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Programming cancer through 
phase-functionalized silicon based 
biomaterials
Priyatha Premnath1, Krishnan Venkatakrishnan1 & Bo Tan2

Applications of biomaterials in cancer therapy has been limited to drug delivery systems and 
markers in radiation therapy. In this article, we introduce the concept of phase-functionalization 
of silicon to preferentially select cancer cell populations for survival in a catalyst and additive free 
approach. Silicon is phase-functionalized by the interaction of ultrafast laser pulses, resulting in the 
formation of rare phases of SiO2 in conjunction with differing silicon crystal lattices. The degree of 
phase-functionalization is programmed to dictate the degree of repulsion of cancer cells. Unstable 
phases of silicon oxides are synthesized during phase-functionalization and remain stable at ambient 
conditions. This change in phase of silicon as well as formation of oxides contributes to changes 
in surface chemistry as well as surface energy. These material properties elicit in precise control 
of migration, cytoskeleton shape, direction and population. To the best of our knowledge, phase-
functionalized silicon without any changes in topology or additive layers and its applications in 
cancer therapy has not been reported before. This unique programmable phase-functionalized silicon 
has the potential to change current trends in cancer research and generate focus on biomaterials as 
cancer repelling or potentially cancer killing surfaces.

Research in cancer treatment is geared towards targeted therapy, gene therapy, radiation therapy, pho-
todynamic therapy and biological therapies1–5. While the use of biomaterials for cancer therapies is 
envisaged, its usage has been limited as drug carriers. We foresee the use of functionalized biomaterials 
as surfaces that can potentially be enforced to prevent the recurrence of cancer. Likewise, research in 
detection of cancer is also carried out. This research primarily focuses on the use of microfluidic chan-
nels to detect the presence of cancer, often using proteins specific to the cancer cells6,7. This application 
requires a material that is capable of promoting the directional flow of cells as well as trapping singular 
cells for analysis.

Biomaterials in cancer treatments arose predominantly in the area of imaging, drug delivery and tar-
geted therapy. Purushotham et al. implemented magnetite coated polymer core shell materials to release 
anti-cancer drugs8. This core shell material is temperature dependent and is therefore able to selectively 
release the drug over time. Several such nanoparticles are being investigated as possible candidates for 
drug delivery systems. However, the toxicity of the nanoparticles itself is a concern. For instance, Singh 
et al. performed an in-depth review of the toxic effects of iron oxide nanoparticles9. It is observed that 
size as well as concentration has an important role in cytotoxicity. Cancer imaging also implements sim-
ilar magnetic nanoparticles for guided imaging10.Targeted delivery uses nanoparticles as their primary 
carriers coated with specific antibodies to target precise moieties. Bae et al. studied the applicability of 
manganese oxide nanoparticles in targeted siRNA (small interfering RNA) delivery as well as magnetic 
resonance imaging11.Silicon is being considered increasingly for cancer therapies. Silicon is used in var-
ious forms-crystalline, amorphous, nanoparticles and nanowires12–15. Silicon is a viable candidate owing 
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to its biocompatibility and biodegradability. The predominance of silicon in cancer therapies has been 
limited to nano and micro particles. It is apparent that bulk silicon has not been investigated for its 
potential anti-cancer properties.

While cancer treatment therapies have focussed on nano and micro forms of silicon, cancer diag-
nostics essentially focuses on bulk silicon as a base. Diagnostic devices often require significant changes 
to their surface to suit applications. To this end, researchers rely on several techniques to change the 
properties of bulk silicon. These techniques can be categorized broadly as chemical and topographical 
techniques16. These techniques either change the surface topology of silicon or change its chemical char-
acteristics. Moreover, to change material properties, these techniques occasionally require the inclusion 
of several additional layers. Modifications to the surface of silicon are required to allow the precisely 
controlled growth of cells. Characteristics such as cell adhesion, direction and single cell isolation neces-
sitate modifications. These properties are specifically of prime importance in micro-fluidic and diagnos-
tic devices. For example, Chen et al. reviewed topography modifications to capture cancer cells17. Micro 
pillars were fabricated on the surface to enhance the interactions of cells with the underlying substrate. 
Such topographical modifications are not only expensive but also limited in their feature size. With 
respect to modifications based on chemical changes, the introduction of unknown toxins in a biological 
environment is a possibility. Consequently, there is need for a technique that negates the use of chemicals 
as well as prevents changes to the topography.

In this article, we introduce the phase functionalization of silicon, converting it from a biocompatible 
surface to a cancer controlling surface. Ultrafast laser pulses with nano to microsecond pulse to pulse 
separation time interact with silicon, modifying its surface without affecting topography. This interaction 
can be precisely manipulated to induce cell controlling zones by creating changes in surface chemistry. 
The controlling zones can direct and channel cell migration as well as promote single cell channelling 
and isolation. Further, the phase-functionalized surface can completely repel cells from its surface via 
formation of oxide as well as varied crystal structures. These unique properties are attributed to the 
modified silicon surface. Material characterization demonstrates the presence of polymorphs of silicon 
dioxides such as tridymite, coesite and stishovite. The involvement of high temperature and pressure in 
the formation of these polymorphs allows for the existence of conventionally unstable phases at ambi-
ent temperatures. Further, the high temperature and pressure also induces changes in the crystal lattice 
of silicon, resulting in the generation of different phases of silicon. In this research paper we elucidate 
the synthesis and characterization of this phase-functionalized biomaterial. Moreover, the influence of 
altered surface chemistry on the growth patterns of cancer cells is explored in-depth. Figure 1 gives an 
overview of the process as well as applications in cancer therapies.

Results and Discussion
Synthesis of phase-functionalized zones. The interaction of the ultrafast pulses (micro to nano 
pulse separation time) and silicon results in phase-functionalized zones due to phase transformations. 
These phase-functionalized zones consist of different silicon and silicon oxide polymorphs as well as 
changes to the substrate crystal lattice. When the pulses interact with the surface of silicon, energy is 
transferred to the silicon surface. Due to the ultrashort nature of the pulses, multiphoton excitation pro-
cesses occur. The electron temperature is now higher than the lattice temperature resulting in electron 
thermalization18. These electrons cool down and release phonons19. At this point the temperature of 
laser-material temperature evolves. It should be noted that the frequency of the pulses is an important 
consideration. When the required energy has accumulated, silicon converts from its solid to liquid state. 
Due to femtosecond regime of the pulses generates recoil pressure is generated20. This recoil pressures is 
in turn responsible for phase changes in the lattice of silicon.

In this research study, the peak power of the pulse is varied based on the frequency as well as duration 
of the pulses. The frequency and the width of the pulse are inversely proportional to the peak power. The 
surface temperature at silicon is calculated as21
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tp is the pulse duration, a is the thermal diffusion coefficient, k is the heat conduction coefficient, R is 
the reflection coefficient, K is the residual energy coefficient, d is the laser spot diameter and α  is a ratio 
of pulse duration to pulse interval.

Table 1 (Supplementary information) presents the temperature generated on the surface after multi-
ple femtosecond pulses interact with the surface of silicon. It is evident from the temperatures that the 
frequency of the pulses plays a more dominant role in changing phases compared to the duration of 
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pulses. However, the width of the phase-functionalized zone is determined by the duration of the pulses. 
Therefore, the frequency of pulses determines the presence or absence of the phase-functionalized zone 
and the pulse duration determines the width of the phase-functionalized zone.

It is observed that only at low frequency, a phase-functionalized zone is being generated. At mid 
frequency and high frequency, a phase-functionalized zone is not generated but the phase of the sub-
strate is changed inducing characteristics of cells which will be delineated. To summarize, a minimum 
temperature of approximately 6200 K is required to generate the phase transformed zone. In spite of 

Figure 1. Synthesis and application of programmable phase-functionalized silicon surfaces. (A) The 
SEM images of various shapes demonstrates the versatility of the ultrafast pulse laser synthesis method. (B)
The figure depicts an overall mechanism of fabrication and application of phase-functionalized silicon in 
various areas.
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the similar temperatures being generated at the surface at short, mid and long pulses, the laser-material 
interactions are different owing to varied heat dissipation mechanisms. Changes in phases are not solely 
attributed to temperatures but changes in pressure generated during laser-material interaction as well. 
During ablation, the pressure being generated is proportional to material ablation. The formation of a 
trench reflects light from the sides which in turn increases the rate of ablation22. Subsequently, magnitude 
of pressure waves being generated increases. Higher pulse durations will contribute to the formation 
of a melt layer in this trench23. This may result lesser magnitudes of pressure waves. The difference in 
pressure waves suggests the formation of different phases of silicon as well different widths of the phase 
transformed zones.

Material investigation of phase-functionalized zones. Phase-functionalized zones on silicon 
are observed using a scanning electron microscope (SEM) in conjunction with Energy-dispersive X-ray 
spectroscopy (EDX). SEM images show the presence of trenches followed by areas of phase transfor-
mation (observed by minor change in color). EDX reveals the presence of oxides on these phase trans-
formed zones. This ratio of silicon to oxygen on the phase transformed surfaces does not directly relate 
to peak power. Both the duration of the pulses as well as the frequency of the pulses have an effect on 
oxide content. With respect to frequency of pulses, a lower frequency causes greater oxide content in 
the phase transformed zones (Supplementary information Figure S1 (B, C)). As the frequency of pulses 
increases, it is evident that the oxide content at both pulse durations decreases. Moreover, oxide content 
at higher frequencies for both pulse widths are essentially the same. These results confirm the dominant 
role of frequency of pulses. The role of these oxides are further probed to study a potential correlation 
to cancer repelling properties.

To study the oxides on the phase-functionalized, micro-Raman analysis is performed (Fig. 2A). The 
peak for silicon and native oxide layer dominate the graphs due to substrate effects. There are several 
small peaks across the Raman spectrum. These peaks are indicative of silicon oxides of different crystal 
orientations. Micro-Raman spectra show presence of coesite, tridymite and stishovite24–26. Coesite and 
stishovite are high temperature phases of silicon while tridymite is a low temperature phase. Coesite and 
stishovite are not stable at ambient temperatures. They transition into other polymorphs which includes 
changes to its lattice parameters and consequently become metastable at normal conditions. A broader 
peak for tridymite might point to presence of a stable silicon polymorph compared to other oxides. Each 
of the peaks in the micro-Raman graph also differ in their width. This is indicative of the presence of 
crystalline and amorphous phases. It is observed that at shorter pulse width, the crystalline peak of sili-
con is wider, pointing to the presence of amorphous silicon. Therefore, at shorter pulse widths, high tem-
perature phases are formed. Further, shorter pulse widths also promote generation of amorphous silicon.

To quantify phase-functionalized zones, X-ray diffraction and X-ray photoelectron spectroscopy is 
performed. Figure 2 (B) illustrates XRD micrographs that confirm the presence of different crystal struc-
tures in the phase-functionalized zones namely (111), (220) and (311). Ultrafast laser interaction induces 
nucleation sites. This is followed by melting and subsequent crystallization in various orientations27. 
(111) peaks have higher intensity at long pulse compared to short pulse. This is due to highly arranged 
stacked nature of the (111) crystals at long pulses. Furthermore, the dominance of the (111) peak is due 
to its lower surface energy. It is evident that the curves show an upward trend at lower angles. These 
upward trends correspond to amorphous phases on the substrate. The minor shifts in peaks are attrib-
uted to instrument error. XPS micro-graphs illustrate the presence of different silicon and silicon oxides 
(Fig. 2C). A shift is detected in peaks around 103 eV and 99 eV. The arrangement of the bonds and the 
ring size also leads to a shift change. A small ring size due to smaller O-Si-O bond angles causes increase 
in shifts28.

Cancer cell and phase-functionalized functionalized zone interaction. The growth, prolif-
eration and adhesion characteristics of cervical cancer cells is studied on phase-functionalized zones. 
The formation of the phase-functionalized zone is adjacent to grooves irradiated by the laser. The areas 
further away from the grooves are left relatively unchanged. Further, a gradient of material change is 
observed as we move away from the irradiation zone. This change in material characteristic influences 
the growth properties of cells.

Studies are performed at two time points, 24 and 48 hours. HeLa cells cultured on the surface showed 
interesting adhesion and growth characteristics after each time period. By varying pulse-material inter-
action, the cell growth is controlled. Figure 3A illustrates growth over a 24 hour period. The HeLa cells 
at 24 hours grow randomly and the number of cells on substrates with different parameters are similar. 
On average, a change in frequency of pulses did not influence the number of cells at 24 hours. However, 
the orientation of cells varied depending on the growth area.

At high frequency of pulses, cells are observed to adhere all over the substrate, on phase-functionalized 
zones as well as bulk silicon. Cells are randomly arranged and well spread out. Towards the groove how-
ever, cells stop abruptly with the majority of cells aligning themselves along the groove. At low frequency, 
the cells are seen growing along the line, potentially adhering well due to melt zone. At mid frequency, 
the cell characteristics are in between those of low and high frequency. There is no abrupt stopping at 
grooves and cells seem to grow over grooves. At 48 hours (Fig. 3(B)), the HeLa cells showed markedly 
different growth characteristics compared to the cells at 24 hours. As evidenced in Fig. 3 the cell numbers 
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as well as cell orientation and growth properties are significantly different with respect to pulse duration 
as well as frequency of pulses.

Low frequency consistently generated wide phase-functionalized zones at all pulse durations. At mid 
frequency, the cells further away from the grooves were flattened and grew randomly. The majority of 
cells along the grooves grew oriented to the grooves. Compared to other frequencies, it is clear that 
at mid frequency cells reproduced at a higher rate. The presence of a significantly higher number of 
rounded cells are indicative of higher cell division rates29. At high frequency, the number of cells that 
orient themselves along the groove are less. Further, cells growing away from the grooves do not attach 
and spread well on the surface. While frequency determined presence or absence of phase-functionalized 
zone, the pulse durations determined the width of these phase-functionalized zones (Fig. 4).

The most interesting phenomenon is the apparent activation of the phase-functionalized zone at 
48 hours of incubation. Comparing Fig. 3(A) with Fig. 3 (B) at low frequency, it is evident that cells have 
moved away from the phase-functionalized zone. Furthermore, the cells next to the phase-functionalized 

Figure 2. (A) micro-Raman spectra of phase-functionalized phase transformed silicon at different pulse 
widths (B) XRD micro spectra and (V) XPS analysis of phase-functionalized phase transformed silicon.
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zones orient themselves along the outer areas of the phase-functionalized zone. This phenomenon could 
be attributed to the migration of cells from one area to the other owing to changes in mechanical and 
chemical characteristics of the phase-functionalized zone. Figure  5 illustrates filopodial formation and 
protrusion away from phase-functionalized zones as opposed to random growth on control silicon sur-
faces. When the ultrafast pulses interact with the silicon surface, a groove and phase-functionalized zone 
is are generated. The heat generated during interaction dissipates laterally along the surface creating a 
gradient on the surface of silicon. This results in different material properties throughout this gradient. 
Owing to this unique feature, a trend is observed with HeLa cells after 24 and 48 hours of cell seeding.

At 24 hours even though the majority of cells accumulate away from the phase-functionalized zones, 
there are certain cells that tend to grow on these zones. However, at 48 hours, a clear migration of cells 
is observed. The HeLa cells that initially attached to the phase-functionalized zones migrate away from 
these zones in both directions. The unique behaviour of cells is attributed to haptotaxis30. Haptotaxis 
is movement of cells with respect to an adhesion gradient. These phase-functionalized zones create a 
gradient of less adhesive substrates thusly enabling the haptotaxis of cells.

The cell adhesion and proliferation characteristics are further studied using fluorescence microscopy. 
The actin cytoskeleton and the nucleus of the cells are stained. Figure  6 illustrates results from fluo-
rescence microscopy after 24 and 48 hours. Fluorescence microscopy confirmed the results obtained 
from SEM. Further, it also outlined the adhesion characteristics on plain silicon (Fig. 6  (A-C)) and on 
the phase-functionalized zones (Fig. 6(D-F)). It is observed that the cells grow in a random fashion in 
no particular direction on control silicon. The focal adhesion points are also randomly observed. Focal 
adhesions are points that interact with the substrate and aid in adhesion and migration (Fig.  6(G)).
The formation of stress fibers is also observed on cells (Fig. 6 (H)). Stress fibers convert the mechanical 
signals from the substrate into cues for the cell31. The intensity and organization of stress fibers differs 
depending on the location of the cell. For instance, the cells growing away from the phase-functionalized 
zones consist of stress fibers that are not aligned in any particular direction. However, the cells growing 
close to the phase-functionalized zones have predominantly aligned stress fibers. Moreover, the growth 
of cells in areas fabricated at mid or high frequency of pulses have similarly aligned stress fibers. The 
stress fibers are aligned primarily along the direction of laser material interaction. Stress fibers in cells are 
also aligned in a direction away from the phase-functionalized zones. In all cells there is the presence of 
dorsal and ventral stress fibers. It has been observed that the dorsal stress fibers end in focal adhesions 
and this may be an indication of the leading edge of the cell. In addition to the stress fibers, the nucleus 
shape and polarization is also studied. Fluorescence images indicate that cells that grown on plain silicon 

Figure 3. Number of cells after incubation of (A) 24 hours and (B) 48 hours. Scanning electron 
microscopy as well as fluorescence microscopy images showing cell growth and repelling at each phase-
functionalization parameter.
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without any substrate modifications have a well-rounded nucleus. On the other hand, the nuclei on or 
close to the phase-functionalized zones seem elliptical and polarized. This may be due to the passive and 
active forces of the actin cytoskeleton32. Furthermore, the filopodial extensions are seen clearly protrud-
ing in a direction away from the phase-functionalized zones.

From these results, it is evident that the formation of the phase-functionalized zones induces a signif-
icant change in material properties which in turn induces changes in the cell and phase-functionalized 
zone interaction. Two important interaction characteristics will be further discussed in detail in the 
following section.

Cell Directionality (Cell polarization). Phase-functionalized zone has shown that it is capable of 
generating cell migration in specific directions. This property is due to varying cues offered by the sub-
strate in gradients. Owing to the adherent nature of the cells, it is apparent that contact guidance plays 
a vital role in the direction of migration of cells. Previous studies on directional cell migration have 
concentrated on substrates with topographical changes33. It is seen that grooves and patterned surfaces 
promoted directional growth. However, the phase-functionalized surfaces present no changes in topog-
raphy. The phase transformation of the phase-functionalized zones take place at a sub-surface level. 
Therefore, the promotion of directional cell migration is attributed to presence of varying phases of 
silicon oxides and silicon. The formation of different phases of SiO2 and Si indicates varying surface 
energy on the phase-functionalized zones. Different surface energies further induce varying levels of 
wettability. Consequently, passive interaction forces act on the cells to stimulate adhesion such as Van 
der waals forces. However, specific adhesion required for healthy growth of cells is not achieved in these 
areas. As a result, cells that grow away from this region are flatter with their cytoskeleton adhering well 
to the substrate. While cells react to external cues to such as surface energy, internal cues also dictate 
the polarization of the cell. It has been postulated that cells adopt a polarized nature to sustain free min-
imum energy in a metastable state34. It is for this reason that cells grow in a polarized fashion adjacent 
to the phase-functionalized zone. Dickinson et al. stated that while quantity of adhesion ligands dictates 
the speed of cell locomotion, its spatial arrangement results in directional cell growth35. Raeber et al. 

Figure 4. Increase in width of phase-functionalized zone with increase in duration of pulses. The SEM 
images are representative images at different pulse widths and the red arrows indicate phase-functionalized 
-transformed zones.
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Figure 5. Analysis of lamellipodial and filopodial growth on control silicon as well as phase-
functionalized phase transformed silicon . (A-C) HeLa cells cultured on control silicon (D-E) Hela 
cells cultured near phase-functionalized zones and properties of lamellipodia on such zones (G-I) HeLa 
cell elongation along phase-functionalized zone (J-K) The breaking up of lamellipodia close to phase-
functionalized zones.
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Figure 6. Fluorescence images of HeLa cells stained to reveal actin cytoskeleton and nucleus. (A-C) Cells 
growing on control silicon in a random fashion. (D) Low frequency and short pulse width after 48 hours of 
growth presenting cell repelling from phase-functionalized zones (E) Cell channeling, cells growing in the 
same direction after 48 hours, low frequency and short pulse width (F) Filopodial extensions sensing away 
from the phase-functionalized zone at high frequency and short pulse width after 24 hours of growth (G) 
Focal adhesions forming at points away from phase-functionalized zones at 48 hours, mid frequency and 
long pulse width (H) Formation of stress fibers in cells growing near phase-functionalized zones at 48 hours, 
mid frequency and long pulse width.
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investigated a similar trend with adherent fibroblasts and concluded that cells migrate parallel to the 
principle strain axis, consistent with our results36.

Cancer cell repelling due to haptotaxis. Haptotaxis is the migration of cells in response to ther-
modynamic nature of the substrate30. The interaction of ultrafast pulses in the nanosecond regime with 
silicon results in areas of phase-functionalization with varying thermodynamic states. This change in 
material properties includes the introduction of stress to this substrate. This stress is then sensed by the 
cells itself which results in the reorganization of the stress fibers, changes in focal adhesions and hence 
haptotaxis of the cells away from the phase-functionalized zones. Further, a gradient of surface energies 
is a contributing factor. Schakenraad et al. stated that higher surface energies lead to higher adhesion of 
HeLa cells37. Therefore, is it is suggested that at a 48 hour period, the cells move to areas of higher surface 
energy, i.e. away from the phase-functionalized zones. For this reason, even though cells initially attach 
close to phase-functionalized zones at 24 hours, the lamellipodium is seen moving away. Another reason 
for initial attachment of the cells to the phase-functionalized zone may be attributed to the attraction 
between a positive surface and primary amine groups which are later overridden by other contributing 
factors. A reason why the lamellipodium is seen moving away from the phase-functionalized zones may 
be due to the activation of repulsion receptors38. It is suggested that for cells to be repelled, the actin 
and microtubule dynamics are changed while simultaneously reducing adhesion between cells and the 
substrate itself.

Conclusion
Silicon is employed substantially in cancer diagnostics, yet its potential use as a cancer manipulative 
surface has not been explored. Silicon is innately a biocompatible surface and research has been focussed 
on its proliferative nature. We introduce the synthesis of phase-functionalized silicon generated through 
ultrafast laser pulse interaction. The generation of rare phases of silicon and silicon oxides and its stability 
at ambient temperatures is observed. This results in altered surface chemistry along a gradient which 
stimulates change in adhesion and migration characteristics of cancer. It is observed that the cancer cells 
aggressively seeks out areas away from the phase-functionalized zones. This is evidenced in the organiza-
tion of stress fibers, nucleus shape as well as the actin cytoskeleton. Further, high resolution SEM images 
demarcate filopodial attachment and sensing away from the phase-functionalized zones. The results from 
this research study present significant results with precise manipulation of selective cell populations. Till 
date, the phase-functionalized properties of silicon have not been examined. We present a versatile tech-
nique that does not involve any additive processes or change to the topography of silicon. These unique 
results pave the way for a new path in cancer research. Further development of phase-functionalized 
silicon will provide the impetus required to change how cancer research is currently being perceived.

Materials and Methods
Synthesis of phase-functionalized zones. Silicon wafers are modified in a single step using 
ultrafast pulses with pulse separation time between micro and nanoseconds. Undoped silicon wafers 
< 111>  with a thickness of 500 μ m (University Wafers, USA) are cut into 2*2 cm samples. Samples are 
washed with de-ionized (DI) water and ethanol and rinsed in DI water again. Consequently they are 
air dried. These samples are then irradiated using a diode pumped, Yb-doped femtosecond laser system 
(Clark-MXR Inc. IM-PULSE Series Ultrashort Pulse laser) at 4 (low frequency), 8 (mid-frequency) and 
26 MHz (high frequency). The wavelength of the laser is 1040 nm. The laser irradiates the samples in an 
array of lines at distances between 100 μ m to 2 mm. Further, different shapes to simulate tissue engineer-
ing and diagnostic device environments are synthesized. The speed at which the laser irradiates and the 
power of the laser is maintained at 10 mm/s and 15 W respectively. The laser pulse width or peak power 
plays an important role and is varied between 214 fs (short pulse), 714 fs (mid pulse) and 1428 fs (long 
pulse) corresponding to 8.76 MW, 2 MW and 1.31 MW respectively. All the parameters are controlled 
by a computer to facilitate precision and accuracy. In this paper, 4 MHz, 8 MHz and 26 MHz will be 
denoted as low, mid and high frequency respectively. With respect to pulse width/duration, 214 fs, 714 fs 
and 1428 fs will be denoted as short, mid and long pulse respectively. All samples after fabrication are 
ultrasonicated to remove any potential debris before cell culture is performed.

Understanding the phase-functionalized zones. Scanning electron microscopy (SEM) (Hitachi 
S 5200) is performed to characterize the morphology of the phase-functionalized silicon surfaces. The 
samples are loaded onto aluminum stands and gold coated for SEM. Following SEM, Energy-dispersive 
X-ray spectroscopy (EDX) is carried out to determine the elemental composition of irradiated silicon. 
Micro-raman spectroscopy as well as X-Ray photon spectroscopy (Thermo scientific K-alpha) is used 
further to study surface composition quantitatively and qualitatively. X-ray diffraction (Siemens D5000 
conventional theta/2theta diffractometer) is used as a secondary tool to confirm elemental composition.

Cancer and phase-functionalized zone interaction. Cervical cancer cells (HeLa, ATCC, USA) are 
employed to qualitatively and quantitatively study cancer controllability. The cells are grown in DMEM/
F12 medium supplemented with 10%fetal bovine serum and 1% pen-strep. The phase-functionalized 
surfaces are washed with alcohol and DI water and kept under UV light for 20 minutes. Subsequently, 
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the substrates are placed in petri dishes and HeLa cells are seeded at a density of 105 cells/ml, totalling 
3 ml volume per dish. The petri dishes are placed in an incubator for 24 and 48 hours.

For SEM imaging, after the incubation period the samples are fixed in 2% glutaraldehyde in 0.1 M 
sodium cacodylate buffer pH 7.3 for an hour. Next, the samples are immersed in 0.1 M sodium cacodylate 
buffer with 0.2 M sucrose at pH 7.3 for 20 minutes. Dehydration in increasing concentrations of alcohol 
for 20 minutes each is followed. The samples are then critical point dried. All imaging was conducted at 
5 kV and magnification was varied between 100 and 10,000 times.

For fluorescence microscopy the samples are first fixed in methanol free paraformaldehyde followed 
by incubation with milk to prevent non-specific binding. To stain the actin cytoskeleton, the samples 
are incubated with Alexa fluor 488(Life Technologies) followed by DAPI (Life Technologies) to stain the 
nucleus. The samples are studied using a fluorescence microscope (Nikon).

Statistics. All experiments are carried out in triplicates and the data points are averages unless oth-
erwise mentioned. The error bars indicate standard deviations.

References
1. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).
2. Dudley, M. E. & Rosenberg, S. A. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat. Rev. Cancer 3, 

666–675 (2003).
3. CTSU, R. I. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an 

overview of the randomised trials. Lancet 365, 1687–1717 (2005).
4. Gerber, D. E. Targeted therapies: a new generation of cancer treatments. Am. Fam. Physician 77, 311–319 (2008).
5. Brown, S. B., Brown, E. A. & Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 

5, 497–508 (2004).
6. Xu, Y. et al. Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal. Chem. 81, 

7436–7442 (2009).
7. Saliba, A.-E. et al. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc. Natl. Acad. 

Sci. 107, 14524–14529 (2010).
8. Purushotham, S. & Ramanujan, R. V. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta 

Biomater. 6, 502–510 (2010).
9. Singh, N., Jenkins, G. J., Asadi, R. & Doak, S. H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano 

Rev. 1, DOI: 10.3402/nano.v1i0.5358 (2010).
10. Lee, N. & Hyeon, T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging 

contrast agents. Chem. Soc. Rev. 41, 2575–2589 (2012).
11. Bae, K. H., Lee, K., Kim, C. & Park, T. G. Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA 

delivery and magnetic resonance imaging. Biomaterials 32, 176–184 (2011).
12. Serda R. E., Meraz I. M., Gu J., Xia X., Shen H., Sun T., & Ferrari M; The Methodist Hospital and Research Institute , assignee. 

Mesoporous silicon particles for the presentation of tumor antigens and adjuvant for anti-cancer immunity. United States patent 
US 20130195963 A1. 2013 August 01.

13. Peng, F. et al. Silicon-Nanowire-Based Nanocarriers with Ultrahigh Drug-Loading Capacity for In Vitro and In Vivo Cancer 
Therapy. Angew. Chem. Int. Ed. 52, 1457–1461 (2013).

14. Su, Y. et al. Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells 
destruction. Nano Lett. 12, 1845–1850 (2012).

15. Xiao, L., Gu, L., Howell, S. B. & Sailor, M. J. Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity 
against cancer cells. ACS Nano 5, 3651–3659 (2011).

16. Craighead, H. G., James, C. D. & Turner, A. M. P. Chemical and topographical patterning for directed cell attachment. Curr. 
Opin. Solid State Mater. Sci. 5, 177–184 (2001).

17. Chen, J., Li, J. & Sun, Y. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab. Chip 12, 
1753–1767 (2012).

18. Von der Linde, D., Sokolowski-Tinten, K. & Bialkowski, J. Laser–solid interaction in the femtosecond time regime. Appl. Surf. 
Sci. 109, 1–10 (1997).

19. Goldman, J. R. & Prybyla, J. A. Ultrafast dynamics of laser-excited electron distributions in silicon. Phys. Rev. Lett. 72, 1364–1367 
(1994).

20. Bonse, J., Brzezinka, K.-W. & Meixner, A. J. Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro 
Raman spectroscopy, scanning laser microscopy and atomic force microscopy. Appl. Surf. Sci. 221, 215–230 (2004).

21. Kiani, A., Venkatakrishnan, K. & Tan, B. Direct laser writing of amorphous silicon on Si-substrate induced by high repetition 
femtosecond pulses. J. Appl. Phys. 108, 074907–074907 (2010).

22. Smith, M. J. et al. The origins of pressure-induced phase transformations during the surface texturing of silicon using femtosecond 
laser irradiation. J. Appl. Phys. 112, 083518–083518 (2012).

23. Chichkov, B. N., Momma, C., Nolte, S., Von Alvensleben, F. & Tünnermann, A. Femtosecond, picosecond and nanosecond laser 
ablation of solids. Appl. Phys. A 63, 109–115 (1996).

24. Hemley, R. J., Mao, H.-K. & Chao, E. C. T. Raman spectrum of natural and synthetic stishovite. Phys. Chem. Miner. 13, 285–290 
(1986).

25. Glass, B. P. & Fries, M. Micro-Raman spectroscopic study of fine-grained, shock-metamorphosed rock fragments from the 
Australasian microtektite layer. Meteorit. Planet. Sci. 43, 1487–1496 (2008).

26. Hirose, T., Kihara, K., Okuno, M., Fujinami, S. & Shinoda, K. X-ray, DTA and Raman studies of monoclinic tridymite and its 
higher temperature orthorhombic modification with varying temperature. J. Mineral. Petrol. Sci. 100, 55–69 (2005).

27. Nayak, B. K. & Gupta, M. C. Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping 
microstructures in thin a-Si: H films. Appl. Phys. A 89, 663–666 (2007).

28. Soh, M. T., Thomas, J. H. & Talghader, J. J. Thermally induced structural changes in nanoporous silicon dioxide from x-ray 
photoelectron spectroscopy. J. Vac. Sci. Technol. Vac. Surf. Films 24, 2147–2150 (2006).

29. Théry, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7, 947–953 (2005).
30. Carter, S. B. Haptotaxis and the mechanism of cell motility. Nature 213, 256–260 (1967).
31. Tojkander, S., Gateva, G. & Lappalainen, P. Actin stress fibers–assembly, dynamics and biological roles. J. Cell Sci. 125, 1855–1864 

(2012).



www.nature.com/scientificreports/

1 2Scientific RepoRts | 5:10826 | DOi: 10.1038/srep10826

32. Dalby, M. J., Riehle, M. O., Yarwood, S. J., Wilkinson, C. D. & Curtis, A. S. Nucleus alignment and cell signaling in fibroblasts: 
response to a micro-grooved topography. Exp. Cell Res. 284, 272–280 (2003).

33. Tang, Q. Y. et al. Influence of engineered surface on cell directionality and motility. Biofabrication 6, DOI: doi: 10.1088/1758-
5082/6/1/015011 (2014).

34. Zhong, Y., He, S., Dong, C., Ji, B. & Hu, G. Cell polarization energy and its implications for cell migration. Comptes Rendus 
Mecanique 5, 334–346 (2014).

35. Dickinson, R. B. & Tranquillo, R. T. A stochastic model for adhesion-mediated cell random motility and haptotaxis. J. Math. Biol. 
31, 563–600 (1993).

36. Raeber, G. P., Lutolf, M. P. & Hubbell, J. A. Part II: Fibroblasts preferentially migrate in the direction of principal strain. Biomech. 
Model. Mechanobiol. 7, 215–225 (2008).

37. Schakenraad, J. M., Busscher, H. J., Wildevuur, C. R. & Arends, J. Thermodynamic aspects of cell spreading on solid substrata. 
Cell Biophys. 13, 75–91 (1988).

38. Halloran, M. C. & Wolman, M. A. Repulsion or adhesion: receptors make the call. Curr. Opin. Cell Biol. 18, 533–540 (2006).

Acknowledgements
The authors appreciate Prasath Mahendrarajah’s help in imaging. The authors would also like to thank 
Dhruv Patel for aiding in generation of illustrations.

Author Contributions
P.P., K.V. and B.T. conceived and designed the project. P.P. performed the experiments and wrote the 
manuscript. K.V. and B.T. assisted in discussions and editing the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Premnath, P. et al. Programming cancer through phase-functionalized silicon 
based biomaterials. Sci. Rep. 5, 10826; doi: 10.1038/srep10826 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Programming cancer through phase-functionalized silicon based biomaterials
	Results and Discussion
	Synthesis of phase-functionalized zones. 
	Material investigation of phase-functionalized zones. 
	Cancer cell and phase-functionalized functionalized zone interaction. 
	Cell Directionality (Cell polarization). 
	Cancer cell repelling due to haptotaxis. 

	Conclusion
	Materials and Methods
	Synthesis of phase-functionalized zones. 
	Understanding the phase-functionalized zones. 
	Cancer and phase-functionalized zone interaction. 
	Statistics. 

	Acknowledgements
	Author Contributions
	Figure 1.  Synthesis and application of programmable phase-functionalized silicon surfaces.
	Figure 2.  (A) micro-Raman spectra of phase-functionalized phase transformed silicon at different pulse widths (B) XRD micro spectra and (V) XPS analysis of phase-functionalized phase transformed silicon.
	Figure 3.  Number of cells after incubation of (A) 24 hours and (B) 48 hours.
	Figure 4.  Increase in width of phase-functionalized zone with increase in duration of pulses.
	Figure 5.  Analysis of lamellipodial and filopodial growth on control silicon as well as phase-functionalized phase transformed silicon .
	Figure 6.  Fluorescence images of HeLa cells stained to reveal actin cytoskeleton and nucleus.



 
    
       
          application/pdf
          
             
                Programming cancer through phase-functionalized silicon based biomaterials
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10826
            
         
          
             
                Priyatha Premnath
                Krishnan Venkatakrishnan
                Bo Tan
            
         
          doi:10.1038/srep10826
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep10826
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep10826
            
         
      
       
          
          
          
             
                doi:10.1038/srep10826
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10826
            
         
          
          
      
       
       
          True
      
   




