an extreme p value threshold less than

10�50, there are 7 cancer-[gene, aa change]-drug combinations

with Dlog 2FC greater than 0.8 and 6 combinations with

Dlog 2FC less than �0.7 (Table 4 and Figure S4). These combi-

nations are all novel findings andmay need further investigations

to validate mutation-drug associations.

We further confirmed that some known cancer-[gene, aa

change]-drug combinations recorded in the oncoKB database

showed statistical significance in our results, such as breast can-

cer-[PIK3CA, H1047R]-alpelisib (Figure 4B), breast cancer-

[PIK3CA, E545K]-alpelisib (Figure 4C), and lung cancer-

[KEAP1, R320Q]-afatinib (Figure 4D) combinations. The former

two combinations were included in the oncoKB database and

provided evidence that breast cancer patients who carry the

H1047R or E545K mutation on the PIK3CA gene can be treated
with the FDA-approved drug alpelisib plus the selective estrogen

receptor degrader fulvestrant. KEAP1/R320Q is known to be

oncogenic, and our findings concerning the lung cancer-

[KEAP1, R320Q]-afatinib combination were consistent with pre-

vious finding that certainmutations on the KEAP1 genemodulate

the effectiveness of afatinib through disrupting the Keap1-Nrf2

pathway.41,42 Taken together, our algorithms reproduce some

evidence on known effective drug treatments and shed light on

unknown mechanisms potentially useful for drug repurposing.

Associations between gene expression levels and drug
responses
To understand whether differences in drug response are due to

geneexpression changes,wesplit the tumor samples intogroups

with high or low expression of CGC cancer driver genes (n = 736)

and then assessed the differences in drug responses between

twogroups (Figure 5A, volcano plot of drug-response differences

versus log10(p value)). Table 5 shows the top 5 statistically signif-

icant combinations for the 16 cancer types with combinations

that passed the filtering criteria. Our results for the previously re-

ported combination, lung cancer-KEAP1-afatinib (Figure 3B), are

consistent with the results in Figure 5B if we consider that both

down-regulation of KEAP1 and/or KEAP1 mutants constitute

the loss of KEAP1 function, which leads to higher cell viability

and, hence, increased drug resistance to afatinib. However, the

results from the breast cancer-PIK3CA-alpelisib combination in

Figure 3Ddidnot hold in Figure 5C, indicating that themechanism

of alpelisib resistance may be solely associated with mutations

and not altered PIK3CA expression.

Concordance of predicted drug response to TCGA data
To explore potential clinical applications of our predicted cell

viability, we partitioned TCGA samples into responder and

non-responder groups to examine to our results. The lung can-

cer-gemcitabine (Figure 6A) and esophageal cancer-cisplatin

(Figure 6B) combinations showed statistical significance and

concordant trends, with responders having less cell viability

and non-responders having more cell viability. These results

showed our model’s potential to provide evidence of drug effi-

cacy or repositioning recommendations in clinical settings.

DISCUSSION

We devised a method for cellular deconvolution coupled with

drug response prediction to explore potential drug repurposing

and the underlying mechanisms using deep learning models.

While our model shows potential in predicting drug response

based on individual cell types, we recognize limitations in our im-

plementation. First, the numbers of cell lines used for the 18 can-

cer types were variable, ranging from 2 cancer cell lines for pros-

tate cancer to 19 cancer cell lines for lung cancer. The numbers

of cell lines were largely determined by the cell lines available in

the scRNA, CCLE, and PRISMdatasets.We recognize that these

numbers may not reflect the extent of tumor heterogeneity.

Therefore, our method could be improved if more cell lines

were available for each cancer.

Second, the performance of the Scaden-CA model was

degraded when large numbers of cell lines were used for model

training. The Scaden-CA model showed less percent error and
Patterns 5, 100949, April 12, 2024 9
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Figure 4. Exploration of the impact of specific aa changes to drug response through cancer-[gene, aa change]-drug combinations

(A) Cancer-[gene, aa change]-drug combinations across the 18 cancer types. The x axis indicates the drug response differences of log2 fold change between

mutant andWT groups (Dlog 2FC), and the y axis indicates the negative logarithm of adjusted p values. The dots near the top left or top right are the combinations

showing statistical significance and higher differences of log2 fold change.Marked in red are the combinations showing extreme statistical significance. Numbers

of samples analyzed for these combinations are listed in Table S1.

(B) Boxplot for the drug response data for the breast cancer-[PIK3CA, H1047R]-alpelisib combination.

(C) Boxplot for the drug response data for the breast cancer-[PIK3CA, E545K]-alpelisib combination.

(D) Boxplot for the drug response data for the lung cancer-[KEAP1, R320Q]-afatinib combination.

The aa changes specified in (A)–(D) follow the Human Genome Variation Society (HGVS) nomenclature. The definition of boxplots (box range, whiskers, and

outliers) is the same as described in Figure 1, and the definition of p values are the same as Figure 3.
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good performance in tumor deconvolution when including 20–25

cell lines. This can hinder the incorporation of more cell lines to

represent complexity at the cellular level due to tumor heterogene-

ity. Therefore, a more sensitive deconvolution model that can pre-

dict ultra-low cell proportions in certain tumors is desirable.

Third, in the deconvolution models of all 18 cancers, some

dominant cell lines accounted for the largest proportions for

each cancer, which could lead to biases in subsequent drug

response predictions. In addition, in theCCLEbulk RNAdeconvo-

lution results, colon/colorectal cancer and head and neck cancer
10 Patterns 5, 100949, April 12, 2024
samples showed lower correctly deconvoluted rates, which might

mean that they are not representative of the tumors under study.

Furthermore, the unexplained variation we observed from the de-

convolution results of TCGA tumors was around 0.35–0.55, which

indicates that ourmodel cannot fully capture the characteristics of

certain cell populations, such as normal cells and immune cells,

within tumors and, thus, may not fully capture the heterogeneity

of tumors. In addition, perhaps other factors should be considered

in tumor deconvolution, such as sequencing technology, addi-

tional scRNA datasets, or other omics datasets.



Table 4. Top 5 cancer-[gene, aa change]-drug combinations for the 5 cancer types that passed selection criteria (R50 patients per

group and p < 0.05) and combinations with statistical significance (p < 10–150 and Dlog2FC > 0.8, p < 10–50 and Dlog2FC < –0.7) across

the 18 cancer types

Cancer type Gene Aa changea Drug

Number of

mutated

samples

Number of WT

samples Dlog2FC

Adjusted p value

of t test

Top 5 cancer-[gene, aa change]-drug combinations for the 5 cancer types

Brain cancer IDH1 R132H remoxipride 367 294 0.0129 3.28 3 10�47

IDH1 R132H Alogliptin 367 294 �0.0337 1.48 3 10�46

IDH1 R132H PD-318088 367 294 0.0191 1.57 3 10�45

IDH1 R132H JDTic 367 294 �0.0178 2.01 3 10�45

IDH1 R132H BF2.649 367 294 �0.0169 2.97 3 10�45

Breast cancer PIK3CA E545K benproperine 53 736 �0.0286 2.54 3 10�11

PIK3CA E545K semapimod 53 736 �0.0369 4.50 3 10�10

PIK3CA E545K 4-HQN 53 736 �0.0243 1.32 3 10�9

PIK3CA E545K nitrendipine 53 736 �0.0286 4.05 3 10�9

PIK3CA E545K fosfomycin 53 736 0.0357 5.45 3 10�9

Lung cancer KRAS G12C aurora-a-inhibitor-i 59 927 0.0678 8.77 3 10�10

KRAS G12C JNJ-26481585 59 927 0.0975 4.58 3 10�9

KRAS G12C CGH2466 59 927 0.0298 1.60 3 10�8

KRAS G12C pevonedistat 59 927 0.1397 2.74 3 10�8

KRAS G12C SB-939 59 927 0.1145 3.12 3 10�8

Skin cancer BRAF V600E PHA-793887 203 262 �0.0905 2.64 3 10�10

BRAF V600E barasertib 203 262 �0.0483 4.63 3 10�8

BRAF V600E zileuton 203 262 �0.0207 1.36 3 10�7

BRAF V600E methoxamine 203 262 �0.0219 1.38 3 10�7

BRAF V600E WAY-170523 203 262 �0.0286 2.16 3 10�7

Thyroid cancer BRAF V600E AZD5438 287 203 0.0618 3.68 3 10�7

BRAF V600E paliperidone 287 203 0.0318 4.30 3 10�7

BRAF V600E betaxolol 287 203 0.0261 4.52 3 10�7

BRAF V600E PHA-767491 287 203 0.0249 4.61 3 10�7

BRAF V600E cefozopran 287 203 0.0136 5.18 3 10�7

Cancer-[gene, aa change]-drug combinations with statistical significance across 18 cancer types

Bladder cancer RP1 R677* LY2606368 2 404 �0.8817 5.45 3 10�113

Breast cancer PI16 V284I OTS167 2 787 1.1894 6.58 3 10�300

PI16 V284I chloropyramine 2 787 0.9219 9.68 3 10�190

PI16 V284I puromycin 2 787 1.2108 2.91 3 10�181

PI16 V284I ONX-0914 2 787 1.0003 6.74 3 10�176

Colon/colorectal cancer ZNF331 M1?b KW-2478 2 377 �0.7647 4.02 3 10�59

MYPOP P380Hfs*26 KW-2478 2 377 �0.7647 1.65 3 10�58

MEGF8 T1603Qfs*60 KW-2478 2 377 �0.7644 1.84 3 10�72

IGFN1 R3593Gfs*8 KW-2478 2 377 �0.7644 1.84 3 10�72

Endometrial/uterine cancer ANKRD55 R327Q A-674563 2 491 �0.8304 1.01 3 10�145

Head and neck cancer FAT1 S3373* evodiamine 2 497 0.8212 3.90 3 10�187

FAT1 S3373* lestaurtinib 2 497 0.9142 1.68 3 10�179

FAT1 S3373* talazoparib 2 497 0.8241 5.23 3 10�157

aThe aa changes included in the table are defined by the Human Genome Variation Society (HGVS) nomenclature.
bThe consequence of the mutation affecting the translation initiation codon is unknown (HGVS nomenclature).
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Fourth, domain differences between cancer cell lines and

real tumors were not addressed in our study, which

means that the direct application of the deconvolution model

trained on simulated bulk RNA to real tumors may not be
suitable and may introduce biases to the deconvolution

results.

Fifth, only very limited data were available in TCGA. Further-

more, the process of grouping patients into responders or
Patterns 5, 100949, April 12, 2024 11
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Figure 5. Exploration of the impact of gene expression alteration to drug response

(A) Cancer-gene-drug combinations analyzed by gene expression profiles.

(B) Boxplot for the drug response data for the lung cancer-KEAP1-afatinib combination.

(C) Boxplot for the drug response data for the breast cancer-PIK3CA-alpelisib combination.

The definition of boxplots (box range, whiskers, and outliers) is the same as described in Figure 1, and the definition of p values are the same as Figure 3.
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non-responders can be complicated. Other factors, such as the

chronological order of treatments, previously prescribed drugs,

and the medical history may need to be considered for a clearer

definition of responders and non-responders. In this study, we

did not consider the chronological order of the treatments. There-

fore, the validation results may be biased.

The algorithm we used to predict drug responses is based on

the hypothesis that there is a linear relationship between the de-

convoluted cell line proportions and the overall responses of tu-

mors to drug treatments. If this linear relationship does not hold

for all combinations of drugs and tumors, then a more capable

deep learning model may be trained to handle nonlinearity,

which we will explore in a future study.

Regardless of these limitations, the potential use of predicted

cell viability from tumor samples is feasible. For example, based

on results for afatinib (Figures 3B and 4D), mutations on the

KEAP1 gene will result in worse treatment outcomes. Similar

conclusions can be inferred from Figure 5B by the worse out-

comes observed in patients with lower expression of KEAP1.

Based our in silico predictions, perhaps patients with KEAP1mu-

tations or lower gene expression levels should consider treat-
12 Patterns 5, 100949, April 12, 2024
ments other than afatinib. Given all the combinations of 736

CGC genes and 4,518 drugs, a number of alternatives may be

considered based on our prediction results.

In conclusion, we trained the Scaden-CA model with excellent

deconvolution performance, and the drug response prediction

methodwe implementedoffers insights intobothdrug repurposing

and the underlying mechanisms. Our model and algorithm effec-

tively bridge the gap for translating cell line drug sensitivity data

into tumordrug response through tumordeconvolution intocancer

cell lines. Overall, our study has demonstrated the feasibility of

characterizing tumor heterogeneity using cancer cell lines, which

could enable more precise prediction of responses to drug treat-

ment, consequently paving the way to personalized medicine.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for data should be directed to and will be ful-

filled by the lead contact, Dr. Yidong Chen (cheny8@uthscsa.edu).

Materials availability

The study did not generate new unique reagents.

mailto:cheny8@uthscsa.edu


Table 5. Top 5 cancer-gene-drug combinations of high/low gene expression for the 16 cancer types that passed the selection criteria

(R50 patients per group and p < 0.05)

Cancer type Gene Drug

Number of

samples of high

gene expression

Number of

samples

of low gene

expression Dlog2FC

Adjusted p value

of t test

Bladder cancer TBX3 fipexide 203 203 �0.2058 3.61 3 10�65

Bladder cancer TBX3 nifurtimox 203 203 �0.2472 4.11 3 10�65

Bladder cancer TBX3 CCT018159 203 203 �0.3359 4.86 3 10�65

Bladder cancer TBX3 theophylline 203 203 �0.1756 4.97 3 10�65

Bladder cancer TBX3 XAV-939 203 203 �0.1530 5.81 3 10�65

Brain cancer AKT3 N-acetylglycyl-D-

glutamic-acid

330 331 �0.0483 4.78 3 10�83

Brain cancer AKT3 pelitinib 330 331 �0.1349 2.04 3 10�82

Brain cancer TSC1 TAK-901 330 331 �0.1422 3.95 3 10�82

Brain cancer AKT3 narasin 330 331 �0.1774 5.25 3 10�82

Brain cancer CNTNAP2 narasin 330 331 �0.1766 4.66 3 10�81

Breast cancer ESR1 EPZ004777 394 395 �0.0930 3.37 3 10�87

Breast cancer ESR1 dabigatran 394 395 �0.0721 5.42 3 10�86

Breast cancer ESR1 TAK-285 394 395 �0.0940 7.31 3 10�86

Breast cancer GATA3 UNC1999 394 395 �0.0842 1.11 3 10�83

Breast cancer ESR1 prednisolone-

hemisuccinate

394 395 0.0690 1.20 3 10�83

Colon/colorectal cancer AKT3 prednisolone-acetate 189 190 0.0698 1.01 3 10�49

Colon/colorectal cancer AKT3 PF-5274857 189 190 �0.0575 9.87 3 10�46

Colon/colorectal cancer AKT3 RG2833 189 190 �0.0352 6.61 3 10�45

Colon/colorectal cancer ZEB1 PF-5274857 189 190 �0.0568 5.24 3 10�44

Colon/colorectal cancer ZEB1 celiprolol 189 190 �0.0327 9.85 3 10�44

Endometrial/uterine cancer FOXR1 1-acetyl-4-

methylpiperazine

246 247 �0.0537 1.99 3 10�79

Endometrial/uterine Cancer FOXR1 cefuroxime 246 247 �0.0502 3.72 3 10�78

Endometrial/uterine cancer PWWP2A cefuroxime 246 247 �0.0501 3.75 3 10�78

Endometrial/uterine cancer ZNF479 1-acetyl-4-

methylpiperazine

246 247 �0.0527 3.69 3 10�76

Endometrial/uterine cancer FOXR1 Y-27152 246 247 �0.0503 4.47 3 10�76

Esophageal cancer TP63 adatanserin 91 92 0.0304 7.12 3 10�53

Esophageal cancer TP63 amylene-hydrate 91 92 0.0534 3.29 3 10�52

Esophageal cancer TP63 sirolimus 91 92 �0.0580 1.34 3 10�51

Esophageal cancer TP63 ABT-702 91 92 �0.0368 7.18 3 10�51

Esophageal cancer TP63 monastrol 91 92 �0.0580 8.22 3 10�51

Gastric cancer AKT3 AT13387 206 206 �0.2148 7.19 3 10�50

Gastric cancer DDR2 CTS-1027 206 206 �0.0282 3.25 3 10�48

Gastric cancer RUNX1T1 monensin 206 206 �0.1472 4.13 3 10�48

Gastric cancer AKT3 tubastatin-a 206 206 �0.0237 1.34 3 10�47

Gastric cancer DDR2 acetanilide 206 206 0.0168 1.52 3 10�47

Head and neck cancer DNMT3A nalfurafine 249 250 0.0344 6.42 3 10�65

Head and neck cancer PRKD1 TPCA-1 249 250 0.1473 7.13 3 10�64

Head and neck cancer DNMT3A vatalanib 249 250 �0.0566 9.18 3 10�64

Head and neck cancer DNMT3A S18986 249 250 0.0389 1.59 3 10�63

Head and neck cancer ZEB1 SGI-1776 249 250 0.1152 4.42 3 10�62

Kidney cancer KDR tacrolimus 356 356 �0.0555 6.13 3 10�120

Kidney cancer KDR pizotifen 356 356 �0.0350 2.42 3 10�119

(Continued on next page)
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Table 5. Continued

Cancer type Gene Drug

Number of

samples of high

gene expression

Number of

samples

of low gene

expression Dlog2FC

Adjusted p value

of t test

Kidney cancer KDR pheniramine 356 356 �0.0601 1.74 3 10�118

Kidney cancer KDR sotrastaurin 356 356 �0.0768 2.43 3 10�118

Kidney cancer KDR NPC-01 356 356 0.0189 4.64 3 10�118

Liver cancer LYL1 dasatinib 179 179 0.0921 9.73 3 10�33

Liver cancer LYL1 enprofylline 179 179 �0.0320 7.20 3 10�32

Liver cancer LYL1 IB-MECA 179 179 0.0211 1.09 3 10�31

Liver cancer LYL1 KU-60019 179 179 �0.0316 2.59 3 10�31

Liver cancer LYL1 metaraminol 179 179 0.0336 1.25 3 10�29

Lung cancer NKX2-1 ouabain 493 493 0.3524 1.82 3 10�180

Lung cancer NKX2-1 dovitinib 493 493 0.2937 2.92 3 10�172

Lung cancer NKX2-1 daunorubicin 493 493 0.2145 2.13 3 10�167

Lung cancer NKX2-1 YM-155 493 493 0.2525 3.56 3 10�166

Lung cancer NKX2-1 doxorubicin 493 493 0.3202 7.36 3 10�166

Pancreatic cancer PREX2 zaldaride 85 85 0.0835 1.81 3 10�19

Pancreatic cancer PREX2 meglitinide 85 85 0.0811 3.33 3 10�19

Pancreatic cancer PREX2 Ro-25-6981 85 85 �0.0308 1.98 3 10�18

Pancreatic cancer PREX2 butylated-

hydroxyanisole

85 85 0.0570 2.04 3 10�18

Pancreatic cancer PREX2 SB-408124 85 85 0.0431 2.29 3 10�18

Prostate cancer ZEB1 SC-144 246 248 0.1358 2.13 3 10�53

Prostate cancer ZEB1 AR-42 246 248 0.1324 2.29 3 10�53

Prostate cancer ZEB1 oridonin 246 248 0.1314 2.33 3 10�53

Prostate cancer ZEB1 M-344 246 248 0.1251 2.70 3 10�53

Prostate cancer ZEB1 alvespimycin 246 248 0.1157 3.40 3 10�53

Sarcoma AFF3 pumosetrag 117 117 �0.0109 3.30 3 10�18

Sarcoma AFF3 SB-203186 117 117 �0.0214 3.30 3 10�18

Sarcoma AFF3 methylatropine-nitrate 117 117 �0.0170 3.31 3 10�18

Sarcoma AFF3 emorfazone 117 117 �0.0382 3.31 3 10�18

Sarcoma AFF3 imidafenacin 117 117 �0.0437 3.33 3 10�18

Skin cancer MITF pemirolast 232 233 �0.0325 4.26 3 10�40

Skin cancer MITF clorotepine 232 233 �0.0527 1.68 3 10�39

Skin cancer MITF semagacestat 232 233 �0.0675 6.40 3 10�38

Skin cancer MITF lonidamine 232 233 �0.0502 1.19 3 10�37

Skin cancer MITF enflurane 232 233 �0.0405 1.53 3 10�37

Thyroid cancer ASXL2 serdemetan 245 245 �0.0835 2.38 3 10�44

Thyroid cancer ASXL2 iproniazid 245 245 �0.0962 2.53 3 10�44

Thyroid cancer ASXL2 FPL-55712 245 245 �0.0403 1.66 3 10�43

Thyroid cancer ASXL2 eperezolid 245 245 �0.0324 3.31 3 10�43

Thyroid cancer ASXL2 bergapten 245 245 �0.0234 3.50 3 10�43
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Data and code availability

This study analyzes existing, publicly available data. The scRNA-seqdata are avail-

able at https://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-

cell-line-heterogeneity.43 The TCGA data are available at https://xenabrowser.net/

datapages/.44 The CCLE data are available at https://depmap.org/portal/ (2022Q2

version).45 The PRISM dataset is available at https://depmap.org/repurposing/.46

All original code has been deposited at https://github.com/ychsu2014/Predicting_

drug_response_through_tumor_deconvolution_by_cancer_cell_lines and archived

at Zenodo.47
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Datasets and preprocessing

The scRNA unique molecular identifier (UMI) count data, which represent the

absolute number of observed transcripts per cell from cancer cell lines, were

downloaded from the Broad Institute Single Cell Portal (http://singlecell.

broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-

heterogeneity),43 which contains 56,982 cells from 207 cell lines of 22 cancer

types. The Python package Scanpy was used to preprocess the scRNA data-

set. We first filtered out cells with fewer than 200 expressed genes and

removed genes expressed in fewer than 3 cells. To remove cell doublets or

https://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneity
https://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneity
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://depmap.org/portal/
https://depmap.org/repurposing/
https://github.com/ychsu2014/Predicting_drug_response_through_tumor_deconvolution_by_cancer_cell_lines
https://github.com/ychsu2014/Predicting_drug_response_through_tumor_deconvolution_by_cancer_cell_lines
http://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneity
http://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneity
http://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneity
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Figure 6. Validation of the drug response prediction algorithm by clinical drug treatment data

(A) Boxplot for the predicted cell viability in patients with lung squamous cell carcinoma (LUSC) who did or did not respond to gemcitabine.

(B) Boxplot for the predicted cell viability in patients with esophageal carcinoma (ESCA) among those who did or did not respond to cisplatin.

Samples used were from TCGA. The definition of boxplots (box range, whiskers, and outliers) is the same as described in Figure 1, and the definition of p values

are the same as Figure 3.
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multiplets, we filtered out cells with more than or equal to 6,000 expressed

genes. Also, to avoid low-quality cells with extensive mitochondrial contami-

nation, we kept cells with fewer than 13% mitochondrial counts. This data

filtering resulted in a total of 53,887 cells and 25,385 genes being included in

the subsequent analysis. The data were further normalized to 10,000 counts

per cell to make read counts comparable among cells.

TCGA RNA, somatic mutation, and phenotypic data were downloaded from

the University of California, Santa Cruz (UCSC) Xena browser (https://

xenabrowser.net/datapages/).44 ThedownloadedTCGARNAdatawere normal-

ized and log2 transformed, and the somatic mutation data contained only point

mutations. The phenotypic data contained the primary cancer in each sample,

which we used for deciding which samples to include in subsequent analyses.

For further validation, we downloaded the TCGA clinical drug treatment data

by the R/Bioconductor package, TCGAbiolinks (https://bioconductor.org/

packages/release/bioc/html/TCGAbiolinks.html).

CCLE RNA and mutation data were downloaded from the DepMap portal

(v.2022Q2; https://depmap.org/portal/).45 CCLE RNA data were represented

as log2(TPM+1) values, where TPM stands for transcripts per million. The mu-

tation data included both point mutations and indels, and only point mutations

were used in our study.

The PRISM drug screening dataset was downloaded from the DepMap

website (https://depmap.org/repurposing/),46 which includes a large dataset

of viability assays from a novel DNA barcode-based approach capable of

performing high-throughput viability analyses for thousands of drugs against

over 900 human cancer cell lines. We downloaded and used the PRISM pri-

mary dataset, which contains drug sensitivity data of 568 cancer cell lines

treated with 4,518 drugs. The replicate-collapsed log-transformed fold

change drug response data from the PRISM dataset were used in our

analyses.

For further analyses, we used only TCGA samples with corresponding can-

cer types in the scRNA dataset and cell lines found in all scRNA, CCLE, and

PRISM datasets, which resulted in the inclusion of 7,781 TCGA tumor samples

and 187 cell lines of 18 cancers (Table S1) and drug response data of the 187

cell lines treated with 4,518 drugs. The 18 cancer types are lung cancer, breast

cancer, kidney cancer, brain cancer, head and neck cancer, prostate cancer,

endometrial/uterine cancer, thyroid cancer, skin cancer, gastric cancer,

bladder cancer, colon/colorectal cancer, liver cancer, sarcoma, esophageal

cancer, pancreatic cancer, bile duct cancer, and ovarian cancer.

To infer drug-related or cancer-related information from mutations of tu-

mors, we used curated data from the oncoKB database (https://www.oncokb.

org/)48 and the COSMIC website (https://cancer.sanger.ac.uk/census).49 The

oncoKB database contains information on drugs that are associated with clin-

ical applications and mutation events, and they are further stratified by

different levels of evidence that support the use of certain drugs.48 The

COSMIC CGC (v.97) lists the expert-curated driver genes (n = 736) of human

cancers and is widely used in cancer research.
Drug response prediction via a cancer cell line-guided

deconvolution scheme

We aimed to explore drug repurposing via a novel deconvolution methodology

to predict drug responses in tumors by deconvoluting tumors into cancer cell

lines from which the drug response of the tumor sample was predicted. The

analysis included deconvolution model training, model application, and data

interpretation (Figure 1A). First, we trained, validated, and tested a deep

learning-based deconvolution model (Scaden-CA) using simulated bulk RNA

data from an scRNA dataset for each of the 18 cancers. Then, the Scaden-

CAmodels (for different cell types) were applied to the CCLE bulk RNA dataset

(new to the model) to validate whether the model can accurately deconvolute

the cell lines to themselves.We transferred the trainedmodel to tumor samples

(i.e., TCGA samples) to obtain the proportions of the cancer cell lines by can-

cers, and these proportions were then input into the drug response predictor

along with PRISM screening data. To further explore potential drug repurpos-

ing and the relevant mechanisms, we visualized and interpreted the drug

response results for all cancer-gene-drug and cancer-[gene, aa change]-

drug combinations. The details of the three main parts of the analyses are

described below.

Bulk RNA data simulation and cell deconvolution model training/

testing

We adopted a previously published deep learning-based cell composition

analysis model, Scaden, for bulk RNA data simulation and cancer cell line de-

convolution,14 which we termed Scaden-CA. The normalized scRNA data

were used to generate 8,000 artificial bulk RNA samples using 500 single cells

per sample for each cancer type by the Scaden ‘‘simulate’’ function. This step

simulates the artificial bulk RNA samples based on randomly generated pro-

portions for cell lines of the specific cancer type. The simulated samples

were split into training and testing data (80:20 ratio). Then the training and

testing data were log2 transformed and scaled to the range between 0 and

1, and genes that overlapped between simulation and TCGA RNA data were

preserved by using the Scaden ‘‘process’’ function. The resulting genes

included in the Scaden-CA model for each cancer type are summarized in

Table S3. After training the deconvolution models by cancer types, the models

were tested separately on the individual testing data of different cancer types.

The performance of the deconvolution models was first assessed by calcu-

lating Lin’s CCC50 as in the formula

CCC =
2rsxsy

s2
x+s

2
y+

�
mx � my

�2 (Equation 1)

where x, y stands for the true and predicted proportions, r is the correlation co-

efficient, sx and sy are the standard deviations of x and y, and mx and my are the

means of x and y. The CCC is 1 when true and predicted proportions are iden-

tical. However, CCC will be less than 1 if true and predicted proportions
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possessed the same profile but with an offset (mx � mys0). In addition, for an

overall evaluation of the model performance, we also calculated MAE and

RMSE for the deconvoluted results.

Combining oncoKB and COSMIC data in cell line selection

The performance of the Scaden-CA model depends on the number of cancer

cell lines used for deconvolution. Thus, we estimated the percent error of the

Scaden-CA model by different ground-truth proportions from the simulated

data. We first calculated the percent error for each deconvolution proportions

by the following mathematical formula:

% Error =
���y � x

x

���3 100 (Equation 2)

Then, we grouped the percent errors by intervals of ground-truth propor-

tions and visualized the results by bar plots, with error bars indicating the stan-

dard error of the percent errors within the same interval. The approximate num-

ber of cell lines suitable for model training was determined by the interval that

showed small and stabilized percent errors.

To reduce the number of cell lines, we first used clusters of scRNA data to

select representative cell lines. However, we observed no obvious clusters

in the lung cancer cell lines (Figure S5). We then explored the possibility of se-

lecting cell lines by other omics data. Since mutations may affect the choice of

clinical therapeutics and the outcomes, we selected representative cell lines

using mutation data from CCLE and TCGA. We used the following three con-

ditions to select representative cell lines that harbor overlapping mutations be-

tween TCGA tumors and CCLE cell lines: (1) either in oncoKB or on COSMIC

cancer driver genes, (2) included in oncoKB, or (3) actionable targets in on-

coKB. We sought to keep the cell lines with as many clinically associated or

cancer driver gene-associated mutations as possible, since drug treatments

are determined by specific mutations carried by cancer patients.

The above three filtering criteria are actually the set covering problem, a

classical nondeterministic polynomial-time (NP)-hard problem in combinato-

rial optimization. We applied the greedy algorithm to solve the set covering

problem. After we applied the filtering criteria to all of the cancer types, we

reran all the model training and testing steps and assessed the performance

of the modified Scaden-CA models. We decided to reduce the numbers of

cell lines used in the deconvolution model of lung cancer, while other cancer

models remained relatively unchanged in classification errors. Also, we chose

the second filtering criterion for lung cancer to include more cell lines (n = 19)

and achieved good performance (CCC = 0.941).

Deconvolution model validation by the CCLE dataset

The trained deconvolution models were further validated using the CCLE bulk

RNA dataset. For each of the 18 cancer types, the corresponding cell lines

were deconvoluted to assess whether the models could produce accurate de-

convolution results. We defined the CDR as the proportion of the cell line being

deconvoluted by the cell line itself. In other words, if one cell line was decon-

voluted mostly into itself among the different cell lines included in the Scaden-

CAmodel, then the CDR from the deconvolution results will be near 1 to consti-

tute an excellent deconvolution.

Simulation method assessment

Since our deconvolution model was trained on the simulated bulk RNA data, it

is crucial to evaluate data generated by the simulation method representing

real-bulk RNA data. To achieve this objective, we first used the simulation

method to create pseudo-bulk RNA data from the deconvolution results

from the CCLE real-bulk RNA. Then, we normalized the pseudo-bulk RNA

data to log2(TPM+1) values and compared them with the real CCLE bulk

RNA data by calculating the unexplained variation, Vunexplained, with the math-

ematical formula

Vunexplained = 1 � R2 (Equation 3)

where R represents the correlation coefficient calculated by Pearson correla-

tion. Next, we compared our results with one previously developed simulation

method used for evaluation of their deconvolution model, MuSiC2.19 Their

simulation method for obtaining artificial bulk RNA data was through sampling

from Poisson distribution of the inferred condition-specific mean expression
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and summation of read counts from all of the simulated single cells.19 We

created another set of pseudo-bulk RNA data from our deconvolution results

from CCLE real-bulk RNA data, normalized the values to log2(TPM+1), and

then compared it with the results of our simulation method to calculate the un-

explained variation using Equation 3.

TCGA data deconvolution by the Scaden-CA model

To infer potential drug repurposing based on patients’ transcriptomic traits,

the TCGA RNA data were deconvoluted to proportions of cancer cell lines

by the models trained for the 18 cancer types included in the study. To esti-

mate how much the deconvoluted proportions explained the original data

from tumors, we created pseudo-bulk RNA data for TCGA tumors and

compared them with TCGA real-bulk RNA data to calculate the unexplained

variation using Equation 3.

Drug response prediction algorithm for deconvoluted TCGA tumors

By linking these deconvoluted cancer cell line fractions with the treatment re-

sults of cancer cell lines from the PRISM dataset, we devised a simple average

for predicting drug responses, Ri = log2Fi, where Fi is the fold change of i-th tu-

mor in response to treatment. LetN and ~N be numbers of cells before and after

the treatment, and we have

Fi =
~N

N
=

1

N

X
k
nk fk =

X
k
pkfk (Equation 4)

where pk is the fraction of the k-th cell line estimated by the Scaden-CA model

of the i-th tumor (and
P

pk = 1), and fk is the fold change of the k-th cell line

derived from the PRISM dataset (where log2 fk was provided).

Further exploration and visualization of the drug response

prediction

To identify possible drug repurposing and explore the underlyingmechanisms,

we first used mutation profiles to group TCGA tumors at gene or mutation

levels. We then performed t tests on all cancer-gene-drug and cancer-[gene,

aa change]-drug combinations. We also used gene expression data to group

TCGA tumors to test whether genetic alternations at the RNA level affect the

drug response. We split TCGA tumors into high and low gene expression

groups on one of the CGC cancer driver genes, performed t tests on the can-

cer-gene-drug combinations related to this gene to assess significance in drug

response differences, and repeated this process for all of the CGC genes. We

selected t test to evaluate the significance based on our observation that the

log-transformed cell viability measurements appear to possess normal distri-

bution. Bonferroni correction was applied to adjust for multiple testing. An

adjusted p value less than 0.05 was used as the threshold for statistical

significance.

Validation of the predicted drug response by TCGA clinical data

To validate our predicted drug response, we analyzed the TCGA clinical drug

treatment data to compare the predicted cell viability between responders and

non-responders of TCGA tumors. We included entries with recorded drug re-

sponses, such as ‘‘complete response,’’ ‘‘partial response,’’ ‘‘stable disease,’’

and ‘‘clinical progressive disease’’ and defined the former two as responders

and the latter two as non-responders. The cell viability differences between re-

sponders and non-responders were assessed using t tests with statistical sig-

nificance set as a p value less than 0.05.
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