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A conventional 3rd generation Computed Tomography (CT) system with a single circular source trajectory is limited in terms
of longitudinal scan coverage since extending the scan coverage beyond 40 mm results in significant cone-beam artifacts. A
multiaxial CT acquisition is achieved by combining multiple sequential 3rd generation axial scans or by performing a single
axial multisource CT scan with multiple longitudinally offset sources. Data from multiple axial scans or multiple sources provide
complementary information. For full-scan acquisitions, we present a window-based 3D analytic cone-beam reconstruction
algorithm by tessellating data from neighboring axial datasets. We also show that multi-axial CT acquisition can extend the axial
scan coverage while minimizing cone-beam artifacts. For half-scan acquisitions, one cannot take advantage of conjugate rays. We
propose a cone-angle dependent weighting approach to combine multi-axial half-scan data. We compute the relative contribution
from each axial dataset to each voxel based on the X-ray beam collimation, the respective cone-angles, and the spacing between
the axial scans. We present numerical experiments to demonstrate that the proposed techniques successfully reduce cone-beam
artifacts at very large volumetric coverage.
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1. Introduction

Since 1990, multislice or multidetector-row computed
tomography (CT) systems have become the standard CT
architecture for premium medical scanners: the detector has
multiple rows, that is, a 2-dimensional array of detector cells,
yielding a cone-beam geometry. Since CT systems with this
geometry do not generate the rays to be perpendicular to the
rotational axis, 2D image reconstruction algorithms result
in reconstructions that suffer from cone-beam artifacts. For
axial scan mode where the table does not move during
gantry rotation, Feldkamp, Davis, and Kress proposed a
3D cone-beam reconstruction algorithm (FDK) that is an
adaptation of the 2D fan-beam filtered backprojection (FBP)
to a cone-beam geometry [1]. The Feldkamp algorithm
works well near the mid-plane and near the center of the
rotation, but artifacts occur and get worse as coverage
increases. The data are fundamentally incomplete in 3D
axial scans with limited detector size. Therefore, with the
presence of perturbation, the reconstruction of outer slices

will always suffer from cone-beam artifacts, regardless of the
reconstruction approach [2].

In helical cone-beam scans, the data are fundamentally
complete, provided that the helical pitch is not too high.
Therefore, exact reconstruction can be achieved [3–5].
Katsevitch was the first to propose an exact 3D filtered back-
projection algorithm for helical cone-beam reconstruction,
which consists of filtering along special lines on the detector
followed by backprojection [3]. The FDK algorithm has also
been adapted for helical scan modes, resulting in nonexact or
approximate reconstruction [6, 7].

Other interesting reconstruction problems have been
posed by the demand for dynamic object imaging, such as
cardiac CT. Theoretically, a 2D object can be reconstructed
accurately if all its line integrals are measured at least once.
This condition leads to the notion of half-scan or short-
scan, which means that the scan interval per acquisition
is only 180◦ plus the fan angle. Various weighted FDK-
types of algorithms are available for half-scan case [8, 9].
Furthermore, acquisitions with an even shorter scan interval,
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so-called super short scan, have gained popularity since the
dynamic organs can be restricted to a limited region of
interest (ROI) in some clinical applications. A smaller ROI
can be exactly reconstructed with a shorter scan interval [10].

In axial scan mode, conventional 3rd generation CT
systems suffer from increased cone-beam artifacts with
increasing coverage, due to incomplete data and suboptimal
processing of the available data. The efforts to increase
axial scan coverage without sacrificing image quality led
to the weight-based cone-beam reconstruction algorithms
for single circular trajectory acquisitions [11, 12] as well
as sequential scanning algorithms to combine multiple
axial acquisitions sequentially taken by a conventional 3rd
generation CT system [13, 14]. With multiple axial acquisi-
tions, either sequentially acquired with a conventional 3rd-
generation CT system or simultaneously acquired with a
multisource CT system with multiple longitudinally offset
sources [15], a more complete dataset can be acquired,
resulting in reduced cone-beam artifacts and increased scan
coverage. The longitudinal truncation problem from a single
axial CT acquisition can be solved by the additional axial
acquisition with offset, providing conjugate rays which are
not available for the single CT acquisition. In other words,
the tear drop shape of Radon frequency is missing in a
single axial CT acquisition due to the wide cone angle and
longitudinal truncation. Data from additional offset axial
scans will provide some of missing Radon frequency and
further reduce cone-beam artifact. To exploit this additional
information, novel 3D cone-beam reconstruction algorithms
are proposed and are discussed in detail in this paper.

In Section 2, the possible system architectures for multi-
axial acquisition CT are described. In Sections 3 and
4, we describe geometries and algorithms for multi-axial
acquisitions for full-scan and half-scan mode, respectively.
In Section 5, we present experimental results comparing the
proposed multi-axial acquisition and reconstruction to con-
ventional 3rd generation CT acquisition and reconstruction.
Section 6 summarizes the main conclusion.

2. Multiaxial CT Acquisitions

In this section, we briefly discuss three possible multi-
axial CT acquisition system architecture concepts and the
corresponding full-scan and half-scan acquisition and recon-
struction modes.

2.1. Multiaxial Acquisition System Architectures. First, the
simplest way to acquire multi-axial data without modifying
any system hardware is to take a series of axial scans
sequentially (Figure 1(a)). After a first axial scan, the table
is moved to the next desired position, where a second scan is
performed with some overlap with the previously scanned
region. The table displacement is equal to or smaller than
the single axial scans coverage at the isocenter to prevent
gaps between consecutive scans. Since each axial scan is
acquired at a different time frame, one challenge is to
seamlessly combine those datasets and avoid any artifacts
due to temporal misregistration, particularly in dynamic
applications.

(a) (b)

Detector

Source

Field-of-view

(c)

Figure 1: Multi-axial acquisition system concepts: (a) multiple
sequential axial scans taken by single source 3rd generation system,
(b) a system with multiple sources distributed longitudinally, and
(c) a multisource inverse geometry source (MS-IGCT) with 2 by 10
area source. Each subsinogram can be rebinned to conventional 3rd
generation sinogram.

Second, a multi-source system with longitudinally dis-
tributed sources or a line-source CT is another way to
acquire multiple axial data. Two or more focal spots are
distributed along the z-axis and are alternatively emitting X-
ray. There is no spatiotemporal misregistration between the
two (or more) axial datasets, which is preferable for dynamic
applications (Figure 1(b)).

Third, a multi-source inverse geometry CT (MS-IGCT)
consists of a number of focal spots distributed in x (trans-
axially), each emitting a relatively narrow X-ray beam
through a small portion of the field-of-view, shown in
Figure 1(c). After a full 360◦ rotation, the equivalent of a full
3rd generation dataset is acquired after rebinning. The nature
of the distributed source also makes it easy to use multiple
series of focal spots distributed longitudinally, which offers
another way to perform a multi-axial acquisition and
therefore provide increased volumetric coverage and reduced
cone-beam artifacts [15]. After xy rebinning, a multi-source
IGCT dataset can be treated as a line-source CT acquisition
[16].
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Figure 2: Multi-axial acquisition geometries with 3 longitudinal
acquisitions (source positions marked as red dots): (a) fully opened
collimation, (b) full-scan mode with semi-closed collimation
(central source is shown in opposite side.), and (c) half-scan mode
with fully opened collimation.

In this paper, we present analytic cone-beam reconstruc-
tion algorithms for multi-axial acquisitions. While we focus
on the line source CT case, the methods and results translate
directly to any other type of multi-axial acquisition.

2.2. Scan and Reconstruction Mode. The multi-axial acqui-
sition architectures described in the previous section has
two scan and reconstruction modes to meet various clinical
needs: (1) a full-scan mode, for which we will propose a
window-based reconstruction and (2) a half-scan mode, for
which we will propose a cone-angle-dependent weighting
reconstruction. Figure 2 shows the transaxial geometry for
these two scan modes. Note that the longitudinal coverage of
the architecture in Figure 2 is equal to the detector height.

The most straightforward way to combine data from
multi-axial acquisitions is to reconstruct the volumes cor-
responding to each single axial acquisition separately and
computing a weighted combination of the reconstructed
slices from the different axial datasets. In practice, most of
slices will be substituted with the slices reconstructed from
the single axial dataset at same z-location (binary weights),
but there will be some feathering in the weights to gradually
make a transition from one axial reconstruction to the
next. This configuration requires a relatively large detector
illumination to ensure overlap between the consecutive
reconstructed volumes Figure 2(a), and it leads to nonuni-
form dose and noise profiles in each coronal and sagittal
slice, described in more detail later. In Section 3, we present
an improved, window-based reconstruction algorithm for
multi-axial full-scan acquisitions.

In half-scan mode, conjugate rays are in general not
available. However, just like for full-scan, the desired volume
can be reconstructed by taking a weighted combination
of the reconstructions from each axial dataset. Again, a
sufficiently large detector illumination is required to avoid
any gap in the volumetric coverage, as shown in Figure 2(c).
In Section 4, we present an improved cone-angle-based
weighting approach for multi-axial half-scan reconstruction.

2.3. Dose Efficiency. The multi-axial CT architecture intro-
duces additional X-ray sources or scans, and the concerns
on additional X-ray dosage should be addressed. Instead
of discussing absolute X-ray dose which can be traded off

with the image quality, we would like to focus on the dose-
efficiency to utilize the best out of the given X-ray dosage. To
achieve the maximum dose efficiency, first every X-ray from
the tube should be detected. The multi-axial CT architectures
described in previous section with big enough detector will
certainly meet this criterion.

Second, every detected projection should be used in
the image reconstruction process. In other words, we can
achieve the maximum dose efficiency by only acquiring
the projection data needed in the reconstruction process.
The detector utilization of the multi-axial CT acquisitions
and reconstruction algorithms are shown in Figure 3. For
multi-axial scan/line-source CT, shown in Figure 3(a), the
data from whole detector are acquired. Note that if TOM
windowing is the choice of the reconstruction, the detector
utilization is not good since the area in yellow area get thrown
away. For line-source CT with curved collimator, shown
in Figure 3(b), TOM windowing approach can achieve the
maximum dose efficiency by only acquiring the projection
data needed. For multi-source inverse geometry CT, shown
in Figure 3(c), subsinograms from transaxially distributed
sources are well matched with the area needed for the TOM
windowing reconstruction approach, and therefore TOM
windowing approach can achieve the maximum detector
utilization.

Finally, a uniform flux profile should be achieved along
the reconstruction volume to maximize dose efficiency
since the nonuniform flux/noise profile degrades the dose-
efficiency. The flux uniformity of the various CT architec-
tures and associated reconstruction approaches are shown
in Figure 4. For line-source CT with FDK slice substitution
approach, shown in Figure 4(b), the region marked in pink
get twice more X-ray flux than the region marked in blue.
This flux nonuniformity can be mitigated by using TOM
windowing approach instead, shown in Figure 4(c).

3. Window-Based Cone-Beam Reconstruction
for Full-Scan Mode

In helical reconstruction algorithms, a so-called Tam-
window is used, named after one of the inventors, Kwok
Tam [17], and defined as the projection of the helical
source trajectory on the detector. Only the portion of the
physical detector confined by the Tam-boundaries is used to
reconstruct the desired volume. We extend this concept to
multiple circle acquisitions that are offset in the z-direction.
We project the circular source trajectories on the detector
and for convenience label this the Trajectory Opposite
Mapping window (TOM). A similar idea was explored in
[13] to determine the optimal distance between sequentially
acquired datasets and to reconstruct those datasets. Unlike
[13], the approach presented here does not include rebinning
to a rectangular virtual detector but is based on explicit
windowing during backprojection. The windowing concept
is based on the idea that we can patch rays from one
source with conjugate rays from a longitudinally adjacent
source after about half a rotation (180◦ ), in order to jointly
cover the object completely. The TOM window is chosen



4 International Journal of Biomedical Imaging

Used in FDK

Used in FDK and TOM
windowing 

(a) (b) (c)

Figure 3: The detector utilization of the FDK-based and TOM windowing reconstruction approaches. The area closed by red lines represents
the actual acquired area of the detector for (a) multi-axial scan/line source CT, (b) line source CT curved collimator, and (c) multi-source
inverse geometry CT. The area in blue represents the data required to reconstruct volume using TOM windowing approach. Note that TOM
windowing has an advantage over FDK in detector utilization if data is acquired by the line-source CT with the collimator or the multi-source
inverse geometry CT.
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Figure 4: The flux uniformity of the various CT architectures and
associated reconstruction approaches: (a) 3rd generation CT with
FDK reconstruction, (b) line source CT with FDK slice substitution
approach, (c) line source CT with TOM windowing reconstruction,
and (d) multi-source inverse geometry CT with TOM windowing
approach. The areas with different flux level are shown in different
colors.

such that there is no overlap between two longitudinally
adjacent sources where one is apart from the other by 180◦ as
illustrated in Figure 2(b). This leads to a tessellation during
backprojection that is similar to the one achieved with Tam-
windowing for helical acquisitions but in vertical planes.

One way to use the tessellation property is to syn-
thesize plane integrals. First the Radon transform of the
projections is computed, and the derivatives are taken to
apply Grangeat’s theorem. Tam’s tessellation approach is
then used to patch the triangular regions. Addition of a
boundary term is required for more accurate (but still
nonexact) reconstruction. Finally the desired volume can
be reconstructed by taking a 3D inverse Radon transform.
Note that not all plane integrals can be computed due to the

nature of the multi-axial architecture, but missing integrals
can be estimated by interpolation. A second way to apply
the tessellation approach is using filtered backprojection,
which is our preferred approach. We apply an existing filtered
backprojection technique, such as FDK, and we combine
it with a TOM-windowed backprojection. Geometrically,
the cones from complimentary sources can match perfectly
with each other so that data between the TOM window
boundaries jointly cover the entire volume. This means that
rays from adjacent sources should intersect each other at the
isocenter, as shown in Figure 2(b). This collimation gives us
several benefits: all sources have the same worst-case cone-
angle, the X-ray flux is uniform throughout the patient, and
correspondingly the image noise is relatively uniform. We
now assume 3 source spots distributed along the z-axis for
simplicity, but the same principle can be applied to the case
with two or more than 3 source spots. For the center source
spot, two axial trajectories from top and bottom source
can be projected onto the physical detector. These projected
points will form TOM-boundaries which bound the top and
bottom of the detector. We have 2 areas to be considered.
The first area, (a), in Figure 5, includes the regions above and
below the TOM-boundary. The second area, (b), is the region
between the two TOM-boundaries. When reconstructing a
voxel (or any point in the image volume) whose projection
onto the detector is in region (a), we discard that particular
view (i.e., we do not apply the backprojection of that view
to that voxel), because data from the top source will be used
there instead (and presumably also provide better or more
complete information for that particular angle).

The windowing can be achieved by applying a binary
mask to the filtered projection data, but this approach suffers
from quantization artifacts. A better way to implement the
TOM window is to make a decision during the backprojec-
tion of each voxel for each view, by determining whether or
not the voxel analytically projects inside the TOM window.
This implementation has less quantization error but higher
computational complexity. Figure 6 illustrates how some
views contribute to a voxel and others do not in a window-
based backprojection.

The detector region surrounded by the TOM boundaries
for a given source is selected by a weight function w(γ̂, α̂).
The weight function w(γ̂, α̂) ensures that only the set of vox-
els projected onto the detector between the TOM boundaries
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Figure 5: Efficient TOM windowing: during the backprojection of
each voxel and each view, it is decided if the projection of that voxel
falls inside the TOM window and if not, the contribution from that
view is discarded. 3 longitudinal sources are marked as A, B, and C.

Source B trajectory

Source A trajectory

x

Figure 6: View contributions from sourceA and source B to a given
reconstruction point x.

are getting a nonzero contribution during backprojection.
Therefore

w
(

γ̂, α̂
) =

⎧

⎨

⎩

1, γbottom(α̂, i) ≤ γ̂ ≤ γtop(α̂, i),

0, otherwise,
(1)

where γbottom(α̂, i) is the bottom boundary of the TOM
window, which corresponds to the projection of the (i −
1)th source trajectory, and γtop(α̂, i) is the top of the TOM
window, which corresponds to the projection of the (i+ 1)th
source trajectory on the physical detector. Depending on the
geometry of multiple longitudinal sources, these boundaries
can be computed up front or during backprojection. If the
source-to-isodistances (SIDs) for all sources are identical, the
corresponding boundaries are

γbottom(α̂, i) = zs(i)− dsource · SDD
2 cos α̂ · SID

, (2)

γtop(α̂, i) = zs(i) +
dsource · SDD
2 cos α̂ · SID

, (3)

where SDD means source-to-detector distance, dsource is
denoted as the longitudinal spacing between 2 adjacent
sources, and zs(i) is the longitudinal coordinate of the ith
source.

As described above, TOM windowing is implemented
during the backprojection step for each longitudinally

located source. The backprojected volume associated with
a given source will be partial, and the reconstruction step
will be completed with the summation of all partial volumes.
Thus, the final reconstruction is given by

̂f (x) =
N
∑

i=1

̂fi(x), (4)

where N is the total number of longitudinally offset sources,

and ̂fi(x) is the partial reconstruction volume associated with
the ith longitudinally located source.

The FDK algorithm employs a ramp filter in its filtering
step. This works well for a full axial scan because the
boundary terms incurred by the difference between a fan-
beam geometry and a parallel-beam geometry are canceled
out by backprojecting over a full rotation [18]. However,
when disjoint source path segments are combined through
TOM windowing, the use of a ramp filter is no longer valid;
that is, the boundary terms are not canceled out. These
undesired terms can be avoided by replacing a ramp filter
with the combination of a parallel derivative, also called a
view dependent derivative, and a Hilbert transform. Parallel
derivatives are computed by combining the derivative along a
detector column with the derivative in the source coordinate.
The Hilbert transform is applied to the derivative data [3].
Therefore ith partial reconstruction volume is given by

̂fi(x) = 1
2π

∫

Λ

w
(

γ̂, α̂
)

∣

∣x − a(λ, i)
∣

∣

· d
ds

[b(s, i, θ)]
∣

∣

s=λ ∗ h(sinα)dλ

b(λ, i, θ) = p
(

λ,α, γ, i
)

,
(5)

where h(sinα) is the Hilbert kernel in spatial domain, and
θ is a unit vector pointing from a source location a(λ) to the
reconstructed voxel x, representing the detector fan angle and
cone angle for a given voxel x, source i, and source location
a(λ, i). Equation (5) can be seen as a special approximate case
of Kasevich’s general formula where filtering step is reduced
to 1D convolution along the detector rows [3].

The view derivative can be computed at interlaced
sampling locations, as described for a helical trajectory in
[4, 19], by noting that an axial scan is simply a helical scan
with the helical pitch set to zero. The Hilbert transform can
be applied with a half pixel shift in the detector column
direction also described in [4]. This is done by convolving
the differentiated sinogram with the kernel of the Hilbert
transform and assigning the result to sample positions
that are offset by one half of a pixel along the column
direction. This approach makes it possible to use the TOM
windowing approach without introducing artifacts as a result
of the discontinuous view weights with ramp-filter-based
approaches.

Since only a finite number of discrete view samples
will be taken during real scanning, the binary windowing
operation can introduce artifacts, which are also discussed in
[4]. To see this, consider the reconstruction point x, shown
in Figure 7. The pi-line corresponding to a given point x is
shown in solid line, and the corresponding pi-segment is
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Figure 7: Discrete view sampling: true pi-line, (a) in solid line and
approximated pi-line, (b) in dashed line, due to the discrete view
sampling. Note that pi-segment associated with (b) is now smaller.

shown in solid line with bidirectional arrow. The end points
of the pi-line are closer to the pair of source samples just
outside the pi-segment (i.e., (i − 1) and ( j + 1)) than they
are to the pair just inside the pi-segment (i.e., (i) and ( j)).
However, application of discrete TOM windowing rejects the
view samples at (i−1) and ( j+1) completely. This effectively
approximates the pi-line as being the dashed line in Figure 7,
and the corresponding pi-segment is shown in a dashed line
with bidirectional arrow.

This problem can be mitigated by an additional linear
smoothing step. Instead of taking binary weights near the
TOM boundaries, partial weights are determined by how
close projected voxels are to the boundary. One could define
a fixed width region along the TOM boundary, and whenever
voxels are projected into that region, they will receive a partial
back-projection contribution instead of a full contribution.
However this approach will not result in desired smoothing
effect because the weight at a certain source position and the
weight at the corresponding conjugate source position might
not add up to one. Instead, we define a fixed longitudinal
interval around each voxel and project (the endpoints of) this
interval onto the detector. This way the conjugate weights
contributing to a given voxel will add up to one.

The TOM windowing approach described above com-
bines contributions from adjacent source positions. How-
ever, it can be extended to combine contributions from
source positions that are not immediately adjacent.

4. Cone-Angle-Weighted Cone-Beam
Reconstruction for Half-Scan Mode

In half-scan mode, triangular patching of conjugate data
from longitudinally offset axial scans is no longer possible.
Combining data from multiple longitudinally offset axial
scans becomes challenging because the reconstruction vol-
ume is now divided into several regions: regions with no
illumination and regions illuminated once, twice, or three
times, which means that complementary information is
not always available. Various weighting approaches utilizing
complementary information have been proposed by intro-
ducing the scale factors representing how much information
each projection contributes to a given voxel [12].

FOV

(b): 0

(a): 1

z(i)th source

(i + 1)th source

(d): w (r, z)1 (c): w  (z)2

Figure 8: Multi-source half-scan regions at a given fan angle: (a)
a region illuminated by only (i)th source, (b) a region illuminated
by only (i + 1)th source, (c) a region illuminated by both (i)th and
(i + 1)th sources, and (d) a region without illumination.

We propose a new approach where the weights are
computed based on the cone-angle on a voxel and per view
basis. Figure 8 shows two sources and their corresponding
X-ray beams. For a given fan angle α(λ, x), a reconstructed
voxel is denoted as x(r, z), where r is defined as the distance
from a given source to a given voxel in the xy-plane, and z is
the longitudinal coordinate of a given voxel. A voxel belongs
to one of 4 regions in Figure 8, (a) a region illuminated by
only the (i)th source, (b) a region illuminated by only the
(i+1)th source, (c) a region illuminated by both the (i)th and
the (i + 1)th source, and (d) a region without illumination.
The basic idea of the cone-angle dependent weighting is
that, for a given view angle, each voxel in the reconstructed
volume can select one longitudinal source to be back-
projected (binary weighting), as in regions (a) and (b) in
Figure 8 or choose multiple longitudinally offset sources
with complementary (nonbinary) weights that depend on
the cone-angle associated with each source location, like in
region (c) in Figure 8.

The actual implementation of the cone-angle dependent
weighting approach is a bit more complicated, first because
some voxels will not be illuminated from any source at all,
as in region (d) in Figure 8, and second because sudden
transitions from one source to the other will result in a
discontinuity in the weights, which may introduce artifacts.

To minimize discontinuities along different regions of
reconstructed volume and still achieve cone-angle dependent
weighting to effectively combine multi-axial acquisition
data, feathering is required for smooth transition. The
weight wcw(r, z, i) associated with voxel x(r, z) and the (i)th
longitudinal source will be determined by the cone-angle of
that voxel and satisfies

N
∑

i=1

wcw(r, z, i) =
N
∑

i=1

wcw(x(r, z), i) = 1, (6)

where N is the total number of longitudinally offset sources.
The final reconstructed volume will be

̂f (x) =
N
∑

i=1

̂fi(x), (7)
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where

̂fi(x) = 1
2π

∫

Λh

wcw(r, z, i) •wh(λ ,α)
∣

∣x − α(λ , i)
∣

∣
2 · p(λ,α, γ, i

)

∗ q(sin γ
)

dλ,

(8)

and wh(λ,α) is a half-scan view weighting factor, such
as Parker weighting [20]. The weight wcw(r, z, i) should
be continuous even though x(r, z) travels through the
different regions shown in Figure 8. For example, the weight
wcw(r, z, i) in region (a) should be 1 because only the (i)th
source illuminates region (a). However, the weight in region
(b) should be 0 because only the (i + 1)th source illuminates
region (b). As a result, the weight changes abruptly at the
boundary between region (a) and (b), and this discontinuity
in weight will result in image artifacts. Therefore, we should
force the continuity of the weights, wcw(r, z, i) spatially,
either longitudinally or trans-axially (plane-wise). It turns
out that the reconstruction is more sensitive to transaxial
discontinuities in the weights.

Each region in Figure 8 can be assigned with weights
depending on the data availability. In region (a), only
illuminated by a given source, the weight is one. In region
(b), not illuminated by that same source, the weight is zero.
In region (c), illuminated by that same source and by other
source, the weight is determined based on the respective
cone-angles at which those two sources illuminate any given
voxel. In region (c), close to the center plane of the (i)th
source the weight approaches to one, and close to the edge of
detector the weight approaches to zero. Region (d), where no
illumination comes from any source, is a special case because
no direct measurements are available. While we focus on
computing weights by considering contributions from two
adjacent sources, this method can be extended to have
contributions from more than two sources. If longitudinal
separation between the sources is small, some region will get
illuminated by more than two sources.

To make a smooth transition from region (a) to region
(c) and from region (b) to region (c), we propose two
approaches: (i) an approach with fixed feathering width and
(ii) an approach with fixed slope but variable feathering
width. We present a specific example in Figure 9. Slice (1)
includes voxels x(r, z) from region (a) and region (c). As
r increases, we move from region (a) to region (c), and
the corresponding weight would abruptly change from 0
to w2(z), see (Figure 9 (1a)). A fixed feathering width δ is
used to minimize the sudden weight change from wstart (z)
to wfinal (z). In this specific example, wstart(z) = 0, and
wfinal (z) = w2(z). Similarly, slice (2) includes voxels x(r, z)
from region (b) and region (c). As r increases we move from
region (b) to region (c), and the corresponding weight would
abruptly change from 1 to w2(z) (Figure 9) (2a). In this case
wstart(z) = 1, and wfinal(z) = w2(z). Generally we define the
following weighting scheme:

w(r, z) =
(

wfinal(z)−wstart(z)
δ

)

(r − rstart) +wstart, (9)

where δ is defined as the (fixed) width of the transition
region, see (Figures 9 (1a) and 9 (2a)). One drawback of

(1a) (2a)

(1)

(2)

r

(a): w = 0

(b): w =1

(1b) (2b)

w(r) w(r)

w(r) w(r)

α
rα

rβ

β

δ

rα

rβ

(c): w2(z)

w2(z) w2(z)

w2(z) w2(z)

rα rβ rβ + δ r

rα rβ r

δ: slope
−δ: slope

rβ rα rα + δ r

rβ rα r

Figure 9: The top picture represents a longitudinal view of the
proposed weighting scheme. Two specific slices are selected: slice
(1) includes voxels from region (a) and region (c), and slice (2)
includes voxels from region (b) and region (c). The corresponding
weight profiles are shown at the bottom: (1a) and (2a) show the
fixed feathering width case, where the width is defined as δ; (1b)
and (2b) show the fixed feathering slope case, where the slope is
defined as δ.

this approach is that the difference between wstart (z) and
wfinal (z) can be very large at some locations, and the weight
change will still be very abrupt. Another possible approach
is to change the transition width such that we have a fixed
transition rate or slope:

w(r, z) = δ · (r − rstart) +wstart, (10)

where δ is defined as the transition rate, see (Figures 9 (1b)
and 9 (2b)).

Region (d) is treated separately because there is no
ray passing through from any source. In this region, we
extrapolate the detector data and make the weight w1(z, r)
gradually change from 0 at the boundary with region (a) to 1
at the boundary with region (b). The equiweight lines where
w1(z, r) is constant will form a fan focused at the corner
where regions (a) and (b) meet. The contributions from
extrapolated data by the (i)th source gradually fade away
toward the (i + 1)th source and eventually reduce to 0. The
size of region (d) is determined by system geometry param-
eters. For most of our multi-axial geometries described in
Section 5, region (d) does not exceed 8% of the 50 cm scan
field of view (FOV), and it does not overlap with the 35 cm
cardiac FOV.

With a limited number of longitudinal samples, this
approach can still result in transaxial discontinuities. A
simple way to avoid this is to oversample in z, compute the
weights, and then average the weights in z. This approach is
sensitive to the sampling on transaxial plane and longitudinal
direction (slices). Note that the above weighting methods
only provide continuity within transaxial planes and do
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not guarantee continuity along the longitudinal direction.
Furthermore, the proposed weighting approach for half-scan
mode can be applied to full-scan mode with utilizing whole
detector, but resulting configuration will be less optimal in
dose efficiency.

5. Numerical Results

To evaluate the proposed algorithms for multi-axial acqui-
sitions, two conventional 3rd generation CT geometries
and two multi-axial acquisition geometries are investigated,
as presented in Figure 10: (a) a single axial acquisition
with 40 mm scan coverage and detector height 70 mm;
(b) a single axial acquisition with 80 mm scan coverage
and detector height 140 mm; (c) three axial acquisitions
separated by 60 mm, with 120 mm coverage and detector
height 120 mm; (d) three axial acquisitions separated by
80 mm, with 160 mm coverage and detector height 160 mm.
All four proposed geometries have the source-focused curved
detector with same detector pitch (1 mm by 1 mm), the same
number of detector columns (1024), and the same number
of views (1024). We oversampled the detector rows, columns,
focal spot, and rotation by a factor two to accurately model
the X-ray beam width and azimuthal blur. We used a realistic
CT simulation environment CATSIM [21] and a helical body
phantom (HBP), designed to explore cone-beam artifacts
[22]. We added additional nonparallel elliptical cylinders to
the original HBP to better model the ribs. All acquisitions
were simulated with 120 kVp polychromatic X-ray spectrum.

Note that for 3rd generation CT system the scan coverage
is defined as the projection of the physical detector to isocen-
ter. On the other hand, the scan coverage for the studied
multi-axial acquisition system is equal to the size of detector,
which means that more coverage is obtained with the same
size of detector, as shown in Figure 10. Furthermore, it is
conceptually straightforward to increase the scan coverage
of multi-axial acquisition system by combining more axial
scans or by using more longitudinally offset sources. Also, the
coverage can be adjusted by changing the spacing between
the multiple axial scans, but cone-beam artifacts may become
more severe. Similarly the detector can be extended, and the
X-ray beam collimator opened up accordingly, again at the
possible expense of cone-beam artifacts.

Figures 11(a) and 11(b) show the worst-case slices for a
full-scan 3rd generation geometry with 40 mm and 80 mm
scan coverage, respectively. The images were obtained with
standard FDK reconstruction in 1 mm by 1.88 mm voxel grid
(pixel by slice thickness). The worst-case slices are located
at the edge of the scan coverage because those slices see
the largest cone-angle and are reconstructed with truncated
data. Figures 11(c) and 11(d) show the worst-case slices
for a full-scan multi-axial acquisition CT with 120 mm and
160 mm scan coverage. Here the images were reconstructed
with the FDK-based slice substitution approach described
in Section 2. The worst-case slices for the FDK-based slice
substitution approach are where the adjacent slices come
from different reconstruction volume. Figures 11(e) and
11(f) show the worst-case slices for a full-scan multi-axial

4 cm

7 cm

z

(a)

8 cm
z

14 cm

(b)

12 cm

12 cm
z

(c)

16 cm

16 cm

z

(d)

Figure 10: Illustration of proposed CT geometries: (a) and (b) are
3rd generation CT systems with 40 mm and 80 mm coverage, and
(c) and (d) are multi-axial acquisition CT systems with 120 mm
and 160 mm coverage. Note that the coverage of a multi-axial
acquisition system is the same as detector size. 3rd generation
system requires bigger detector for the same scan coverage.

acquisition CT with 120 mm and 160 mm scan coverage.
Here the images were reconstructed with TOM windowing
approach described in Section 3. The worst-case slices for
the TOM windowing approach are halfway between two
consecutive sources.

All images are displayed in tight window, (−50 HU,
50 HU). The results show that the cone-beam artifacts are
very severe in the 3rd generation CT geometry. Images from
FDK-based slice substitution approach show some residual
cone-beam artifact (Figures 11(c) and 11(d)), and the image
from TOM windowing shows good image quality with very
limited cone-beam artifacts (Figures 11(e) and 11(f)). In
all cases cone-beam artifacts increase with coverage. All six
cases have slight view aliasing artifacts far from the isocenter
due to imperfect oversampling in the simulation step. Note
that the FDK-based slice substitution approach and TOM
windowing approach show comparable image quality, but
the TOM windowing approach has better dose efficiency
than FDK-based approach.

Figures 11(d) and 11(f) show the worst-case images from
three axial acquisitions with 160 mm scan coverage and three
axial acquisitions separated by 80 mm. 160 mm scan coverage
is sufficient to cover most cardiac and head exams in a
single rotation. As the spacing between adjacent sources gets
larger, even larger scan coverage can be achieved, but at the
expense of increased cone-beam artifact. Indeed, there are
slightly increased shading artifacts in Figure 11(f) compared
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Figure 11: Worst-case images from (a) 3rd generation CT system with 40 mm coverage, (b) 3rd generation CT system with 80 mm coverage,
reconstructed with FDK, (c) multi-axial acquisition CT system with 120 mm coverage, (d) multi-axial acquisition CT system with 160 mm
coverage, reconstructed with slice substitution approach, using FDK slices, (e) multi-axial acquisition CT system with 120 mm coverage, and
(f) multi-axial acquisition CT system with 160 mm coverage, reconstructed with TOM window-based reconstruction. Grayscale: (−50 HU,
50 HU). Note that the worst-case slices for 3rd generation system are the slices located at the edge of scan FOV, and the worst-case slices for
multi-axial acquisition system are the slices located in between two sources.
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Figure 12: Worst-case images from (a) 3rd generation CT system with 40 mm coverage, (b) 3rd generation CT system with 80 mm coverage,
reconstructed using FDK with Parker weighting approach, (c) multi-axial acquisition CT system with 120 mm coverage, (d) multi-axial
acquisition CT system with 160 mm coverage, reconstructed with slice substitution approach using FDK parker weighting slices, (e) multi-
axial acquisition CT system with 120 mm coverage, and (f) multi-axial acquisition CT system with 160 mm coverage, reconstructed with
cone-angle dependent weighting reconstruction. Grayscale: (−50 HU, 50 HU). Note that the worst-case slices for 3rd generation system are
the slices located at the edge of scan FOV, and the worst-case slices for multi-axial acquisition system are the slices located in between two
sources.
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to Figure 11(e). Nevertheless, the cone-beam artifacts in
120 mm and 160 mm coverage multi-axial acquisitions are
much less severe than those from 3rd generation CT system
with smaller scan coverage, that is, 40 mm and 80 mm. In
previous work we have demonstrated extended scan coverage
up to 200 mm [16, 23].

Figures 12(a) and 12(b) show the worst-case slices for a
half-scan 3rd generation geometry with 40 mm and 80 mm
scan coverage, respectively. The images were obtained with
standard FDK reconstruction with Parker weighting in 1 mm
by 1.88 mm voxel grid (pixel by slice thickness). Figures
12(c) and 12(d) show the worst-case slices for a half-
scan multi-axial acquisition CT with 120 mm and 160 mm
scan coverage. Here the images were reconstructed with
FDK-Parker weighting-based slice substitution approach
presented in Section 2. Figures 12(c) and 12(d) show the
worst-case slices for a half-scan multi-axial acquisition CT
with 120 mm and 160 mm scan coverage. Here the images
were reconstructed with the cone-angle-based weighting
approach presented in Section 4.

In half-scan mode, the cone-beam data is always much
less complete than in full-scan mode, specifically because
conjugate rays are not available, and hence image artifacts are
also much more severe. Figures 12(a) and 12(b) show various
degrees of half-scan image artifacts for the 3rd generation
CT system. Figures 12(c), 12(d), 12(e), and 12(f) still show
half-scan artifacts but strongly reduced compared to the 3rd
generation case with much smaller coverage. Furthermore,
the proposed cone-angle-based weighting approach, shown
in Figures 12(e) and 12(f), improves image quality even
further from the FDK-Parker weighting-based slice substi-
tution approach. Note that the region (d) in Figure 8 where
no measurements are available gets bigger as the spacing
between consecutive sources gets larger. For the full-scan
case, larger scan coverage can be achieved at the expense
of increased cone-beam artifact, but for the half-scan case,
larger scan coverage is not only limited by the increasing
cone-beam artifact but also the increasing missing data
region.

Since TOM windowing approach is based on the FDK
type of implementation, additional correction approach such
as radon space-based correction [24] might improve image
quality further, which may be a topic of future investigation.

6. Conclusion

In this paper, we present multi-axial CT acquisition geome-
tries, which can be implemented by performing multiple
axial scans with a single source 3rd generation system or
by performing one or more axial scans with a multi-source
CT system, in which sources are offset longitudinally. We
propose corresponding reconstruction algorithms for full-
scan and half-scan protocols. Both the TOM windowing
reconstruction algorithm for full-scan mode and the cone-
angle dependent weighting reconstruction algorithm for
half-scan mode successfully reduce cone-beam artifact com-
pared to a 3rd-generation CT acquisition with a single
circular trajectory, even when the scan coverage is increased

up to 160 mm. The same techniques can be applied to an
inverse-geometry CT system.

Multi-axial CT geometries offer additional benefits asso-
ciated with the reduced cone-angle, such as reduced Heel
effect and reduced scatter, and there is room to optimize the
target angles for each of the longitudinally offset spots. We
have published some work in this area in [25], but those
topics are beyond the scope of this paper.
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[15] B. De Man, S. Basu, D. Bequé, et al., “Multi-source inverse
geometry CT: a new system concept for X-ray computed
tomography,” in Medical Imaging 2007: Physics of Medical
Imaging, vol. 6510 of Proceedings of SPIE, San Diego, Calif,
USA, 2007, 65100H.

[16] Z. Yin, B. De Man, and J. Pack, “Analytical cone-beam
reconstruction using a multi-source inverse geometry CT
system,” in Medical Imaging 2007: Physics of Medical Imaging,
vol. 6510 of Proceedings of SPIE, San Diego, Calif, USA, 2007,
651021.

[17] K. C. Tam, S. Samarasekera, and F. Sauer, “Exact cone beam
CT with a spiral scan,” Physics in Medicine and Biology, vol. 43,
no. 4, pp. 1015–1024, 1998.

[18] H. Kudo, F. Noo, M. Defrise, and R. Clackdoyle, “New
super-short-scan algorithms for fan-beam and cone-beam
reconstruction,” in Proceedings of the IEEE Nuclear Science
Symposium and Medical Imaging Conference (NSS-MIC ’02),
vol. 2, pp. 902–906, 2002.

[19] F. Noo, S. Hoppe, F. Dennerlein, G. Lauritsch, and J. Horneg-
ger, “A new scheme for view-dependent data differentiation in
fan-beam and cone-beam computed tomography,” Physics in
Medicine and Biology, vol. 52, no. 17, pp. 5393–5414, 2007.

[20] D. L. Parker, “Optimal short scan convolution reconstruction
for fanbeam CT,” Medical Physics, vol. 9, no. 2, pp. 254–257,
1982.

[21] B. De Man, S. Basu, N. Chandra, et al., “CATSIM: a new
computer assisted tomography simulation environment,” in
Medical Imaging 2007: Physics of Medical Imaging, vol. 6510
of Proceedings of SPIE, 2007, 65102G.

[22] X. Tang, “Matched view weighting in tilted-plane-based
reconstruction algorithms to suppress helical artifacts and
optimize noise characteristics,” Medical Physics, vol. 30, no. 11,
pp. 2912–2918, 2003.

[23] Z. Yin and B. De Man, “3D analytic cone-beam reconstruction
for less than a full scan using a multi-source CT system,”
in Proceedings of the IEEE Nuclear Science Symposium and
Medical Imaging Conference (NSS-MIC ’07), vol. 5, pp. 3929–
3932, 2007.

[24] L. Zhu, S. Yoon, and R. Fahrig, “A short-scan reconstruction
for cone-beam CT using shift-invariant FBP and equal
weighting,” Medical Physics, vol. 34, no. 11, pp. 4422–4438,
2007.

[25] K. Khare, B. De Man, and T. L. Toth, “Optimization of X-
ray source target angle for image quality,” in Proceedings of the
Radiological Society of North America (RSNA ’07), Chicago, Ill,
USA, November 2007.


	Introduction
	Multiaxial CT Acquisitions
	Multiaxial Acquisition System Architectures
	Scan and Reconstruction Mode
	Dose Efficiency

	Window-Based Cone-Beam Reconstructionfor Full-Scan Mode
	Cone-Angle-Weighted Cone-Beam Reconstruction for Half-Scan Mode
	Numerical Results
	Conclusion
	Acknowledgment
	References

