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A B S T R A C T   

Objective: This study trains a U-shaped fully convolutional neural network (U-Net) model based on 
peripheral contour measures to achieve rapid, accurate, automated identification and segmen-
tation of periprostatic adipose tissue (PPAT). 
Methods: Currently, no studies are using deep learning methods to discriminate and segment 
periprostatic adipose tissue. This paper proposes a novel and modified, U-shaped convolutional 
neural network contour control points on a small number of datasets of MRI T2W images of PPAT 
combined with its gradient images as a feature learning method to reduce feature ambiguity 
caused by the differences in PPAT contours of different patients. This paper adopts a supervised 
learning method on the labeled dataset, combining the probability and spatial distribution of 
control points, and proposes a weighted loss function to optimize the neural network’s conver-
gence speed and detection performance. Based on high-precision detection of control points, this 
paper uses a convex curve fitting to obtain the final PPAT contour. The imaging segmentation 
results were compared with those of a fully convolutional network (FCN), U-Net, and semantic 
segmentation convolutional network (SegNet) on three evaluation metrics: Dice similarity coef-
ficient (DSC), Hausdorff distance (HD), and intersection over union ratio (IoU). 
Results: Cropped images with a 270 × 270-pixel matrix had DSC, HD, and IoU values of 70.1%, 27 
mm, and 56.1%, respectively; downscaled images with a 256 × 256-pixel matrix had 68.7%, 26.7 
mm, and 54.1%. A U-Net network based on peripheral contour characteristics predicted the 
complete periprostatic adipose tissue contours on T2W images at different levels. FCN, U-Net, and 
SegNet could not completely predict them. 
Conclusion: This U-Net convolutional neural network based on peripheral contour features can 
identify and segment periprostatic adipose tissue quite well. Cropped images with a 270 × 270- 
pixel matrix are more appropriate for use with the U-Net convolutional neural network based on 
contour features; reducing the resolution of the original image will lower the accuracy of the U- 
Net convolutional neural network. FCN and SegNet are not appropriate for identifying PPAT on 
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T2 sequence MR images. Our method can automatically segment PPAT rapidly and accurately, 
laying a foundation for PPAT image analysis.   

1. Introduction 

Prostate cancer (PCa) is the most common cancer of the male genitourinary tract and remains the most common cancer and a 
significant cause of death in men worldwide, with approximately 1.6 million new cases and 366,000 deaths per year [1]. The prostate 
is surrounded by a unique adipose depot called periprostatic adipose tissue (PPAT), whose characteristics can contribute to high-grade 
or highly aggressive PCa [2–7] and to shorter progression-free survival of patients with PCa under active surveillance [8]. In patients 
with PCa receiving androgen deprivation therapy (ADT) as primary treatment, PPAT features are an essential predictor of time to 
progression of castration-resistant PCa (CRPC) [9]. Adipokines secreted by PPAT may promote the aggressiveness and local spread of 
PCa [10–12]. PPAT is vital in the progression and aggressiveness of PCa. Therefore, having tools that can rapidly and automatically 
segment images of PPAT and then calculate its volume, area, and thickness and integrate them into the PCa risk assessment models can 
reduce the time, improve efficiency, and improve the understanding of the PCa. 

Image segmentation is the primary part of medical image processing and subsequent analysis. Precise medical image segmentation 
is still challenging due to the diverse morphology of human organs and lesions and image background noise interference. Although 
convolutional neural network (CNNs) have significantly improved upon traditional image segmentation methods [13,14], they have 
disadvantages such as redundant computation and their inability to capture local and global features simultaneously. A U-shaped fully 
convolutional neural network (U-Net) has been proposed to compensate for the shortcomings of CNNs. U-Net currently has better 
results in the segmentation of prostate glands and lesions in magnetic resonance imaging (MRI) images [15–18], but its algorithm still 
needs to be optimized to improve its recognition and segmentation. 

The delineation of PPAT is not yet standardized. The distribution of PPAT is not consistent in all prostate directions, especially in 
the lack of large areas of adipose tissue on the posterior surface [19]. Some researchers [20–22] have measured and counted perivesical 
fat, perirectal fat, anal saphenous fat, and subcutaneous fat as PPAT. Perirectal fat is not part of PPAT. It has been found that the 
embryonic origin and anatomical characteristics of Denonvilliers’ fascia differ from the urogenital fascial organ layer that constitutes 
the perirectal fascia [23]. 

Most image analysis software used to measure periprostatic fat parameters accompanies the examination instrument, but some 
third-party medical image processing software is used, such as OsiriX MD [7], MIM [8], and ImageJ [24]. No image analysis software is 
dedicated to the prostate, and segmenting PPAT has a long learning curve and lacks the creation of an automated image analysis 
function module. No studies have used deep learning methods to recognize and segment PPAT. Further exploration of applicable 
algorithms and models is needed to achieve rapid and accurate automated recognition and segmentation of PPAT. 

We defined the delineation range of PPAT on MR images and proposed an innovative, improved U-Net network based on contour 
feature learning to segment PPAT. By using manual annotation of T2-weighted (T2W) MR images of PCa with small sample amounts, 
data augmentation, and customized loss functions, the U-Net network emphasizes the learning of PPAT contour feature points. It then 
predicts the PPAT contour to achieve automatic segmentation of PPAT for further image analysis and integration into the clinical 
workflow. 

2. Materials and methods 

2.1. Patient selection 

MR images of patients admitted to Haikou Hospital of Xiangya Medical College of Central South University from January 2013 to 
December 2016 who were diagnosed with PCa after the first biopsy for suspected PCa were selected for the study. This study was a 
retrospective cohort study approved by the Biomedical Ethics Committee of Haikou People’s Hospital (reference 2023-(Ethical Re-
view)-199). 

2.2. Inclusion and exclusion criteria 

Inclusion criteria:  

① prostate multiparametric (mp)-MRI followed by transrectal ultrasound-guided prostate biopsy (systematic and targeted biopsy) 
with complete pathology; 

②MRI sequence that included transverse (axial) T2W images. 

Exclusion criteria:  

① Repeat prostate biopsy;  
② MR image artifacts or poor display affecting image determination;  
③ Previous transurethral surgery, rectal or anal surgery, endocrine therapy, chemotherapy or radiotherapy; 
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④ Pathological findings not of adenocarcinoma or no Gleason score;  
⑤ Taking statins or hormonal drugs that affect lipid metabolism for more than three months prior to MRI;  
⑥ Pelvic lipomatosis was considered based on the MRI. 

2.3. MR image selection 

MRI is the predominant imaging examination for staging and diagnostic evaluation of PCa, with favorable soft tissue resolution. 
Identification of PPAT on MR images is the method of choice because it is the most accurate and the most independent of investigator 
experience [10]. T2W is one of the two predominant imaging sequences on MRI, and it is the predominant sequence for assessing 
anatomical structures [25]. Since T2W MRI reveals the prostate anatomy, the best angle to view the prostate on MRI is the axis 
(transverse). Therefore, we chose the T2 sequence to label the prostate gland and surrounding fat. The pixel matrix of the T2W MRI was 
512 × 512. 

On the T2 sequence images, we can observe the boundary between PPAT and perirectal fat, and there is also a difference in the 
signal and density of the two types of fat. PPAT has a homogenous density and brighter signal, while the density of perirectal fat is 
granular and darker (see Fig. 1). We delineated the PPAT as anterior to the pubic symphysis, flanked by the medial foramina, posterior 
to Denonvilliers’ fascia (excluding the rectal mesenteric fat), superior to the bladder, and inferior to the urethral sphincter. This range 
is consistent with that of David [26]. 

2.4. Labeling for the network 

This method used an interpretable label to express the PPAT location and edge information. The label consisted of two parts: a mask 
generated from the PPAT annotated image and a gradient image. Our T2 sequence image dataset saved the images in RGB format. The 
manually labeled PPAT contour lines were labeled in yellow (see Appendix I for details), which was defined as the gold standard. These 
contours were obtained and filled by Python code, and the feature points representing the contour were randomly and uniformly 
selected on the contour to form a mask with only the contour features, which we used as Label-1 for U-Net. Then, the Laplacian and 
Sobel operators for image edge detection were used to obtain the gradient image as Label-2 for U-Net. 

2.5. Data augmentation 

U-Nets are data-driven networks that can be augmented to increase the amount of data when there is too little. Data augmentation 
usually increases the number of copies of an image by panning, rotating, flipping, scaling, and so on, so that the network can “learn” 
more image features, to reduce redundant information in the training dataset, and to increase the data usage and generalization ability 
of the network [27]. Data augmentation is only used for the training dataset and not for the validation dataset. In this study, we 
expanded the number of images in the training dataset from 400 to 1600 by positive and negative rotation and horizontal and vertical 
flipping. 

2.6. Network training 

The neural network of this method used the U-shaped fully convolutional network U-Net as the base network and modified its 

Fig. 1. Delineation of periprostatic adipose tissue. Note: Anteriorly is the pubic symphysis, flanked by the internal obturator muscle. Posteriorly is 
Denonvilliers’ fascia (excluding rectal mesenteric fat). The upper boundary is the bladder, and the lower boundary is the urethral sphincter. The 
yellow arrow points to the boundary between the perirectal fat and Denonvilliers’ fascia; the red arrow with the yellow arrow and the outline of the 
prostate is surrounded by the PPAT. PS: pubic symphysis; OM: internal omentum; P: prostate; R: rectum. 
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structure. Since the U-Net network, compared with other convolutional neural networks, can be trained with less data to obtain a 
model with good results, has fewer training parameters, and has a strong ability to learn edge information, this network was used to 
learn the contours of PPAT. 

We normalized the dataset and limited the data range to eliminate the interference of individual abnormal samples with the 
network model. Additionally, the training method was set to shuffle mode to reduce network learning bias due to the interconnection 
of adjacent images. The dataset in this paper was divided into a training set and a test set. The training set was used to train the network 
parameters and obtain the network model; the test set was used to predict the results and evaluate the model. The training set was used 
with the label of the network to calculate the loss value, and iterative optimization was continuously done to shrink the loss value so 
that the network model gradually converged. We used 80% of the data (400 images) for training and the other 20% of the data (100 
images) for testing. The pixel matrix of the T2W images was 512 × 512. To train the network to focus on learning to identify PPAT, we 
cropped the original T2W image, choosing an image matrix of 270 × 270 pixels for the first cropping and 256 × 256 pixels for the 
second cropping. We chose the 270 × 270 pixel size to ensure that the fatty tissue was cropped within the image field of view and that a 
fully convolutional network (FCN) could accommodate arbitrarily sized images. In contrast, a 256 × 256 was obtained by resizing the 
512 × 512 image. The difference between the two was that the 270 × 270-pixel image was only cropped and not scaled down, while 
the 256 × 256 image was only scaled down and not cropped. 

In this method, the network included two parts: input and labels, where the input was the original MRI T2W image, and labels 
included mask and gradient images. The network continuously obtained the edge information of the fat tissue in the T2W image by 4 ×
downsampling, 4 × upsampling to the original image size, and feature fusion with the downsampling counterparts to obtain more 
accurate feature information. It finally generated the outer contour line of the fat tissue. At this point, the current loss was calculated, 
and the Adam optimizer iteratively optimized the model to converge. The process is shown in Fig. 2. 

2.7. Customized loss function 

During the training process of a network model, the loss function can reflect the gap between the model and the actual data well, 
and then the optimizer is used to optimize and update the weights of the parameters in each layer of the network. Since the commonly 
used loss functions, such as cross-entropy loss (CE) and mean square error (MSE), cannot predict the contour points of the tissue around 
the prostate well, we used a customized loss function, as described by Equation (1): 

Loss=Lmax + λ1Lmean + λ2Ldsc (1)  

where Lmax represents the maximum distance between the predicted vital point and the actual value point, as defined in Equation (2); 

Lmax =
⃦
⃦pi(x, y) − p′

i(x, y)
⃦
⃦

∞, i ∈ 1, 2,⋯N (2)  

where Lmean represents the mean distance between the predicted vital point and the actual value point, as outlined in Equation (3); 

Lmean =
1
N

∑N

i=1

⃦
⃦pi(x, y) − p′

i(x, y)
⃦
⃦

2 (3)  

where Ldsc represents the overlap index between polygon A enclosed by all predicted vital points and polygon B enclosed by the actual 
value points, as depicted in Equation (4); 

Ldsc = e
2(|A|∩|B|)
(|A|∪|B|) (4)  

with λ1 = 3.0, λ2 = 80.0 as the empirically selected values. 
In the calculation of the loss function, the calculation was performed twice. The first time was to calculate the position difference 

Fig. 2. Training flow diagram.  
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between the PPAT contour by the network and the edge of the T2W image adipose tissue mask; the second time was to calculate the 
difference between the PPAT contour by the network and the corresponding pixel of the gradient image. The two calculated loss 
functions can reflect the learning of the current model for the adipose tissue contour, and the optimization can be iterated 
continuously. 

2.8. Generating contours 

For the model prediction results, further processing was needed to obtain the contours of the PPAT. First, the model-predicted PPAT 
contour was filtered out using an erosion operation to remove inconspicuous areas at the edges. The entire periprostatic adipose target 
contour was highlighted using binarization to visually evaluate the predicted PPAT contour. The predicted PPAT was then used to 
generate the corresponding PPAT contour. Finally, the final PPAT contours were detected and generated using the convex hull method 
of the Open Source Computer Vision Library (OPENCV) to complete the automatic annotation of PPAT contours on T2W images. The 
workflow is shown in Fig. 3. 

2.9. Quantitative evaluation of segmentation 

Three evaluation parameters commonly used in medical image segmentation were used to quantitatively evaluate the ability of 
different methods to predict the PPAT contour segmentation of the T2W images: the Dice similarity coefficient (DSC), Hausdorff 
distance (HD), and intersection over union (IoU). 

DSC refers to the degree of agreement between the model’s predicted fat contour and the doctor’s manual annotation. It is 
calculated as Equation (5): 

DSC(A,B)=
2|A ∩ B|
|A| + |B|

(5)  

where A and B represent the point sets contained in the two fat contour regions. The closer the DSC value is to 1, the closer the point 
sets of the two groups are.  

⑵ HD calculates the maximum difference between the two sets of contour point sets and represents the maximum degree of 
mismatch between the segmentation result and the two point sets on the fat contour region of the valid label. The formula is as 
Equation (6): 

HD(A,B)=max(h(A,B), h(B,A)) (6)  

where h(A, B) and h(B, A) are called the one-way Hausdorff distances from set A to set B and from set B to set A, respectively, which are 
defined as Equations (7) and (8). 

h(A,B)=max
ai∈A

min
bj∈B

⃦
⃦ai − bj

⃦
⃦ (7)  

h(B,A)=max
bj∈B

min
aj∈A

⃦
⃦bj − ai

⃦
⃦ (8) 

A smaller value of HD suggests that the maximum difference between the two sets is minor, indicating higher effectiveness of the 
segmentation. 

Fig. 3. An illustration of contour generation pipeline.  
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⑶ IoU is the union of two point set intersection ratios, representing the degree of similarity between them. The larger the value, the 
better the effect. See Equation (9) for the definition. IoU is an evaluation parameter commonly used in target detection. The 
similarity or overlap of two samples can be calculated by the ratio between the predicted border and the actual border [28]: 

IOU(A,B)=
|A ∩ B|
|A ∪ B|

(9)  

2.10. Comparison with other CNNs 

Like the U-Net network, other fully convolutional networks, such as the standard fully convolutional network (FCN) and semantic 
segmentation convolutional network (SegNet), are also constructed by encoding and decoding. The difference is that the latter net-
works adopt the VGG16 network to extract feature information. Our proposed approach, based on the improved U-Net network with 
contour features, is compared on image segmentation capabilities against FCN, SegNet, and U-Net. 

2.11. Experimental hardware and software environment 

The experiment was run on the Windows 10 operating system. The graphics card was the NVIDIA GeForce GTX 1050Ti, the deep 
learning framework was PyTorch 1.2, and the experimental environment was Python 3.7. Network training was set to 160 training 
rounds (epochs), and the initial learning rate was set to 0.0005 and gradually decreased with epoch number. The training batch was set 
to 1. Since the optimizer can accelerate the training speed of convolutional neural networks, we sampled the adaptive moment 
estimation (Adam) optimizer to update the weights of each layer of the network and the customized loss function. The general flow 
chart is shown in Fig. 4. 

2.12. Statistical analysis 

SPSS 20.0 was used for all statistical analyses. Quantitative data conforming to a normal distribution are expressed as mean and 
standard deviation. The T test was used for statistical analysis between the two groups, and one-way analysis of variance was used for 
statistical analysis of three groups. The least significant difference test was used as the ANOVA post hoc test for data with homogeneity 
of variance, and the Games-Howell test was used for data with heterogeneity of variance. Enumeration data are expressed as ratio (%) 
and were analyzed by Fisher’s exact probability method. P < 0.05 indicated statistical significance. 

3. Results 

3.1. Graph of the iterative loss function 

In deep learning, by minimizing the loss function, the model reaches the convergence state and reduces the error of the model’s 
predicted value. As seen from the loss function curve (Fig. 5), the loss function gradually decreases and eventually stabilizes with the 
epoch increase, indicating that the model has converged to the optimal state. The epoch number is more than 160 times, or the change 
of the training loss is less than a given threshold (less than 300) considered converged. 

Fig. 4. The core steps of the proposed solution.  
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3.2. Gradient image labels 

Gradient image labels were divided into two categories, one for images obtained with the Laplace operator (shown in Fig. 6) and the 
other for images obtained with the Sobel operator (see Fig. 7). 

3.3. Generated contour 

Fig. 8 shows the original T2 sequence from the base to the apex of the prostate, the manually annotated images, the contour of 
adipose tissue around the prostate predicted by the proposed method, and the final adipose tissue contour generated. The contour of 
adipose tissue generated is red. 

3.4. Comparison of predicted contours with hand-annotated contours 

Fig. 9 shows the superposition of the predicted adipose tissue contour and the hand-annotated contour (gold standard). The 
predicted adipose tissue is blue, the hand-marked adipose tissue is red, and the overlap is purple. As seen from this figure, our method 
segmented and labeled the PPAT well, but there were still some differences from the gold standard of manual labeling. 

3.5. Quantitative evaluation and comparison of image segmentation 

Before training, for the network to focus on learning to identify adipose tissue to improve the accuracy of network learning, 
cropping of T2 sequence images is needed. We altered the images into two sizes (270 × 270- and 256 × 256-pixel matrices) and then 
compared the segmentation ability on the two sizes in the network model. Additionally, our proposed network was compared with the 
image segmentation results of the FCN, U-Net, and SegNet networks by three evaluation metrics, DSC, HD, and IoU. 

3.6. Cropped image (270 × 270 pixels) 

Before training, to improve the accuracy of the results and to make the network model focus on learning the PPAT of the MR 
images, the images needed to be cropped, and the size of the first cropped image was 270 × 270 pixels. The quantitative evaluation 
values of different segmentation methods on this dataset are given in Table 1. Table 1 shows that our new proposed U-Net network 
based on feature learning outperformed the other three networks in all three evaluation parameters, DSC, HD, and IoU. 

3.7. Downscaled image (256 × 256 pixels) 

The size of the downscaled image was 256 × 256 pixels. Table 2 gives this dataset’s quantitative evaluation values of different 
segmentation methods. Table 2 shows that our proposed U-Net network based on contour feature learning and the standard U-Net 
network was significantly better than the other two networks. The standard U-Net network slightly outperformed our network in the 
DSC and IoU, but our proposed network model had better evaluation parameter values in the HD. 

3.8. Comparison with other convolutional networks 

Fig. 10 shows compares the adipose tissue contours from the segmentation by our proposed improved convolutional network with 
the results of other convolutional networks. Since our proposed improved U-Net network had the best segmentation evaluation value 

Fig. 5. The training loss function curve.  
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on the cropped image of 270 × 270 pixels, we choose the cropped image of 270 × 270 pixels for segmentation prediction. Since the 
evaluation parameters of SegNet were the worst, we did not include SegNet for comparison. Each row of the figure represents images of 
different levels of the prostate (from the base to the apex of the prostate). This figure shows that our U-Net predicted PPAT at all levels 
(each row had a predicted segmentation map of fat), while FCN and U-Net did not predict PPAT at all levels. In the third row, neither 
FCN nor U-Net predicted the segmentation of PPAT; in the fourth first row, U-Net could not (predict the segmentation of PPAT). 

4. Discussion 

4.1. Label selection and network training 

AI has penetrated into our daily lives, playing novel roles in industry, healthcare, transportation, education, and many more areas 
that are close to the general public. AI is believed to be one of the major drives to change socio-economical lives. In another aspect, AI 
contributes to the advancement of state-of-the-art technologies in many fields of study, as helpful tools for groundbreaking research 
[29]. A medical image represents the internal structure and function of the anatomical region, and image segmentation is the basis of 
subsequent analysis. Before the emergence of deep learning, segmentation of medical images was usually performed using traditional 
image processing and machine learning methods, such as the K-nearest neighbor (KNN), Gaussian mixture model (GMM), support 
vector machine (SVM), and other algorithms. However, the above methods are based on shallow feature analysis of the image, so they 
often learn only local features during feature learning, and manual assistance is often needed. Deep learning, giving it good robustness 
[30] and the ability to process the original data directly. Compared with traditional image segmentation methods, it performs 
significantly better at medical image segmentation [14]. 

The CNN, a representative algorithm of deep learning, is the central algorithmic model in computer vision, and its application to the 
analysis of medical images has obvious advantages [31]. 

To solve the problem that the CNN is slow in calculation and to take into account both local and global features, Ronneberger et al. 
proposed the U-Net convolutional neural network [32] based on the FCN, which was so named because its structure resembles the 
letter U. The advantages of U-Net are that it is fast, spatially consistent, and can accommodate images of any size. The U-Net model is 
small, can adapt to a small training set, and has a strong learning ability for edge information [32], so it is very suitable for 
small-sample medical image segmentation under a lack of data. 

Medical images often have unclear tissue boundaries and complex pixel gradients, and only higher-resolution information can be 
used for accurate segmentation. U-Net extracts feature information through downsampling and dimension reduction, restoring res-
olution to the maximum extent through upsampling. It effectively improves segmentation accuracy and achieves good positioning 
accuracy through the network structure containing the coding–decoding structure of the jump connection [15]. U-Net combines 

Fig. 6. An example of result image by using the Laplacian operator. Notes: A Original image, B Laplacian extracted image.  

Fig. 7. An example of result image by using the Sobel operator. Notes: A Original diagram, B vertical gradient image, C horizontal gradient image.  
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low-resolution information (the basis for identifying object categories) with high-resolution information (the basis for accurate seg-
mentation and localization), which is suitable for medical image recognition and segmentation. The U-Net can accurately detect and 
segment prostate glands and lesions on MR images [15–17]. The U-Net trained with T2 and diffusion-weighted images performed 
similarly to that evaluated by clinical prostate imaging reports and data systems [18]. While we collected a total of 500 labeled images 
from 102 patients, the overall sample size was not large, so the we chose U-Net to identify segmented PPAT. 

There is still no research on the segmentation of PPAT using any deep learning methods, and we need to explore applicable al-
gorithms and models to achieve fast and accurate automated segmentation of PPAT. Given the irregular boundaries of the PPAT, its 
signal differentiation from the surrounding adjacent muscles, bones, and fascia is significant in T2W images of MRI. 

A contour is a curve composed of a series of connected points, representing the basic shape of the object. The contour is continuous, 
while the edge is not all continuous. The border of PPAT is its contour, and the feature points on the contour are its pixels. Because of 
the large amount of contour data in the image, it is worth studying how to find the feature points that reflect the contour of fat around 
the prostate from these feature points. Only the characteristic points of the contour of adipose tissue around the prostate can be 
identified and segmented. Therefore, the pixel difference of images between adjacent tissues can be considered for achieving seg-
mentation. Fat contour is linear. To improve the efficiency of network learning and reduce redundancy, we used the feature points 
(also known as control points) method of image contour detection [33] to convert the hand-labeled linear fat tissue contour into the 
feature points of the contour as the learning label-1 of the network and input them into the U-Net network for learning. The feature 
points are pixels, and there is a large amount of contour data in the image. Therefore, it is worth studying how to find the feature points 
that reflect the main shape features of the contour from these data points. Fig. 5 shows the heatmap of the contour line converted to 
feature points, and it can be seen that the feature points are more evenly distributed on the contour line. 

The Laplacian and Sobel operators are standard algorithms for image gradient detection. The Sobel operator is a first-order dif-
ferential operator that detects edges from different directions and strengthens the weight of pixels in four directions above and below 
the center pixel. As a result, the edges in the image are relatively bright, yielding a more intuitive visual effect and playing a particular 
role in suppressing isolated noise [34]. The Laplacian operator is a second-order differential operator with the property of rotation 
invariability, that is, isotropy, so it has the same effect in all directions. This makes the deviation error small, but it also makes the 
deviation direction unpredictable [34]. These two operators have complementary properties. Therefore, we used the images extracted 
by these two operators as Label-2 input into our modified U-Net to allow the network to better learn the contour features of the PPAT. 
Figs. 6 and 7 show that we successfully extracted the images of these respective operators. 

Fig. 8. The results of contour prediction and generation across four prostate levels, from the base (row 1) to the apex (row 4), each depicted at a 
resolution of 270 × 270. Note: In Manually Segmentation, yellow is the contour of PPAT; red is the prostate contour; blue is the contour of PCa 
lesions; green is the contour of the PCa transition zone; in Generated Contours, red outlines indicate adipose tissue contours. 
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In the training of neural networks, two essential tools to improve their performance are the loss function and optimizer. By 
minimizing the loss function, the network model achieves convergence (the loss value tends to be stable) and reduces the error of the 
model’s predicted value. According to the graph of our iterative loss function (Fig. 4), it can be seen that with more training batches, 
the loss function value gradually decreases and tends to be stable, that is, the convergence state. This result reflects that the prediction 
ability of our model is good. An optimizer is used to update and calculate the network parameters that affect model training and model 
output to minimize the loss function, and its primary function is to accelerate the training speed of the convolutional neural network. It 
dynamically adjusts each parameter’s learning rate by using the gradient’s first-order and second-order moment estimation [35]. The 

Fig. 9. A visualization of overlay maps between the predicted contour and gold standard for six patients. Note: Blue represents the predicted 
contours of PPAT, red indicates manual segmentation, and purple shows the overlap between the two. 

Table 1 
Quantitative evaluation of image segmentation (270 × 270).  

Method DSC/% HD/mm IoU/% P value 

FCN 9.4 76.0 5.4 0.001 
U-Net 51.1 51.3 37.2  
SegNet 15.2 87.0 8.2  
Ours 70.1 27.0 56.1   

Table 2 
Quantitative evaluation of image segmentation (256 × 256).  

Method DSC/% HD/mm IoU/% P value 

FCN 37.9 44.2 25.6 0.002 
U-Net 70.1 29.9 55.6  
SegNet 17.0 63.2 10.1  
Ours 68.7 26.7 54.1   
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main advantage of Adam is that after bias correction, the learning rate of each iteration has a specific range, which makes the pa-
rameters relatively stable [36]. 

4.2. Evaluation and comparison of convolutional networks segmentation 

Compared with the U-Net network, other fully convolutional networks, such as FCN and SegNet, are also constructed as encoding 
and decoding. The difference is that SegNet adopts the VGG16 network to extract feature information. Furthermore, the three feature 
fusion methods are different: (1) the FCN network feature fusion method is added, that is, the feature map after upsampling and the 
feature map after downsampling are added, the number of features is unchanged, but the feature value is changed; (2) the feature 
fusion method of the U-Net network is Concat, that is, the feature map after upsampling is trimmed and stacked with the feature map 
after downsampling so that the feature information is thicker, the number of features is increased, and the feature value is unchanged. 
(3) SegNet [37] was initially designed to deal with the task of street view understanding. The most significant advantage of this 
network is that the subscripts of the location information of the feature values are saved in the highest pooling layer of the down-
sampling, and these subscripts restore the position of the feature values during upsampling to improve the prediction accuracy. The 
add method increases the amount of information in each dimension of the features describing the image under the condition that the 
dimensions are unchanged. The Concat method is the combination of the number of channels. That is, the feature dimensions 
describing the image are increased, while the amount of information in each dimension is unchanged. 

Before training, to make the network focus on learning the PPAT and improve the accuracy of the network, T2 sequence images 
needed to be made smaller. We cropped the image into the 270 × 270 size and downscaled them to 256 × 256 and then compared the 
advantages and disadvantages of the two sizes in the network. At the same time, we compared the image segmentation results of our 
proposed network with those of the FCN, U-Net, and SegNet networks by DSC, HD, and IoU. 

Table 1 shows that our proposed U-Net network based on feature point learning outperforms the other three networks in all 
evaluation metrics, DSC, HD, and IoU, at the 270 × 270-pixel size. Table 2 shows that our proposed feature point learning-based U-Net 
network and the standard U-Net network significantly outperform the other two networks in all three evaluation metrics, DSC, HD, and 

Fig. 10. The visual results of FCN, U-Net, and our method in PPAT image segmentation across four prostate levels, from the base (row 1) to the apex 
(row 4). Note: FCN, fully convolutional neural network; U-Net, U-shaped convolutional neural network; Ours, our method. 
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IoU, in the 256 × 256-pixel matrices. The standard U-Net slightly outperforms our network in the DSC and IoU metrics, but in the HD 
metric, our proposed improved network is better. This also means that our U-Net network based on the contour features is better than 
FCN, U-Net, and SegNet for the recognition and segmentation efficacy of PPAT on T2 sequence images of MRI. 

By comparing the three evaluation indexes at 270 × 270 and 256 × 256, we see that the two metrics, DSC and IoU, are better at 270 
× 270 pixels than at 256 × 256. Moreover, HD on the 256 × 256 size is only 0.3 mm more than at the 270 × 270 size. Therefore, the 
cropped image of 270 × 270 pixels is more suitable for our proposed learning model of segmenting the adipose tissue around the 
prostate. The 270 × 270-pixel image was cropped only without deflation, while the 256 × 256-pixel image was reduced only without 
cropping. This shows that the deflation of the original image affects the recognition accuracy of the convolutional neural network. 
Based on the above results, we compared the prediction results and the final generated PPAT contour map output from the network 
model with the manually labeled map (Fig. 8) and visualized and compared the two by superimposing the images (Fig. 9). 

In summary, the neural network model we constructed can segment PPAT well, but there is still a gap between it and the gold 
standard of manual labeling. Since all three evaluation metrics of the SegNet network were the worst, we did not include them in the 
comparison. Fig. 10 show that our proposed U-Net network based on contour feature points predicted the complete PPAT on T2 
sequence images at different levels, while FCN and U-Net could not predict the full range of adipose tissue contours. 

4.3. Limitations 

The patient data came from a single center, and there was a small sample size of imaging data. Our modified U-Net convolutional 
neural network based on contour line features was validated using its dataset, and it had problems such as unclear segmentation edges 
and missing spatial information. External validation was not possible because there is no publicly available database of labeled PPAT. 
The final predicted contour in this paper was generated based on the convex hull approach, so the effect may be less satisfactory for the 
few cases where the prostate contour has a concave shape. 

5. Conclusions 

In this paper, a novel method of segmentation of PPAT by the U-Net network based on contour feature points is proposed to achieve 
fast and relatively accurate automatic recognition and segmentation of PPAT. This study shows that the cropped image of 270 × 270 
pixels is more suitable for training the U-Net convolutional neural network than 256 × 256, as the deflation of the original image 
affects the recognition accuracy of the CNN on the image. Furthermore, the FCN and SegNet are not suitable for predicting PPAT on 
T2W MR images. This study verifies the feasibility of our modified U-Net, but it still needs optimization. Whether this neural network 
can perform stably on images from different MRI devices and medical centers still needs to be validated by expanding the sample size 
and the number of centers. 
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