
RESEARCH ARTICLE Open Access

FastTagger: an efficient algorithm for genome-wide
tag SNP selection using multi-marker linkage
disequilibrium
Guimei Liu1*, Yue Wang2, Limsoon Wong1

Abstract

Background: Human genome contains millions of common single nucleotide polymorphisms (SNPs) and these
SNPs play an important role in understanding the association between genetic variations and human diseases.
Many SNPs show correlated genotypes, or linkage disequilibrium (LD), thus it is not necessary to genotype all SNPs
for association study. Many algorithms have been developed to find a small subset of SNPs called tag SNPs that
are sufficient to infer all the other SNPs. Algorithms based on the r2 LD statistic have gained popularity because r2

is directly related to statistical power to detect disease associations. Most of existing r2 based algorithms use
pairwise LD. Recent studies show that multi-marker LD can help further reduce the number of tag SNPs. However,
existing tag SNP selection algorithms based on multi-marker LD are both time-consuming and memory-
consuming. They cannot work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.

Results: We propose an efficient algorithm called FastTagger to calculate multi-marker tagging rules and select tag
SNPs based on multi-marker LD. FastTagger uses several techniques to reduce running time and memory
consumption. Our experiment results show that FastTagger is several times faster than existing multi-marker based
tag SNP selection algorithms, and it consumes much less memory at the same time. As a result, FastTagger can
work on chromosomes containing more than 100 k SNPs using length-3 tagging rules.
FastTagger also produces smaller sets of tag SNPs than existing multi-marker based algorithms, and the reduction
ratio ranges from 3%-9% when length-3 tagging rules are used. The generated tagging rules can also be used for
genotype imputation. We studied the prediction accuracy of individual rules, and the average accuracy is above
96% when r2 ≥ 0.9.

Conclusions: Generating multi-marker tagging rules is a computation intensive task, and it is the bottleneck of
existing multi-marker based tag SNP selection methods. FastTagger is a practical and scalable algorithm to solve
this problem.

Background
A single-nucleotide polymorphism (SNP) is a DNA
sequence variation occurring when a single nucleotide–
A, T, C, or G–in the genome differs between members
of a species (or between paired chromosomes in an indi-
vidual). SNPs are the most common genetic variations
in the human genome, and they are very important for
understanding the genetic basis of common diseases.
Millions of SNPs are present in human genome. The
enormous number of SNPs presents a challenging

problem for genome-wide association study. It has been
observed that adjacent SNPs are often highly correlated.
To reduce genotyping cost, many algorithms have been
developed to select a smallest set of SNPs such that all
the other SNPs can be inferred from them. The selected
SNPs are called tag SNPs.
Existing tag SNP selection methods can be classified

into two categories: block based methods [1-7] and gen-
ome-wide approaches [8-13]. Block based methods rely
on a predefined haplotype block structure. The blocks
are separated by recombination hot-spots, and there are
few recombinations within a block. Thus the haplotypes
within a block usually are of low diversity. They then

* Correspondence: liugm@comp.nus.edu.sg
1Department of Computer Science, National University of Singapore,
Singapore

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

© 2010 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:liugm@comp.nus.edu.sg
http://creativecommons.org/licenses/by/2.0

attempt to select a subset of SNPs that can discriminate
all common haplotypes within each block. The genome-
wide tag SNP selection algorithms do not need to parti-
tion the whole chromosome into blocks, and they utilize
linkage disequilibrium among nearby SNPs to find tag
SNPs. Among the genome-wide approaches, those based
on the r2 linkage disequilibrium statistic have gained
increasing popularity recently because r2 is directly
related to statistical power to detect disease associations
[14].
Algorithm LD-select [9] is the first algorithm using

the r2 LD statistic to select tag SNPs, and it employs a
greedy approach to find tag SNPs. Following it, several
other algorithms based on the r2 statistic have been
developed. FESTA [12] breaks down large marker sets
into disjoint pieces, where exhaustive searches can
replace the greedy algorithm, thus leading to smaller tag
SNP sets. MultiPop-TagSelect [15] and REAPER [11]
apply LD-select to multiple populations. LRTag [13]
uses a Lagrangian relaxation algorithm to find tag SNPs
across multiple populations. All these algorithms use
pairwise LD between SNPs.
Recent studies have shown that multi-marker LD can

help further reduce the number of tag SNPs needed
[16-18], and several algorithms have been developed to
select tag SNPs based on multi-marker r2 statistics
[19-21]. These algorithms find association rules of the
form {SNP1, ..., SNPk} ® SNPx, where k ≤ 3, SNPx ∉
{SNP1, ..., SNPk} and the r2 statistic between the left
hand side and the right hand side of the rule is no less
than a predefined threshold. Their results show that the
multi-marker LD model can reduce the number of tag
SNPs significantly compared with pairwise algorithms.
However, existing multi-marker based algorithms are
both time-consuming and memory-consuming. Most of
the time is spent on calculating multi-marker r2 statis-
tics. Furthermore, an excess number of multi-marker
association rules may be generated when k ≥ 3, which
incurs high memory consumption when using these
rules to select tag SNPs. It takes hundreds of hours for
the MultiTag algorithm [19,20] to finish on chromo-
somes containing around 30 k SNPs. The MMTagger
algorithm [21] needs several hours to finish, but it con-
sumes more than 1 GB memory. MMTagger cannot
work on chromosomes with more than 100 k SNPs
when k ≥ 3. In this paper, we propose a multi-marker
LD based tag SNP selection algorithm called FastTagger.
FastTagger employs several techniques to reduce run-
ning time and memory consumption: (1) It merges
nearby equivalent SNPs together to reduce the number
of multi-marker association rules to be tested. (2) Fas-
tTagger prunes redundant rules to reduce the number
of rules generated. (3) If there are too many rules, Fas-
tTagger uses a heuristics to skip some rules, that is, a

rule is skipped if the right hand side of the rule has
been covered enough number of times. (4) If the total
size of the rules generated exceeds the memory size,
FastTagger divides the chromosome into chunks, and
then finds tag SNPs within each chunk. This technique
can make FastTagger work on chromosomes containing
more than 100 k SNPs with as less as 50 MB memory.

Methods
In this section, we first describe how to calculate multi-
marker r2 statistics, and then present the FastTagger
algorithm. The FastTagger algorithm consists of two
steps. In the first step, it generates tagging rules, and in
the second step, it uses a greedy approach to select tag
SNPs using rules generated in the first step.

Multi-marker tagging rules
Most SNPs have only two alleles, so we consider only
bi-allelic SNPs. Given a population, the allele with
higher frequency in the population is called major allele,
and the allele with lower frequency is called minor
allele. We use uppercase letters to denote the major
alleles of SNPs, and use lowercase letters to denote the
minor alleles. SNPs that are far apart from each other
usually are not linked. Here we require that the distance
between every pair of SNPs in a rule must not exceed a
predefined distance threshold max_dist.
Given k SNPs S = {SNP1, SNP2, ..., SNPk}, there are 2k

possible haplotypes over the k loci. To calculate the r2

statistic of rule S ® SNPx, we need to divide the 2k hap-
lotypes into two non-empty groups and map the two
groups to the two alleles of SNPx. MultiTag [19] and
MMTagger [21] uses different methods to do the
mapping.
The one-vs-the-rest model
MultiTag uses this model. There are totally 22k - 2
possible ways to group the 2k haplotypes into two non-
empty groups. MultiTag considers only 2k ways such
that one group contains only one haplotype, and the
other group contains all the other haplotypes. It calcu-
lates the r2 statistics for all the 2k groupings, and then
select the one with the highest r2 statistic.
The co-occurrence model
MMTagger does the mapping based on the co-occur-
rences of the alleles of the SNPs on the left hand side
and the alleles of the SNP on the right hand side. Let H
be a haplotype over the SNP set S on the left hand side,
A and a be the two alleles of SNPx on the right hand
side, and f(H) be the frequency of H. We use f(HA) to
denote the frequency of H and SNPx = A occurring
together, and f(Ha) to denote the frequency of H and
SNPx = a occurring together. If f (HA) >f (Ha), we map
haplotype H to allele A of SNPx, otherwise we map hap-
lotype H to allele a of SNPx. Let HA be the set of

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

Page 2 of 12

haplotypes mapped to allele A, and Ha be the set of
haplotypes mapped to allele a. We convert SNP set S to
a bi-allelic marker with two “alleles” HA and Ha. Then
we can calculate the r2 statistic between S and SNPx as
follows.

r S SNP
P H AA P H A P A
P H A P Ha P A P ax

2
2

(,)
(() () ())

() () () ()
 (1)

where P(HA), P (Ha), P (A), P (a) and P (HAA) are the
relative frequencies of HA, Ha, A, a and HAA
respectively.
We implemented both models in the FastTagger algo-

rithm, and let users choose which model they want to
use.
If the r2 statistic between S and SNPx is no less than a

predefined threshold min_r2, we say that SNPx can be
tagged by S, and R : S ® SNPx is a tagging rule. With
the increase of the size of S, the haplotypes of S parti-
tion the whole dataset into finer and finer groups. In an
extreme case, every haplotype of S occurs at most once.
In this case, the association between haplotypes of S and
alleles of SNPx becomes unreliable. To prevent over-fit-
ting, we put a constraint on the size of S. The size of S
should not exceeds a predefined threshold max_size.
The r2 statistics can be calculated from phased haplo-

type data directly. If the SNP data are in the form of
unphased genotype data, we can use existing haplotype
inference algorithms such as PHASE [22] to convert
genotype data into phased haplotype data. We can also
estimate k-marker haplotype frequencies directly from
genotype data without phasing using the algorithms
described in [23,24]. The second approach is used in
algorithm LD-select [9].

Generating tagging rules
To generate all the tagging rules, we need to enumerate
all the SNP sets that satisfy the maximum distance con-
straint and maximum size constraint, and then calculate
the r2 statistics between these SNP sets and their nearby
SNPs. The search space can be enormously large when
the number of SNPs is large. We use several techniques
to reduce the number of rules to be tested.
Merging equivalent SNPs
Given two SNPs SNPi and SNPj, if r

2(SNPi, SNPj) = 1,
which means that SNPi and SNPj can tag each other
perfectly, then we say SNPi and SNPj are equivalent.
Two equivalent SNPs always have the same r2 statistics
with other SNPs, thus the computation cost of the rules
involving them can be shared by merging them together.
For each group of merged equivalent SNPs, a repre-

sentative SNP is picked to represent this group. Fas-
tTagger generates tagging rules between representative

SNPs only. The tagging rules generated in this way are
called representative tagging rules. One representative
tagging rule can actually represent multiple rules. There-
fore, by merging equivalent SNPs, we are not only sav-
ing computation cost, but also reducing storage
overhead.
Note that not every rule represented by a representa-

tive tagging rule is valid. Some of them may not satisfy
the distance constraint. Equivalent SNPs that are sepa-
rated by more than max_dist bases cannot appear in the
same rule, and merging them together can produce
many false rules. To reduce the number of false rules,
FastTagger only merges equivalent SNPs that are within
a distance of max_dist.
Pruning redundant tagging rules
If a SNP SNPx can be tagged by a SNP set S, then any
rule S’ ® SNPx such that S’ is a proper superset of S is
redundant. FastTagger generates only non-redundant
tagging rules to reduce running time and memory con-
sumption, and the definition of non-redundant rules is
given as follows:
Definition 1 (Non-redundant tagging rule) Given a

rule S ® SNPx such that SNPx can be tagged by S, if
there does not exist another rule S’ ® SNPx such that S’
is a proper subset of S and SNPx can be tagged by S’,
then S ® SNPx is called a non-redundant tagging rule.
To prune redundant rules, before calculating the r2

statistic between S and SNPx, FastTagger checks
whether there exists a subset S’ of S such that SNPx can
be tagged by S’. FastTagger uses a depth-first strategy to
enumerate SNP sets. This search strategy is adopted
from a frequent generator mining algorithm [25], and it
ensures that all the tagging rules whose left hand side is
a subset of S are generated before S is processed.
There can be many tagging rules generated. To speed-

up the check operation, FastTagger divides the gener-
ated tagging rules into groups based on their right hand
side SNP, that is, rules with the same right hand side
SNP are in the same group. FastTagger then uses a hash
map to index the rules in the same group, and the hash-
ing key is the left hand side of the rules. To check
whether S ® SNPx is redundant, FastTagger searches
the hash map of SNPx for the subsets of S. If there is a
subset of S in the hash map of SNPx, the rule is redun-
dant; otherwise, the r2 statistic of the rule is calculated.
Skipping rules
Even though merging equivalent SNPs and removing
redundant tagging rules can reduce the number of tag-
ging rules significantly, it is still possible that a large
number of tagging rules are generated in the first step,
which incurs high memory consumption in the second
step. FastTagger uses heuristics to further reduce the
number of tagging rules generated: if a SNP SNPx

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

Page 3 of 12

occurs at the right hand side of tagging rules enough
number of times, then SNPx will not be considered as
right hand side candidate in future rule generation. The
rationale behind this heuristics is that if a SNP can be
tagged by many other SNPs, then during the tag SNP
selection process, the SNP has a high probability to be
covered by selected tag SNPs.

Selecting tag SNPs using a greedy approach
Finding the smallest set of tag SNPs is computationally
expensive. FastTagger uses a greedy approach similar to
the one proposed in [9,19] to find a near optimal set of
tag SNPs.
Let C be the set of candidate tag SNPs, T be the set of

tag SNPs selected, and V be the set of SNPs not being
covered. A SNP is covered if either it is a tag SNP or it
can be tagged by some SNP set S such that S ⊆ T. Initi-
ally, C and V contain all the SNPs, and T is empty.
FastTagger first identifies those SNPs that do not

appear at the right hand side of any tagging rules, and
these SNPs must be selected as tag SNPs. FastTagger
puts them into T and remove them from C. These SNPs
are also removed from V. For the remaining SNPs in V,
if they can be tagged by some SNP set S such that S ⊆
T, then they are removed from V too.
Next, for each SNP SNPi Î C, FastTagger finds the set

of SNPs in V that are covered by SNPi. A SNP SNPj in
V is covered by SNPi if SNPj is not tagged by any sub-
sets of T and there exists a subset S of T such that SNPj
is tagged by S ∪ {SNPi}.
FastTagger then picks a SNP from C that covers the

largest number of SNPs in V as a tag SNP. This newly
picked tag SNP is put into T and removed from C. All
the SNPs that are covered by it including itself are
removed from V. This process is repeated until V is
empty, that is, all the SNPs have been covered. In each
iteration, in order to find the set of SNPs covered by
every candidate tag SNP in C, FastTagger needs to keep
the tagging rules in memory. However, the number of
rules generated can be very large. It is possible that the
total size of tagging rules is too large to fit into the
main memory. To solve this problem, we can break the
whole chromosome into several chunks such that the
rules over every chunk can fit into the main memory.
We then select tag SNPs within each chunk.
When selecting tag SNPs within each chunk, only

those tagging rules whose SNPs all fall into this chunk
are used. To also utilize the rules across chunks, we
allow two adjacent chunks to have certain overlap. The
length of the overlap is determined by the max_dist
threshold. The SNPs in one chunk that are within
max_dist bases away from the first SNP of the next
chunk are included in the next chunk since they can tag
or be tagged by SNPs in the next chunk. Fast Tagger

finds tag SNPs from each chunk from left to right. The
tag SNPs selected in the current chunk that also belong
to the next chunk will be passed on to the next chunk
as tag SNPs. Note that if the distance between two adja-
cent SNPs is larger than max_dist, then these two SNPs
are used as a breakpoint even if there is enough mem-
ory. The reason being that if the distance between two
adjacent SNPs is larger than max_dist, then the two
SNPs cannot tag each other or each other’s neighbors.
Using the above method, FastTagger can work on

chromosomes containing more than 100 k SNPs with as
less as 50 MB memory, while existing algorithm con-
sumes more than 1 GB memory even on chromosomes
containing around 30 k SNPs.

Results and Discussion
In this section, we study the performance of FastTagger.
We conducted the experiments on a PC with 2.33 Ghz
Intel(R) Core(TM) Duo CPU and 3.25 GB memory run-
ning Fedora 7. All codes were complied using g++. The
source codes and executable of the FastTagger algo-
rithm can be found in Additional file 1. We obtained
the datasets from HapMap release 21 http://hapmap.
ncbi.nlm.nih.gov/downloads/phasing/2006-07_phaseII/
phased/ and project ENCODE http://hapmap.ncbi.nlm.
nih.gov/downloads/phasing/2005-03_phaseI/ENCODE/.
There are 4 populations and 10 regions in the ENCODE
project. Here, we report the overall results on the ten
regions for each population. The results on individual
regions can be found in Additional file 2. From HapMap
release 21, we selected 6 chromosomes: chr1, chr2, chr3,
chr19, chr21 and chr22, and used the Han Chinese plus
Japanese population. Table 1 shows the number of SNPs
with MAF ≥ 5% on the datasets. In all the experiment,
we set max_dist to 100 k, and select only those SNPs
with MAF ≥ 5%.

Comparison with other algorithms
The first experiment is to compare FastTagger with
LRTag [13], MMTagger [21] and MultiTag [19]. LRTag
uses only pair-wise LD to find tag SNPs, and it has been
shown to outperform LD-select and FESTA. Hence we
choose LRTag as a representative of the pairwise

Table 1 Datasets.

datasets #SNPs #Rep SNPs datasets #SNPs #Rep SNPs

ENCODE CEU 7,221 2,484 chr2 169,905 85,807

ENCODE HCB 6,430 2,286 chr3 135,058 71,244

ENCODE JPT 6,216 2,196 chr19 28,931 17,807

ENCODE YRI 7,963 4,408 chr21 28,914 15,644

chr1 149,716 78,893 chr22 26,595 15,553

The “#Rep SNPs” column is the number of representative SNPs with merging
window size of 100 k.

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

Page 4 of 12

http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2006-07_phaseII/phased/
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2006-07_phaseII/phased/
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2006-07_phaseII/phased/
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2005-03_phaseI/ENCODE/
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2005-03_phaseI/ENCODE/

algorithms. MMTagger and MultiTag both use multi-
marker LD to find tag SNPs. We obtained the programs
from their respective authors. FastTagger used all the
techniques described previously except the skipping
rules technique. LRTag takes pre-computed pairwise r2

statistics as input, so the running time of LRTag
includes only tag SNP selection time. We report the
results at min_r2 = 0.95 here, results at min_r2 = 0.9
and min_r2 = 0.8 can be found in supplementary mate-
rials. For all the four algorithms, the selected tag SNPs
can cover the whole region of interest.
We first compare FastTagger with LRTag and Multi-

Tag on using pairwise LD to find tag SNPs. Table 2
shows the running time and the number of tag SNPs
selected by the three algorithms. The running time is
measured in minutes. FastTagger is several times faster
than LRTag even though LRTag only needs to pick tag
SNPs from pre-computed pairwise r2 statistics while
FastTagger needs to compute pairwise r2 statistics as
well as selecting tag SNPs. Both algorithms are orders of
magnitude faster than MultiTag. Among the three algo-
rithms, LRTag produces the smallest number of tag
SNPs, but the difference is very small. Overall, FastTag-
ger generates 0.31% more tag SNPs than LRTag when
min_r2 = 0.95. MultiTag generates 1.77% more tag
SNPs than FastTagger when min_r2 = 0.95. LRTag uses
a Lagrangian relaxation algorithm to select tag SNPs
instead of a greedy approach used in other algorithms.
That is why it generates less tag SNPs than other
algorithms.
Table 3 shows the running time and the number of

tag SNP selected by the FastTagger, MMTagger and
MultiTag when multi-marker LD are used. We imple-
mented both models in FastTagger, and denote them as
Fast-COOC (the co-occurrence model) and Fast-1vsR
(the one-vs-the-rest model). MultiTag took extremely
long time to finish on the 6 chromosomes when

max_size = 3, so its results are not reported on the 6
chromosomes when max_size = 3. When max_size = 2,
we divided chr1, chr2 and chr3 into 20 chunks, chr19,
chr21 and chr22 into 5 chunks, and then ran MultiTag
on each chunk and combined the results. MMTagger
terminated abnormally on chr1, chr2 and chr3 when
max_size = 3 because too many rules were generated.
To solve this problem, we divided the three chromo-
somes into 10 chunks, and then ran MMTagger on each
chunk and combined the results together.
Table 3 shows that the multi-marker model can

reduce the number of tag SNPs significantly under the
same min_r2 threshold compared with the pairwise
model (Table 2). The number of tag SNPs is reduced by
more than 30% when max_size = 2. When max_size =
3, the number of tag SNPs is reduced by more than
40%. However, calculating multi-marker r2 statistics is
much more expensive than computing pairwise r2. Fas-
tTagger is more than 10 times slower when max_size =
2, and hundreds of times slower when max_size = 3.
On ENCODE regions, FastTagger and MMTagger

take similar time to finish when max_size = 2; when
max_size = 3, FastTagger is 2-3 times faster than
MMTagger. On the 6 chromosomes, FastTagger is 2-6
times faster than MMTagger. Both algorithms are orders
of magnitude faster than MultiTag. The number of tag
SNPs selected by FastTagger under the co-occurrence
model is smaller than that selected by MMTagger and
MultiTag.
Table 4 shows the maximum memory usage of Fas-

tTagger and MMTagger with max_r2 = 0.95 and max_-
size = 3. MMTagger consumes much more memory than
FastTagger, that is why it cannot work on large chromo-
somes such as chr1, chr2 and chr3 when max_size = 3.
Table 3 also shows that the co-occurrence model gen-

erates smaller set of tag SNPs than the one-vs-the-rest
model. The reason being that more rules are generated

Table 2 Comparison of running time and number of tag SNPs selected when pairwise LD are used.

min_r2 Running time (minutes) #tag SNPs

FastTagger LRTag MultiTag FastTagger LRTag MultiTag

ENCODE CEU 0.95 0.003 0.016 10.4 2144 2127 2136

ENCODE HCB 0.95 0.003 0.014 7.5 2065 2055 2061

ENCODE JPT 0.95 0.003 0.013 6.6 1996 1990 1996

ENCODE YRI 0.95 0.004 0.008 41.6 4115 4107 4109

chr1 0.95 0.076 0.242 26.2 62190 61988 63391

chr2 0.95 0.088 0.293 30.2 66026 65822 67236

chr3 0.95 0.070 0.222 25.1 55895 55713 56972

chr19 0.95 0.015 0.032 3.6 14777 14744 15014

chr21 0.95 0.015 0.040 6.0 12455 12435 12658

chr22 0.95 0.014 0.033 7.9 12690 12652 12932

The running time of LRTag includes only tag SNP selection time, while the running time of FastTagger and MultiTag includes both rule generation time and tag
SNP selection time. MMTagger is excluded from this table because the MMTagger program provided by its authors cannot use pairwise LD to find tag SNPs.

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

Page 5 of 12

under the co-occurrence model as shown in Table 5.
When max_size = 2, the two models generate similar
number of rules, so does the number of tag SNPs.
When max_size = 3, the co-occurrence model generates
3-4 times more rules than the one-vs-the-rest model,
hence it can use much less tag SNPs to tag all the other
SNPs. The co-occurrence model also consumes much
more memory when max_size = 3 as shown in the last
two columns of Table 5.

The effectiveness of the techniques used in FastTagger
This experiment studies the effectiveness of the techni-
ques used by FastTagger in reducing running time and
memory consumption. We used the co-occurrence
model in this experiment because it generates more
rules and is more memory demanding than the one-vs-
the-rest model. The baseline FastTagger algorithm in
this experiment uses two techniques as in the previous

experiment: merging equivalent SNPs and pruning
redundant tagging rules. The running time and memory
consumption of the baseline algorithm, and the number
of tag SNPs and tagging rules generated by the baseline
algorithm on chr19, chr21 and chr22 when max_size =
3 and min_r2 = 0.95 is shown in Table 6.
The “#Rep SNPs” column in Table 1 shows the num-

ber of representative SNPs after merging equivalent
SNPs using window size of 100 k. The number of SNPs
is reduced by around a half. We have tried to use a lar-
ger window size to merge equivalent SNPs, and the
results show that larger window sizes do not achieve
much further reduction. The reduction in number of

Table 3 Comparison of running time and number of tag SNPs selected when multi-marker LD are used.

max_size min_r2 Running time (minutes) #tag SNPs

Fast-COOC MMTagger Fast-1vsR MultiTag Fast-COOC MMTagger Fast-1vsR MultiTag

ENCODE CEU 2 0.95 0.038 0.041 0.048 ≥10 hours 1282 1282 1291 1371

ENCODE HCB 2 0.95 0.032 0.032 0.042 ≥10 hours 1305 1328 1308 1424

ENCODE JPT 2 0.95 0.029 0.028 0.038 ≥10 hours 1234 1258 1240 1349

ENCODE YRI 2 0.95 0.181 0.188 0.245 ≥60 hours 2575 2618 2579 2770

chr1 2 0.95 1.13 5.84 1.40 ≥7 days 43202 43483 43306 43462

chr2 2 0.95 1.32 7.21 1.63 ≥7 days 44135 44556 44225 49289

chr3 2 0.95 1.14 5.11 1.41 ≥7 days 37881 38206 37952 39300

chr19 2 0.95 0.176 0.343 0.218 ≥30 hours 11151 11192 11160 11747

chr21 2 0.95 0.287 0.473 0.359 ≥60 hours 8543 8627 8564 9103

chr22 2 0.95 0.370 0.567 0.468 ≥100 hours 8970 9025 8993 9533

ENCODE CEU 3 0.95 1.28 3.69 1.85 ≥50 hours 972 1017 1151 1244

ENCODE HCB 3 0.95 1.26 3.40 1.93 ≥80 hours 1003 1034 1170 1170

ENCODE JPT 3 0.95 1.06 2.74 1.60 ≥50 hours 958 1002 1129 1244

ENCODE YRI 3 0.95 11.6 36.7 17.4 ≥14 days 1848 1927 2165 2516

chr1 3 0.95 34.9 137.3 49.6 - 35556 38185 40534 -

chr2 3 0.95 42.9 166.9 60.8 - 35502 38372 41129 -

chr3 3 0.95 39.3 154.6 55.5 - 30695 33041 35305 -

chr19 3 0.95 4.34 16.6 6.25 - 9444 10032 10546 -

chr21 3 0.95 9.91 37.7 14.4 - 6929 7404 7935 -

chr22 3 0.95 16.5 65.3 24.4 - 7327 7788 8392 -

Fast-COOC represents the FastTagger algorithm using the co-occurrence model, and Fast-1vsR represents the FastTagger algorithm using the one-vs-the-rest
model. max_size is the maximum number of SNPs on the left hand side of a tagging rule. For the MMTagger algorithm, we divided chr1, chr2 and chr3 into 10
chunks when max_size = 3, and ran MMTagger on each chunk, and then combined the results. For the MultiTag algorithm, we divided chr1, chr2 and chr3 into
20 chunks, chr19, chr21 and chr22 into 5 chunks when max_size = 3. When max_size = 3, MultiTag took too long to finish on the 6 chromosomes, so we did not
get its results on the 6 chromosomes.

Table 4 Memory usage of FastTagger and MMTagger.

FastTagger MMTagger FastTagger MMTagger

chr1 94.41 MB - chr19 30.29 MB 657 MB

chr2 287.50 MB - chr21 74.99 MB 1210 MB

chr3 119.72 MB - chr22 50.20 MB 1216 MB

The co-occurrence model is used in FastTagger. min_r2 = 0.95, max_size = 3.

Table 5 The number of tagging rules generated under
the two models using the FastTagger algorithm
(min_r2 = 0.9).

max_size #rules memory

Fast-COOC Fast-1vsR Fast-COOC Fast-1vsR

chr19 2 121,122 120,627 6.63 MB 6.63 MB

chr21 2 169,864 168,936 11.43 MB 11.43 MB

chr22 2 156,134 155,223 8.14 MB 8.13 MB

chr19 3 1,421,519 377,773 38.69 MB 13.29 MB

chr21 3 2,713,338 657,767 101.11 MB 29.92 MB

chr22 3 2,590,826 573,738 67.28 MB 19.21 MB

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

Page 6 of 12

SNPs greatly reduces the number of rules to be tested.
Table 7 shows the performance of FastTagger without
merging equivalent SNPs. Without merging equivalent
SNPs, FastTagger generates an excessive number of tag-
ging rules, e.g., around 20 times more than that of mer-
ging equivalent SNPs, thus taking much longer time and
consuming much more memory. There is also a slight
increase in the number of tag SNPs selected.
Table 8 shows the performance of FastTagger without

pruning redundant rules. Pruning redundant rules can
reduce the number of rules generated by 3 times, thus
reducing the maximum memory usage of FastTagger by
more than a half. Although identifying redundant rules
can reduce the search space, it also incurs some over-
head. Hence the running time of FastTagger does not
decrease when it uses the pruning redundant rules
technique.
Table 9 shows performance of FastTagger when the

skipping rules technique is used. Here if a SNP appears

in the right hand side no less than 5 times, the SNP will
not be considered as right hand side any more. By using
this technique, the number of rules generated is reduced
by more than a half. The running time and memory
usage of FastTagger is also reduced. The number of tag
SNPs selected increases slightly, but it is still smaller
than that generated by the MMTagger algorithm.
We also tested FastTagger under a memory constraint.

The maximum memory can be used by FastTagger is
limited to 50 MB. We used the three large chromo-
somes, chr1, chr2 and chr3, in this experiment. All the
three chromosomes contain more than 100 k SNPs.
Table 10 shows even with as less as 50 MB memory,
FastTagger can still work on chromosomes with 100 k
SNPs. There is only a tiny increase in its running time
and the number of tag SNPs generated.

Portability and prediction accuracy
Multi-marker models group combinations of the alleles
on the left hand side into two groups, and then map
these two groups to the two alleles on the right hand
side. Compared with pairwise model, multi-marker
models are more prone to over-fitting. Here we use
three populations in HapMap–the Han Chinese popula-
tion (HCB), the Japanese population (JPT) and the Cau-
casian population(CEU)–to study the portability and
prediction accuracy of tagging rules of different lengths.
We use chr19 in this experiment. We first generate tag-
ging rules from one population, and then calculate the
r2 statistics and prediction accuracy of these rules in the
other populations. The prediction accuracy of a rule is
defined as the proportion of alleles of the SNP on the
right hand side that are correctly predicted by the alleles
of the SNPs on the left hand side. The results reported
below are results when rules are generated from indivi-
duals in the Han Chinese population and are evaluated
using individuals in the other two populations. In all
three populations, we consider only those SNPs with
MAF ≥ 5%.
Figures 1, 2 and 3 show the distribution of the r2

values of the rules generated from the Han Chinese
population using the two multi-marker models in the
three populations. Table 11 shows average r2 of the
rules in the three populations. For all the three lengths,

Table 6 Baseline algorithm: merging equivalent SNPs and
pruning redundant rules, no skipping rules.

time #tag SNPs mem #rules

chr19 4.34 9444 30.29 MB 951,392

chr21 9.91 6929 74.99 MB 1,747,900

chr22 16.5 7327 50.20 MB 1,658,769

The co-occurrence model is used. max_size = 3, min_r2 = 0.95.

Table 7 Baseline algorithm WITHOUT merging equivalent
SNPs.

time #tag SNPs mem #rules

chr19 31.4 9476 209.83 MB 17,798,798

chr21 72.3 6959 555.42 MB 35,278,021

chr22 90.5 7342 340.59 MB 30,954,495

The co-occurrence model is used. max_size = 3, min_r2 = 0.95.

Table 8 Baseline algorithm WITHOUT pruning redundant
rules.

time #tag SNPs mem #rules

chr19 4.24 9439 75.70 MB 3,048,090

chr21 9.60 6942 191.86 MB 5,643,004

chr22 15.8 7327 130.19 MB 5,563,473

The co-occurrence model is used. max_size = 3, min_r2 = 0.95.

Table 9 Baseline algorithm with skipping rules: if a SNP
appears in the right hand side no less than 5 times, the
SNP will not be considered as right hand side any more.

time #tag SNPs mem #rules

chr19 3.66 9550 18.61 MB 461,139

chr21 8.06 7086 40.74 MB 754,084

chr22 13.5 7447 28.62 MB 755,309

The co-occurrence model is used. max_size = 3, min_r2 = 0.95.

Table 10 Performance of Fast-COOC when memory size is
restricted to 50 MB (max_size = 3, min_r2 = 0.95)

No memory constraint mem = 50 MB

time #tag SNPs mem time #tag SNPs #chunks

chr1 34.9 35556 94.41 MB 35.14 35561 16

chr2 42.9 35502 287.50 MB 43.14 35518 21

chr3 39.3 30695 119.72 MB 39.3 30706 15

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

Page 7 of 12

Table 11 Average r2 and predication accuracy of rules of different length on three populations.

#rules average r2 average accuracy

len model HCB JPT CEU HCB JPT CEU HCB JPT CEU

1 pairwise 85961 84123 69083 0.978 0.942 0.865 0.995 0.989 0.966

2 co-occurrence 1563176 1472654 1014934 0.965 0.878 0.745 0.993 0.977 0.938

2 one-vs-the-rest 1560181 1469765 1012699 0.965 0.881 0.753 0.993 0.977 0.940

3 co-occurrence 26182522 24495802 16064120 0.952 0.790 0.665 0.990 0.960 0.913

3 one-vs-the-rest 7074493 6269985 3955224 0.970 0.791 0.659 0.994 0.970 0.919

The rules are generated from Han Chinese population with min_r2 = 0.9. Some rules may become invalid in the other two populations because the MAF of some
SNPs in the other two populations may be smaller than 5%. When only pairwise LD is used, all algorithms generate the same set of rules. When multi-markers
are considered, FastTagger-COOC and MMTagger generate the same set of rules using the co-occurrence model; FastTagger-avsR and MultiTag generate the
same set of rules using the one-vs-the-rest model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pe
rc

en
ta

ge
 o

f r
ul

es
 w

ith
 r

2>
=

x

r2

length-1 rules

HCB->HCB
HCB->JPT

HCB->CEU

Figure 1 Portability of length-1 rules. The rules are generated from the Han Chinese population with min_r2 = 0.9, and they are then
validated on the other two datasets as well.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pe
rc

en
ta

ge
 o

f r
ul

es
 w

ith
 r

2>
=

x

r2

length-2 rules

HCB->HCB, co-occurrence
HCB->HCB, 1-vs-the-rest
HCB->JPT, co-occurrence
HCB->JPT, 1-vs-the-rest

HCB->CEU, co-occurrence
HCB->CEU, 1-vs-the-rest

Figure 2 Portability of length-2 rules. The rules are generated from the Han Chinese population with min_r2 = 0.9.

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

Page 8 of 12

the average r2 of the rules in the Japanese population
and the Caucasian population is lower than that in the
Chinese population. The decrease of length-2 and
length-3 rules is more significant than that of length-1
rules, which indicates that longer rules are more prone
to over-fitting than shorter rules for both models. The
r2 values of the rules become much lower in the Cauca-
sian population than that in the Japanese population,
which is consistent with the genetic differences between
the three populations.

The same trend is observed on prediction accuracy
(Figure 4, 5 and 6). Even though the rules are generated
from the Chinese population, their accuracy in the Japa-
nese population is always above 80%. Even for length-3
rules, 94% rules generated using the co-occurrence
model have an accuracy no less than 90%, and 97.4%
rules generated using the one-vs-the-rest model have an
accuracy no less than 90% in the Japanese population.
The average accuracy of length-3 rules is above 96% for
both models in the Japanese population(Table 11). The

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pe
rc

en
ta

ge
 o

f r
ul

es
 w

ith
 r

2>
=

x

r2

length-3 rules

HCB->HCB, co-occurrence
HCB->HCB, 1-vs-the-rest
HCB->JPT, co-occurrence
HCB->JPT, 1-vs-the-rest

HCB->CEU, co-occurrence
HCB->CEU, 1-vs-the-rest

Figure 3 Portability of length-3 rules. The rules are generated from the Han Chinese population with min_r2 = 0.9.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1pe
rc

en
ta

ge
 o

f r
ul

es
 w

ith
 a

cc
ur

ac
y>

=
x

accuracy

length-1 rules

HCB->HCB
HCB->JPT

HCB->CEU

Figure 4 Prediction accuracy of length-1 rules. The rules are generated from the Han Chinese population with min_r2 = 0.9.

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

Page 9 of 12

average accuracy of the rules in the Caucasian population
is lower than that in the Japanese population, but it is
still above 91% even for length-3 rules. We believe that if
we use individuals from the same population to do the
testing, the average r2 and accuracy should be even
higher. As for the two models, the number of length-2
rules generated by the two models is similar, while the
co-occurrence model generates about 3.5 times more
length-3 rules than the one-vs-the-rest model. The aver-
age r2 and accuracy of the length-3 rules generated using
the one-vs-the-rest model is higher than that generated

using the co-occurrence model on both populations.
However, since much less rules are generated under the
one-vs-the-rest model, the one-vs-the-rest model needs
more tag SNPs to cover all the other SNPs than the co-
occurrence model as shown in Table 3.

Conclusions
In this paper, we have presented an efficient algorithm
called FastTagger for genome-wide tag SNP selection
using multi-marker LD. FastTagger uses several techni-
ques to reduce running time and memory consumption.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1pe
rc

en
ta

ge
 o

f r
ul

es
 w

ith
 a

cc
ur

ac
y>

=
x

accuracy

length-2 rules

HCB->HCB, co-occurrence
HCB->HCB, 1-vs-the-rest
HCB->JPT, co-occurrence
HCB->JPT, 1-vs-the-rest

HCB->CEU, co-occurrence
HCB->CEU, 1-vs-the-rest

Figure 5 Prediction accuracy of length-2 rules. The rules are generated from the Han Chinese population with min_r2 = 0.9.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1pe
rc

en
ta

ge
 o

f r
ul

es
 w

ith
 a

cc
ur

ac
y>

=
x

accuracy

length-3 rules

HCB->HCB, co-occurrence
HCB->HCB, 1-vs-the-rest
HCB->JPT, co-occurrence
HCB->JPT, 1-vs-the-rest

HCB->CEU, co-occurrence
HCB->CEU, 1-vs-the-rest

Figure 6 Prediction accuracy of length-3 rules. The rules are generated from the Han Chinese population with min_r2 = 0.9.

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

Page 10 of 12

Our experiment results show that FastTagger is several
times faster than existing tag SNP selection algorithms
using multi-marker models, and it consumes much less
memory at the same time, which makes FastTagger can
work on chromosomes containing more than 100 k
SNPs where existing algorithms using multi-marker
models usually fail. FastTagger also select less tag SNPs
than existing algorithms using multi-marker LD. Our
experiment results also show that merging equivalent
SNPs together is the most effective technique in redu-
cing running time and memory consumption.
We implemented two multi-marker models in the Fas-

tTagger algorithm. The one-vs-the-rest model generates
rules with higher average r2 and higher average accuracy
than the co-occurrence model under the same para-
meter settings. However, it generates much less length-3
rules than the co-occurrence model, thus requiring
more tag SNPs to cover all the other SNPs.
We compared the portability and prediction accuracy

of rules of different length. The results show that
shorter rules have better portability and higher predic-
tion accuracy than longer rules. Nevertheless, length-3
rules generated from the Chinese population can still
achieve an average accuracy of 96% on the Japanese
population for both models.
>In our experiments, we calculate prediction accuracy

for individual rules. When we use these rules to make
predictions on unobserved SNPs, it is possible that one
SNP can be predicted by multiple rules, and the predic-
tion of these rules may conflict with one another. In our
future work, we will study how to resolve the conflicts
and make consensus predictions for unobserved SNPs.

Availability and requirements
• Project name: Pattern spaces & data mining algo-
rithms for pharmacogenomics

• Project home page: http://www.comp.nus.edu.sg/
~wongls/projects/snp-analysis/index.html

• Grant: A*STAR SERC PSF 072-101-0016
• Operating system(s): Linux or Windows
• Programming language: C++
• Other requirements: none
• License: FreeBSD for academic use
• Any restrictions to use by non-academics:
Licence needed

Additional file 1: File “FastTagger.zip” contains the source codes and
executables of the FastTagger program, both for Linux and Windows.
Please read file “FastTagger.readme” on how to use the program.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2105-11-
66-S1.ZIP]

Additional file 2: File “FastTagger-sup.xls” contains additional
experiment results, and it is a Microsoft Excel file.
Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-2105-11-
66-S2.XLS]

Acknowledgements
This work was supported in part by an A*STAR grant SERC 072 101 0016
(Liu, Wong) and an NUS NGS scholarship (Wang).

Author details
1Department of Computer Science, National University of Singapore,
Singapore. 2NUS Graduate School for Integrative Science and Engineering,
National University of Singapore, Singapore.

Authors’ contributions
Guimei Liu designed and implemented the FastTagger algorithm, and wrote
this manuscript. Yue Wang participated in discussion of the proposed
method and conducted the experiments. Limsoon Wong gave advice on
the design of the algorithm and the manuscript. All authors read and
approved the final manuscript.

Received: 18 August 2009
Accepted: 29 January 2010 Published: 29 January 2010

References
1. Johnson G: Haplotype tagging for the identification of common disease

genes. Nature Genetics 2001, 29:233-237.
2. Patil N: Blocks of limited haplotype diversity revealed by high-resolution

scanning of human chromosome 21. Science 2001, 294(5547):1719-1723.
3. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B,

Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C,
Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D: The
Structure of Haplotype Blocks in the Human Genome. Science 2002,
296(5576):2225-2229.

4. Avi-Itzhak HI, Su X, de la Vega FM: Selection of Minimum Subsets of
Single Nucleotide Polymorphisms to Capture Haplotype Block Diversity.
Pacific Symposium on Biocomputing 2003, 466-477.

5. Sebastiani P: Minimal haplotype tagging. Proc Natl Acad Sci 2003,
100:9900-9905.

6. Thompson D, Stram D, Goldgar D, Witte JS: Haplotype Tagging Single
Nucleotide Polymorphisms and Association Studies. Human Heredity
2003, 56:48-55.

7. Zhang K, Qin ZS, Liu JS, Chen T, Waterman MS, Sun F: Haplotype Block
Partitioning and Tag SNP Selection Using Genotype Data and Their
Applications to Association Studies. Genome Research 2004, 14:908-916.

8. Halldorsson B: Optimal haplotype block-free selection of tagging SNPs
for genome-wide association studies. Genome Research 2004,
14:1633-1640.

9. Carlson C: Selecting a maximally informative set of single-nucleotide
polymorphisms for association analyses using linkage disequilibrium. The
American Journal of Human Genetics 2004, 74:106-120.

10. Halperin E: Tag SNP selection in genotype data for maximizing SNP
prediction accuracy. Bioinformatics 2005, 21:195-203.

11. Magi R, Kaplinski L, Remm M: The whole genome tagSNP selection and
transferability among HapMap populations. Pacific Symposium on
Biocomputing 2006, 11:535-543.

12. Qin Z, Gopalakrishnan S, Abecasis G: An efficient comprehensive search
algorithm for tagSNP selection using linkage disequilibrium criteria.
Bioinformatics 2006, 22(2):220-225.

13. Liu L, Wu Y, Lonardi S, Jiang T: Efficient algorithms for genome-wide
tagSNPs selection across populations via linkage disequilibrium criterion.
Proc. of 6th Annual International Conference on Computational Systems
Bioinformatics 2007, 67-78.

14. Pritchard JK, Przeworski M: Linkage Disequilibrium in Humans: Models
and Data. Am J Hum Genet 2001, 69:1-14.

15. Howie B: Efficient selection of tagging single-nucleotide polymorphisms
in multiple populations. Human Genetics 2006, 120:58-68.

16. Bakker PD, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler1 D: Efficiency
and power in genetic association studies. Nature Genetics 2005,
37:1217-1223.

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

Page 11 of 12

http://www.comp.nus.edu.sg/~wongls/projects/snp-analysis/index.html
http://www.comp.nus.edu.sg/~wongls/projects/snp-analysis/index.html
http://www.ncbi.nlm.nih.gov/pubmed/11586306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11586306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11721056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11721056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12029063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12029063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12603050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12603050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12900503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14614238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14614238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15078859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15078859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15078859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15289481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15289481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16269414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16269414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11410837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11410837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16680432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16680432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16244653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16244653?dopt=Abstract

17. Pe’er I: Evaluating and improving power in whole-genome association
studies using fixed marker sets. Nature Genetics 2006, 38:663-667.

18. Huang YT, Chao KM: A new framework for the selection of tag SNPs by
multimarker haplotypes. Journal of Biomedical Informatics 2008,
41(6):953-961.

19. Hao K: Genome-wide selection of tag SNPs using multiple-marker
correlation. Bioinformatics 2007, 23(23):3178-3184.

20. Hao K, Di X, Cawley S: LdCompare: rapid computation of single and
multiple marker r2 and genetic coverage. Bioinformatics 2007,
23(2):252-254.

21. Wang WB, Jiang T: A New Model of Multi-Marker Correlation for
Genome-wide Tag SNP Selection. Proc. of the International Conference on
Genome Informatics 2008.

22. Stephens M, Smith N, Donnelly P: A new statistical method for haplotype
reconstruction from population data. The American Journal of Human
Genetics 2001, 68:978-989.

23. Hill W: Estimation of linkage disequilibrium in randomly mating
populations. Heredity 1974, 33(2):229-239.

24. Hill W: Tests for association of gene frequencies at several loci in
random mating diploid populations. Bioinformatics 1975, 31(4):881-888.

25. Liu G, Li J, Wong L: A new concise representation of frequent itemsets
using generators and a positive border. Knowl Inf Syst 2008, 17:35-56.

doi:10.1186/1471-2105-11-66
Cite this article as: Liu et al.: FastTagger: an efficient algorithm for
genome-wide tag SNP selection using multi-marker linkage
disequilibrium. BMC Bioinformatics 2010 11:66.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Liu et al. BMC Bioinformatics 2010, 11:66
http://www.biomedcentral.com/1471-2105/11/66

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/16715096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16715096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18490200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18490200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18006555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18006555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17148510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17148510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17148510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4531429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4531429?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Multi-marker tagging rules
	The one-vs-the-rest model
	The co-occurrence model

	Generating tagging rules
	Merging equivalent SNPs
	Pruning redundant tagging rules
	Skipping rules

	Selecting tag SNPs using a greedy approach

	Results and Discussion
	Comparison with other algorithms
	The effectiveness of the techniques used in FastTagger
	Portability and prediction accuracy

	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

