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Abstract: Amyloidosis is a group of diseases that includes Alzheimer’s disease, prion diseases,
transthyretin (ATTR) amyloidosis, and immunoglobulin light chain (AL) amyloidosis. The mech-
anism of organ dysfunction resulting from amyloidosis has been a topic of debate. This review
focuses on the ultrastructure of tissue damage resulting from amyloid deposition and therapeutic
insights based on the pathophysiology of amyloidosis. Studies of nerve biopsy or cardiac autopsy
specimens from patients with ATTR and AL amyloidoses show atrophy of cells near amyloid fibril
aggregates. In addition to the stress or toxicity attributable to amyloid fibrils themselves, the toxicity
of non-fibrillar states of amyloidogenic proteins, particularly oligomers, may also participate in the
mechanisms of tissue damage. The obscuration of the basement and cytoplasmic membranes of
cells near amyloid fibrils attributable to an affinity of components constituting these membranes to
those of amyloid fibrils may also play an important role in tissue damage. Possible major therapeutic
strategies based on pathophysiology of amyloidosis consist of the following: (1) reducing or prevent-
ing the production of causative proteins; (2) preventing the causative proteins from participating
in the process of amyloid fibril formation; and/or (3) eliminating already-deposited amyloid fibrils.
As the development of novel disease-modifying therapies such as short interfering RNA, antisense
oligonucleotide, and monoclonal antibodies is remarkable, early diagnosis and appropriate selection
of treatment is becoming more and more important for patients with amyloidosis.

Keywords: chemotherapy; diflunisal; electron microscopy; inotersen; neurodegeneration; pathogenesis;
pathology; patisiran; plasma cell dyscrasia; tafamidis

1. Introduction

Amyloidosis is a group of diseases in which amyloid fibrils are deposited in tissues.
According to a report from the International Society of Amyloidosis nomenclature commit-
tee in 2020, 36 proteins are listed as precursors of amyloid fibrils that may be deposited
in the extracellular spaces of tissues of various organs [1]. About half of these proteins
are associated with localized amyloidosis, i.e., confined to a specific single organ, as is
the case of Alzheimer’s disease, wherein amyloid deposition occurs only in the central
nervous system [1]. The other types of amyloidosis are of the systemic type, although
the light and heavy chains of immunoglobulins among the proteins in these types may
also cause localized amyloidosis [2]. Transthyretin (TTR) and the immunoglobulin light
chain (AL) are the two major proteins that cause systemic amyloidosis, namely ATTR
amyloidosis and AL amyloidosis, respectively [3]. In these diseases, amyloid deposition
occurs in various organs, including the heart, lungs, liver, kidneys, gastrointestinal tract,
soft tissues, and peripheral nervous system, resulting in multi-organ failure [4–6]. The
mechanism of organ dysfunction resulting from amyloidosis has been a topic of debate.
The restriction of ventricular wall movement resulting from massive amyloid deposition
has been considered as the cause of heart failure in patients with cardiac amyloidosis [7,8].
Meanwhile, electron microscopic studies have demonstrated the degeneration of tissues
surrounding amyloid deposits, suggesting that amyloid fibrils or non-fibrillar precursors
exert deleterious effects on cells [9].
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In this review, we describe the ultrastructure of tissue damage resulting from amyloid
deposition by focusing on two major systemic amyloidoses, i.e., ATTR amyloidosis and AL
amyloidosis. Because novel disease-modifying therapies for ATTR and AL amyloidoses
appear one after another, therapeutic insights based on the pathophysiology of amyloidosis
are also described. This article is based on previously conducted studies and does not
contain any studies with human participants or animals performed by any of the authors.

2. What Are ATTR Amyloidosis and AL Amyloidosis?

ATTR amyloidosis and AL amyloidosis are major systemic amyloidoses that result
in a fatal clinical outcome, particularly due to heart failure [10,11]. ATTR amyloidosis
is caused by the deposition of amyloid fibrils composed of TTR, which is produced in
the liver and physiologically functions as a transporter of thyroxine and retinol-binding
protein [9]. This disease mainly consists of hereditary ATTR (ATTRv; v stands for vari-
ant) amyloidosis, alternatively known as familial amyloid polyneuropathy, and wild-
type ATTR (ATTRwt) amyloidosis, also known as senile cardiac or systemic amyloidosis,
based on the presence or absence of a mutation in TTR [6]. ATTRv amyloidosis was
regarded as a disease restricted to specific areas of Portugal [12], Japan [13], and Swe-
den [14], while ATTRwt amyloidosis was considered a type of cardiomyopathy found in the
elderly [15–17]. The advances in the diagnostic techniques and increased recognition of
these diseases led to an increase in the number of newly diagnosed patients throughout
the world [18]. In contrast, AL amyloidosis is caused by the deposition of amyloid fibrils
composed of immunoglobulin light chains that are produced by clonal plasma or B cells [5].
AL amyloidosis may be localized due to in situ production of light chains, resulting in a
benign clinical course [2]. However, systemic deposition leads to severe multiple organ
dysfunction, including neuropathy, cardiomyopathy, and nephrotic syndrome [19].

Well-known textbook features of polyneuropathies resulting from ATTR and AL
amyloidoses are progressive symmetrical sensory impairments collectively known as
dissociated sensory loss, which is characterized by a loss of nociception and thermal
sensation, as well as autonomic dysfunction such as diarrhea/constipation, orthostatic
intolerance, dysuria, and erectile dysfunction, due to the loss of small-diameter nerve
fibers [4,20,21]. These characteristics are particularly conspicuous during the early phase
of neuropathy, and motor dysfunction is considered a later manifestation [11]. However,
some patients, particularly those with late-onset ATTRv amyloidosis from non-endemic
areas, manifest weakness and loss of all sensory modalities without clinically significant
autonomic symptoms [22]. A characteristic feature of cardiomyopathy resulting from
amyloidosis is heart failure with preserved ejection fraction on echocardiography [23,24].
Cardiac conduction abnormalities also frequently occur [4,20] (Table 1).

Table 1. Characteristics of ATTR and AL amyloidoses.

ATTR Amyloidosis AL Amyloidosis

ATTRwt Amyloidosis ATTRv Amyloidosis

Precursor protein Transthyretin Transthyretin Immunoglobulin light
chain

Acquired or hereditary Acquired Hereditary Acquired

Underlying condition Aging Mutation in the TTR
gene Plasma cell dyscrasia

Major organ
involvement Heart Heart Heart

Tendon/ligament Peripheral nervous
system

Peripheral nervous
system

Gastrointestinal tract Gastrointestinal tract
Eye Kidney

Liver
Soft tissue

ATTRv amyloidosis = hereditary ATTR amyloidosis; ATTRwt amyloidosis = wild-type ATTR amyloidosis.
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3. Ultrastructure of Tissue Damage
3.1. Atrophy and Degeneration Induced by Amyloid Fibrils

According to studies of autopsy specimens obtained from patients with ATTRv amyloi-
dosis, the extent of the degeneration of neurons in the sensory and autonomic ganglia seems
to be positively correlated with the amount of amyloid, suggesting that neurodegeneration
occurs as a result of amyloid deposition [4,25]. Electron microscopy examination of nerve
biopsy specimens from ATTRv amyloidosis patients demonstrated atrophy of Schwann
cells opposed to amyloid fibril aggregates and loss of axons associated with these Schwann
cells (Figures 1 and 2) [26–29]. The atrophy of Schwann cells near amyloid fibril masses
has also been reported in specimens from AL amyloidosis patients (Figure 3) [21,30,31].
Similar findings have also been reported in the hearts of these patients [4].

The mechanisms of atrophy and subsequent degeneration of tissues near amyloid
fibrils have not been fully elucidated. One of the possibilities is the stress or toxicity that
is attributable to the amyloid fibrils themselves. A previous electron microscope study
of nerve biopsy specimens from Portuguese ATTRv amyloidosis patients showed a long
amyloid fibril penetrating the cytoplasmic membrane of a Schwann cell, suggesting direct
damage of Schwann cells by amyloid fibrils [26]. In contrast, later studies did not describe
this finding, but instead demonstrated distorted Schwann cells toward the direction of
amyloid fibril elongation, suggesting mechanical stress resulting from traction [29]. The
atrophy of Schwann cells tends to be more conspicuous in early-onset ATTRv amyloi-
dosis patients from the conventional endemic foci in Portugal and Japan than in ATTRv
amyloidosis patients from non-endemic areas [28,29]. This might be related to the size
of the amyloid fibrils; the early-onset patients from the endemic foci have long and thick
amyloid fibrils, whereas most patients from non-endemic areas have short and fine amyloid
fibrils [28,29,32,33]. Mechanical stress during the process of amyloid fibril elongation may,
in part, affect Schwann cells because these cells seem to be distorted toward the direction
of amyloid fibril elongation (Figure 2) [29]. Similarly, autopsy specimens of the heart
from early-onset ATTRv amyloidosis patients from conventional endemic foci revealed
atrophy and degeneration of myocardial cells surrounded by long and thick amyloid fibrils,
whereas short and fine amyloid fibrils and less conspicuous atrophy of myocardial cells
were observed in patients from non-endemic areas [4].

Another possibility of the mechanisms of tissue damage is the toxicity of non-fibrillar
states of amyloidogenic proteins [9,34–36]. In particular, many studies suggest the im-
portance of oligomeric species, rather than mature amyloid fibrils, for tissue damage
in Alzheimer’s disease and prion diseases [34,35]. Experiments using schwannoma or
neuroblastoma cell lines indeed demonstrated the toxic effects of non-fibrillar TTR, thus
supporting this view [37–40]. Studies using Caenorhabditis elegans or Drosophila also demon-
strated the neurotoxicity of TTR in the absence of fibrillar amyloid deposition [41]. The
extent of nerve fiber loss is more conspicuous, despite the smaller number of amyloid
deposits, in late-onset ATTRv amyloidosis patients from non-endemic areas than in early-
onset ATTRv amyloidosis patients from endemic foci [4], suggesting that the toxicity
of non-fibrillar TTR participates in the mechanisms of neurodegeneration, especially in
late-onset ATTRv amyloidosis patients from non-endemic areas.
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Figure 1. Representative electron microscopy photograph of Schwann cells near a mass of amyloid fibrils. A cross-section
of the sural nerve biopsy specimen from a patient with ATTRv amyloidosis. Subunits of Schwann cells indicated by
arrowheads are located in the periphery of a mass of amyloid fibrils [28]. A high-powered view in the box is shown in
Figure 2. Uranyl acetate and lead citrate stain. Scale bar = 2 µm.
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Figure 2. Atrophy of Schwann cells near amyloid fibrils. A cross-section of the sural nerve biopsy specimen from a patient 

with ATTRv amyloidosis. Basement and cytoplasmic membranes indicated by arrowheads are indistinct [28,29]. A base-

ment membrane indicated by arrows seems to be pulled toward the center of an amyloid fibril mass [29]. Uranyl acetate 

and lead citrate stain. Scale bar = 0.5 μm. 

Figure 2. Atrophy of Schwann cells near amyloid fibrils. A cross-section of the sural nerve biopsy specimen from a patient
with ATTRv amyloidosis. Basement and cytoplasmic membranes indicated by arrowheads are indistinct [28,29]. A basement
membrane indicated by arrows seems to be pulled toward the center of an amyloid fibril mass [29]. Uranyl acetate and lead
citrate stain. Scale bar = 0.5 µm.
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Figure 3. Subunits of Schwann cells surrounded by amyloid fibrils in AL amyloidosis. A cross-section of the sural nerve 
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Figure 3. Subunits of Schwann cells surrounded by amyloid fibrils in AL amyloidosis. A cross-section of the sural nerve
biopsy specimen. Schwann cells become atrophic and their basement and cytoplasmic membranes are indistinct [21]. Uranyl
acetate and lead citrate stain. Scale bar = 0.5 µm.

3.2. Obscuration of Basement and Cytoplasmic Membranes

Another important finding regarding tissue damage resulting from amyloid deposi-
tion is the obscuration of the basement and cytoplasmic membranes near amyloid fibrils.
Electron microscope studies of nerve biopsy specimens have demonstrated that the mem-
branes of Schwann cells become obscure when they are near amyloid fibrils in both ATTR
amyloidosis and AL amyloidosis patients (Figures 2 and 3) [21,28–31]. The contours of
Schwann cells may completely disappear when Schwan cells are surrounded by amyloid
fibrils, suggesting that the destruction of these membranes occurs as a result of amyloid
fibril formation [29]. Scattered cytoplasmic organelles may be found within the aggregates
of amyloid fibrils as remnants of Schwann cells in such cases [29]. This destruction of
Schwann cell membranes may play an important role in the demyelination reported in
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ATTRv amyloidosis patients [29,42]. Obscuration of basement and cytoplasmic membranes
of cells constituting vessel walls, such as endothelial cells and pericytes, near amyloid
fibrils has also been demonstrated in ATTRv amyloidosis patients [28].

A previous study of cardiac amyloid deposits suggested that TTR aggregation into
fibrillar structures tends to occur in association with the basement membrane because
the expression of basement membrane components, such as collagen IV, laminin, and
fibronectin, increases in parallel with the accumulation of amyloid fibrils [43]. Studies
of nerve biopsy specimens also revealed that amyloid fibrils are frequently found at or
around basement membranes surrounding endoneurial microvessels or Schwann cells [6].
These findings suggest an affinity of the components constituting the basement membrane
to those of amyloid fibrils. Additionally, a previous study suggested that cholesterol
and anionic phospholipids might be important for TTR aggregation and TTR-induced
cytotoxicity [44].

4. Insights into Therapeutic Strategies

The possible major therapeutic strategies for amyloidosis consist of the following:
(1) reducing or preventing the production of causative proteins; (2) preventing the causative
proteins from participating in the process of amyloid fibril formation; and/or (3) elim-
inating the already-deposited amyloid fibrils. As described earlier, the deposition of
amyloid fibrils or non-fibrillar oligomers induces atrophy and subsequent degeneration
of neighboring cells in amyloidosis. Therefore, intervention during the early stages of the
disease process, before the occurrence of tissue damage by amyloid fibrils, seems to be an
efficient approach.

From this viewpoint, the development of therapeutic agents to reduce or prevent
the production of causative proteins is remarkable in both ATTR and AL amyloidoses.
Liver transplantation was established as a treatment for ATTRv amyloidosis in the 1990s to
prevent the production of the variant TTR from the liver [45]. Recently, patisiran, a short
interfering RNA, and inotersen, an antisense oligonucleotide, were shown to reduce the
production of TTR and have become available for ATTRv amyloidosis patients [46,47]. As
these gene-silencing agents can prevent the production of both the variant and wild-type
TTRs, these drugs are expected to be efficacious even for ATTRwt amyloidosis [48,49].
The main therapeutic strategy for AL amyloidosis is composed of chemotherapy against
plasma cell dyscrasia to reduce or prevent the production of immunoglobulin light chains
from clonally proliferated plasma cell or B cell lineage [10]. Although a combination of mel-
phalan and steroids is the conventional chemotherapy for treating AL amyloidosis, other
agents that are considered include melphalan, thalidomide, lenalidomide, pomalidomide,
bortezomib, ixazomib, and daratumumab [10].

As for the strategy of preventing the causative proteins from participating in the
process of amyloid fibril formation, TTR stabilizers, such as tafamidis and diflunisal, were
demonstrated to be efficacious in patients with ATTR amyloidosis [50,51]. These drugs
prevent the dissociation of TTR tetramers, which are physiologically stable, into unstable
monomers, thereby inhibiting the subsequent misfolding and aggregation of TTR [6].
Tafamidis, in particular, is now available for not only ATTRv amyloidosis but also ATTRwt
amyloidosis patients who have cardiomyopathy [8,52]. The use of doxycycline, a derivative
of tetracycline that inhibits matrix metalloproteinases dysregulated in tissues in patients
with ATTR and AL amyloidoses [53,54], is considered another future add-on option to
inhibit amyloid fibril formation [55–57].

Regarding the elimination of amyloid fibrils, monoclonal antibodies against the com-
ponents of amyloid deposits have been considered therapeutic agent candidates. A hu-
manized IgG1 monoclonal antibody against serum amyloid P component (SAP), which is a
plasma glycoprotein found in any type of amyloid deposit, was considered a therapeutic
agent for systemic amyloidosis along with the use of an agent that depletes circulat-
ing SAP [58]. Although a phase 1 clinical trial demonstrated the shrinkage of amyloid
deposits [59], the development of this antibody has been discontinued [18]. Several mon-
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oclonal antibodies specific to TTR or immunoglobulin light chain have also been devel-
oped [60–64]. Among these, phase 3 clinical trials of an IgG1 monoclonal antibody against
the kappa and lambda light chain amyloid fibrils (CAEL-101) are ongoing (NCT04512235
and NCT04504825) [7].

5. Conclusions

Amyloidosis is a group of diseases in which amyloid fibrils are deposited in various
organs, including the nervous system, heart, lungs, liver, kidneys, gastrointestinal tract,
and soft tissues. Amyloid deposits may be localized to a single organ, as in the case of
Alzheimer’s disease, or systemic, such as in ATTR and AL amyloidoses.

According to studies of autopsy specimens obtained from patients with ATTRv amy-
loidosis, the extent of the degeneration of neurons in the sensory and autonomic ganglia
is positively correlated with the amount of amyloid, suggesting that neurodegeneration
occurs as a result of amyloid deposition [4,25]. Electron microscopy examination of nerve
biopsy specimens from ATTRv amyloidosis and AL amyloidosis patients demonstrated
atrophy of the Schwann cells and loss of associated axons near amyloid fibril aggre-
gates [21,26–31]. Similar findings also were reported in cardiac autopsy specimens from
ATTR amyloidosis patients [4]. The mechanisms of atrophy and subsequent degeneration
of tissues neighboring amyloid fibrils have not been fully elucidated. In addition to the
stress or toxicity attributable to amyloid fibrils themselves, the toxicity of the non-fibrillar
states of amyloidogenic proteins may also participate in the mechanisms of tissue dam-
age [9,34–36]. In particular, many studies suggest the importance of non-fibrillar oligomeric
species, rather than mature amyloid fibrils, for tissue damage in Alzheimer’s disease and
prion diseases [34,35].

Another important finding of tissue damage resulting from amyloid deposition is
the obscuration of the basement and cytoplasmic membranes of Schwann cells and cells
constituting endoneurial microvessels near amyloid fibrils [28,29]. As amyloid fibrils were
frequently found at or around basement membranes surrounding endoneurial microvessels
or Schwann cells [6], an affinity of components constituting the basement membrane to
those of amyloid fibrils may also play an important role in tissue-damage associated
with amyloidosis.

The possible major therapeutic strategies for amyloidosis consist of the following:
(1) reducing or preventing the production of causative proteins; (2) preventing the causative
proteins from participating in the process of amyloid fibril formation; and/or (3) elimi-
nating already-deposited amyloid fibrils. In addition to liver transplantation to prevent
the production of variant TTR [45], patisiran, a short interfering RNA, and inotersen, an
antisense oligonucleotide, can reduce the production of TTR and have become available
for ATTRv amyloidosis patients [46,47]. As these gene-silencing agents can prevent the
production of both variant and wild-type TTRs, these drugs are also expected to be ef-
ficacious even for ATTRwt amyloidosis [48,49]. The main therapeutic strategy for AL
amyloidosis is composed of chemotherapy against plasma cell dyscrasia [10]. As for the
strategy of preventing the causative proteins from participating in the process of amyloid
fibril formation, TTR stabilizers such as tafamidis and diflunisal have been demonstrated
to be efficacious in patients with ATTR amyloidosis [50,51]. In particular, tafamidis is
now available for not only ATTRv amyloidosis but also for ATTRwt amyloidosis patients
who have cardiomyopathy [8,52]. Future therapeutic options include doxycycline as an
add-on agent to prevent amyloid fibril formation, and monoclonal antibodies against SAP,
TTR, and immunoglobulin light chains to remove the already-deposited amyloid fibrils or
their components [18,55–57,60–64]. As the development of these novel disease-modifying
therapies is remarkable, early diagnosis and appropriate selection of treatment is becoming
more and more important for patients with amyloidosis.
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