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Abstract: Dempster-Shafer (DS) evidence theory is widely used in various fields of uncertain infor-
mation processing, but it may produce counterintuitive results when dealing with conflicting data.
Therefore, this paper proposes a new data fusion method which combines the Deng entropy and the
negation of basic probability assignment (BPA). In this method, the uncertain degree in the original
BPA and the negation of BPA are considered simultaneously. The degree of uncertainty of BPA and
negation of BPA is measured by the Deng entropy, and the two uncertain measurement results are
integrated as the final uncertainty degree of the evidence. This new method can not only deal with
the data fusion of conflicting evidence, but it can also obtain more uncertain information through the
negation of BPA, which is of great help to improve the accuracy of information processing and to
reduce the loss of information. We apply it to numerical examples and fault diagnosis experiments
to verify the effectiveness and superiority of the method. In addition, some open issues existing in
current work, such as the limitations of the Dempster-Shafer theory (DST) under the open world
assumption and the necessary properties of uncertainty measurement methods, are also discussed in
this paper.

Keywords: Dempster-Shafer evidence theory; uncertainty management; Deng entropy; negation of
basic probability assignment; data fusion

1. Introduction

Information fusion, as a fusion method that uses normalization and aggregation
functions to compare large amounts of data, is the key to data fusion technology [1]. In
recent years, it has been widely used in condition identification [2,3], location discovery [4]
and other fields [5,6]. With the increasing complexity of systems, there are many restrictions
on relying on a single sensor for monitoring. Compared with single-source independent
processing, information fusion has the advantages of improving detection and reliability,
reducing inference ambiguity, and improving detection accuracy and performance [7].
However, due to the uncertainty of the real world, multi-sensor information sources may
be affected by the environment. Therefore, the information in practical applications is
often uncertain and imprecise [8]. According to the data type with uncertainty and the
type of uncertainty, three different types of uncertainty caused by fuzziness, randomness
and partial information are identified [9]. Many methods have been proposed to deal
with the uncertain information, such as rough sets theory [10,11], fuzzy set theory [12],
Dempster-Shafer (DS) evidence theory [13,14], D number [15,16], R number [17], and so
on [18,19].

The Dempster-Shafer evidence theory was first proposed by Dempster [13] in 1967,
and then further developed by his student Shafer [14] in 1976. This theory is a reasoning the-
ory that can effectively deal with uncertain information [20,21], and is widely used in many
fields, such as fault diagnosis [22,23], decision making [24–26], risk assessment [27,28],
classification [29–31], and so on [32,33], which solves many problems caused by uncertain
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information. However, in application, the classic combination rule of DS theory has been
found to have some problems. For example, when it is used to fuse highly conflicting
evidence [34], the result may be counterintuitive [35–37], which makes many researchers
question the effectiveness of the theory when it is used to merge highly conflicting data [38].
Therefore, how to deal with the uncertainty under the framework of DS theory is still an
open issue [39–41].

Shannon entropy is a well-known uncertainty measurement theory, which can ef-
fectively use probability distribution to measure uncertainty. It has been widely used in
many fields, such as the contrast between trade-offs in social conflict analysis [42]. This
entropy-based measurement has attracted wide attention from researchers [43,44], and
provides new ideas for researchers to solve the uncertainty measurement problem under
the DS evidence theory framework. The Deng entropy [45] is a generalization of Shannon
entropy, which can also be regarded as a generalized Shannon entropy. Deng entropy is
proposed to measure the uncertainty of basic probability assignment. When basic probabil-
ity assignment (BPA) degenerates to a probability distribution, Deng entropy degenerates
to Shannon entropy.

The concept of Negation of BPA is considered to be of great significance for uncertainty
measurement and knowledge expression. Yin et al. [46] proposed a more general method
to find the negation of BPA. Based on this, this paper proposes an improved data fusion
method which combines negation of BPA and Deng entropy, and takes them together as
the uncertain degree. The method first uses Deng entropy to measure the uncertainty of
evidence, then calculates the negation of BPA, and then calculates the uncertainty of the
negation of BPA through Deng entropy to achieve the effect of obtaining more uncertain
information. After that, combine the results of the two uncertainty measurements to get
the final body uncertainty, and use the uncertainty to correct the evidence. Finally, the DS
theory combination rules are used to fuse the revised evidence.

The rest of this paper is organized as follows. The second section briefly introduces
the Dempster-Shafer evidence theory, Shannon entropy, Deng entropy and the relevant
knowledge of the BPA. The third section proposes an improved data fusion method based
on Deng entropy and negation of BPA. The fourth section verifies the method through a
numerical example. In the fifth section, this method is applied to an actual fault detection
experiment and compared with other methods. In the sixth section, we discussed some
open issues in future work. Finally, the seventh section gives a conclusion.

2. Preliminaries

In this section, we will briefly introduce some preliminaries.

2.1. Dempster-Shafer Evidence Theory

There is a non-empty set Ω = {θ1, θ2, . . . , θi, . . . , θn}, which contains N mutually
exclusive and exhaustive events. Such Ω is called the frame of discernment (FOD). The
power set of Ω contains 2N elements, expressed as follows:

2Ω = {∅, {θ1}, {θ2}, ..., {θn}, {θ1, θ2}, ..., {θ1, θ2, ..., θi}, ..., Ω}. (1)

In the frame of discernment, define mass probability function m; it is a function from
the power set 2Ω to [0, 1], and the function satisfies the following relationship:

m(∅) = 0, ∑
A∈Ω

m(A) = 1. (2)

When m(A) > 0, the proposition subset A is called a focal element. m(A) is the mass
function value of A, also known as basic probability assignment (BPA) or basic belief
assignment (BBA).
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The body of evidence (BOE) is considered to be the unit of uncertain information
evidence, which consists of focal sets and their mass value, expressed as follows:

(<, m) =
{
〈A, m(A)〉 : A ∈ 2Ω, m(A) > 0

}
. (3)

where, < is a subset of the powerset 2Ω.
A mass function m can also be expressed as a belief function Bel or a plausibility

function Pl, which is defined as follows:

Bel(A) = ∑
∅ 6=B⊆A

m(B), Pl(A) = ∑
B∩A 6=∅

m(B). (4)

Belief function Bel(A) of subset A represents the level of support for proposition A,
and the plausibility function Pl(A) represents the degree of no objection to proposition A.

In the framework of evidence theory, two independent mass functions m1, m2 can be
data fused by the following Dempster combination rules [13,14]:

m(A) = (m1 ⊕m2)(A) =
1

1− k ∑
B∩C = A

m1(B)m2(C). (5)

In the formula, k is called the normalization factor and is defined as:

k = ∑
B∩C = ∅

m1(B)m2(C). (6)

2.2. Shannon Entropy

In 1948, Claude Shannon first proposed the concept of “Information Entropy” and
began to quantify information. Shannon entropy shows how much the measurement of in-
formation is equal to the uncertainty, which effectively solves the uncertainty measurement
problem of probability measurement.

For the discrete probability set p1,..., pn, Shannon entropy is defined as follows [47]:

H = −∑ pi log pi. (7)

2.3. Belief Entropy

As a belief entropy, Deng entropy is a promotion of Shannon entropy. It is similar in
form to the classical Shannon entropy, but it deals with the belief for each focal element,
and provides some effective method for uncertainty measurement and processing more
uncertainty information.

Deng entropy is defined as follow [45]:

Ed(m) =− ∑
A⊆X

m(A) log2
m(A)

2|A| − 1
. (8)

where m is a mass function, A is the focal element of m, and |A| is the cardinality of A.
After a simple transformation, the Deng entropy can be regarded as a composite measure:

Ed(m) = ∑
A⊆X

m(A) log2(2
|A| − 1)− ∑

A⊆X
m(A) log2 m(A). (9)

2.4. The Negation of BPA

Expressing information in a negative way is important in the field of information
science. After Zadeh formally proposed the negation of probabilistic events in the BISC
blog, Smets [48] used the implacability function and commonality function to define the
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negation of the mass function, and used m to represent the negation of m in the model,
expressed as m(A) = m(A).

However, the Smets model has limitations. When applied to the negation of m(θ), m(θ)
is always equal to 0. At the same time, the Dempster-Shafer theory (DST) has a more general
framework than the Bayes structure, and the BPA is easier to obtain. Therefore, Yin et al. [46]
proposed a method to calculate the negation of the basic probability assignment. This
method takes into account the number of focal elements, and the negations of focal elements
are independent of each other.

In the frame of discernment, for each focal element ei, replace the initial belief as-
signment pi with complementary probability 1 − pi to obtain the negation of m(ei). Next,
calculate the sum σ of m(ei) of all focal elements, and then perform normalization.

After the above series of transformations, the general formula of negation of the mass
function is derived as:

m(ei) =
1−m(ei)

n− 1
. (10)

where n is the number of focal elements.

3. The Proposed Data Fusion Method

Aiming at the problem of uncertainty in the FOD, in this section, this paper proposes
an improved data fusion method based on the Deng entropy and the negation of BPA.

In this method, the uncertainty of BPA and the negation of BPA are measured by the
Deng entropy, and the BPA in BOE is modified by uncertainty; then the data fusion is
performed by the DS combination rule. Finally, the fusion results are used as the basis for
decision-making.

The data fusion process of this method is shown in Figure 1.
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(BPA) and the negation of BPA.

The details of the data fusion steps are as follows:

Step 1: Data obtained from sensors is modeled as BOE.

Due to the uncertainty of the real world, the knowledge contained in information
sources is often difficult to extract. Considering that BPA can be applied to practical
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problems, the data from different sensors will be modeled as body of evidence (BOE), and
their BPA values will be obtained.

Step 2: Uncertainty measure of BPA with Deng entropy.

After obtaining the data from sensors, it is necessary to measure the uncertainty of the
original data. In this paper, by calculating the Deng entropy of the BPA value of each BOE,
the uncertainty of the initial evidence is obtained, which is uncertain degree 1.

For the i-th BOE (i = 1, 2, . . . , m), the uncertainty of the BPA value is calculated
as follows:

Ed(mi) = − ∑
A⊆X

mi(A) log2
mi(A)

2|A| − 1
. (11)

where m is a mass function, A is the focal element of m, and |A| is the cardinality of A.

Step 3: Calculate the negation of BPA.

In order to obtain more uncertain information, this paper uses Yin et al.’s method to
negate the information. In each obtained BOE, for the mass function m(ei) of the i-th focal
element ei, negate according to the following formula to obtain the negation of BPA:

m(ei) =
1−m(ei)

n− 1
. (12)

where n is the number of focal elements.

Step 4: Uncertainty measure of the negation of BPA with Deng entropy.

Combining the negation of BPA and Deng entropy, the new uncertain degree is
calculated. This step will measure the uncertainty of the inverse evidence to realize the
combination of the two. For the negation of BPA obtained in the third step, continue to use
the Deng entropy to measure the degree of uncertainty, and record the result as uncertainty
degree 2.

For the focal elements’ negation of BPA m of the i-th BOE (i = 1, 2, . . . , m), the
uncertainty corresponding to the Deng entropy is calculated as follows:

Ed(mi) = − ∑
A⊆X

mi(A) log2
mi(A)

2|A| − 1
. (13)

Step 5: Calculate the final uncertainty of BOE.

Before further processing of the data, the final BOE uncertainty needs to be calculated.
Considering the uncertainty degree of the original BPA and the negation of BPA, the final
uncertainty will be more accurate.

Suppose Edu(mi) represents the final degree of uncertainty of the i-th group of data.
In this step, this paper adds up the data uncertainty measured in the second and fourth
steps to obtain the new evidence uncertainty measurement results Edu(mi).

Step 6: Calculate the weight of each BOE.

Based on the new degree of uncertainty calculated in the fifth step, for the i-th BOE
(i = 1, 2, . . . , m), the weight wi is calculated by the following formula:

wi =
Edu(mi)

m
∑

i = 1
Edu(mi)

. (14)

Step 7: Calculate the modified BPA.

Before final data fusion, modify the BPA value in BOE with BOE uncertain degree to
obtain modified BPA.
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For Proposition A in each BOE, the modified BPA is calculated as follows:

mw(A) =
m

∑
i = 1

wimi(A). (15)

Step 8: Use Dempster’s rule to combine modified BPAs.

Finally, use the classic combination rule of DS theory to fuse the modified BPA obtained
in the seventh step.

For each proposition A in BOE, the fusion result can be obtained by calculating the
Dempster combination rule (m − 1) times by the following formula:

m(A) = ((((mw ⊕mw)1 ⊕mw)2 . . .⊕mw)(m−2) ⊕mw)
(m−1)

(A), m ≥ 2. (16)

4. Numerical Example

In order to verify the effectiveness of the data fusion method proposed in this pa-
per and to facilitate comparison with other methods, this part reviews the experiments
in [49], and realizes the verification and comparison of the method in this paper through a
numerical example.

In this example, the evidence reported by five sensors is modeled as BPA, which is
shown in Table 1 as m1, m2, m3, m4, and m5. Intuitively, target A may be the right target
with the highest credibility.

Table 1. BPAs in the numerical example.

BPA m(A) m(B) m(C) m(A,C)

1st Sensor report: m1 (·) 0.41 0.29 0.3 0
2nd Sensor report: m2 (·) 0 0.9 0.1 0
3rd Sensor report: m3 (·) 0.58 0.07 0 0.35
4th Sensor report: m4 (·) 0.55 0.1 0 0.35
5th Sensor report: m5 (·) 0.6 0.1 0 0.3

For this example, perform the method in Section 3.
In the 1st step, get the data from the sensor and model it as BOE. In this example, the

value in [49] is used, which is shown in Table 1.
In the 2nd step, according to Deng entropy’s Formula (11), the uncertainty of BPA of

each sensor is calculated as follows:

Ed(m1) = − ∑
A⊆X

m1(A) log2
m1(A)

2|A| − 1
= 1.5664

Ed(m2) = − ∑
A⊆X

m2(A) log2
m2(A)

2|A| − 1
= 0.4690

Ed(m3) = − ∑
A⊆X

m3(A) log2
m3(A)

2|A| − 1
= 1.8092

Ed(m4) = − ∑
A⊆X

m4(A) log2
m4(A)

2|A| − 1
= 1.8914

Ed(m5) = − ∑
A⊆X

m5(A) log2
m5(A)

2|A| − 1
= 1.7710

In the 3rd step, calculate the negation of BPA from the first sensor according to the
Formula (12):

m(A) =
1−m(A)

n− 1
= 0.295
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m(B) =
1−m(B)

n− 1
= 0.355

m(C) =
1−m(C)

n− 1
= 0.350

Similarly, Formula (12) is used to calculate the negation of BPA of the 2nd to 5th
sensors, and the results are shown in Table 2:

Table 2. The negation of BPAs in the numerical example.

Negation of BPA m(A) m(B) m(C) m(A,C)

1st Sensor report: m1 (·) 0.295 0.355 0.35 0
2nd Sensor report: m2 (·) 0 0.1 0.9 0
3rd Sensor report: m3 (·) 0.21 0.465 0 0.325
4th Sensor report: m4 (·) 0.225 0.45 0 0.325
5th Sensor report: m5 (·) 0.2 0.45 0 0.35

In the 4th step, use Formula (13) to calculate the Deng entry of the negation of BPA,
and obtain the value of uncertain degree 2 as follows:

Ed(m1) = − ∑
A⊆x

m1(A) log2
m1(A)

2|A| − 1
= 1.5801

Ed(m2) = − ∑
A⊆x

m2(A) log2
m2(A)

2|A| − 1
= 0.4690

Ed(m3) = − ∑
A⊆x

m3(A) log2
m3(A)

2|A| − 1
= 2.0286

Ed(m4) = − ∑
A⊆x

m4(A) log2
m4(A)

2|A| − 1
= 2.0447

In the 5th step, the uncertainty degree of BOE calculated in the 2nd step and the 4th
step is added to obtain the final uncertainty degree of BOE as follows:

Edu(m1) = 1.5664 + 1.5801 = 3.1465

Edu(m2) = 0.4690 + 0.4690 = 0.9380

Edu(m3) = 1.8092 + 2.0286 = 3.8378

Edu(m4) = 1.8914 + 2.0447 = 3.9361

Edu(m5) = 1.7710 + 2.0676 = 3.8386

In the 6th step, the weight of each BOE is calculated by Formula (14). The results are
as follows:

w1 =
Edu(m1)

∑5
i = 1 Edu(m1)

= 0.2005

w2 =
Edu(m2)

∑5
i = 1 Edu(m2)

= 0.0598

w3 =
Edu(m3)

∑5
i = 1 Edu(m3)

= 0.2445

w4 =
Edu(m4)

∑5
i = 1 Edu(m4)

= 0.2508

w5 =
Edu(m5)

∑5
i = 1 Edu(m5)

= 0.2445
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In the 7th step, with Equation (15), the modified BPA is calculated as follows:

mw(A) =
5

∑
i = 1

wimi(A) = 0.5087

mw(B) =
5

∑
i = 1

wimi(B) = 0.1786

mw(C) =
5

∑
i = 1

wimi(C) = 0.0661

mw(A, C) =
5

∑
i = 1

wimi(A, C) = 0.2467

In the 8th step, data fusion is carried out based on the Dempster combination rules (16):

m(A) = ((((mw ⊕mw)1 ⊕mw)2 ⊕mw)3 ⊕mw)4(A) = 0.9887

m(B) = ((((mw ⊕mw)1 ⊕mw)2 ⊕mw)3 ⊕mw)4(B) = 0.0007

m(C) = ((((mw ⊕mw)1 ⊕mw)2 ⊕mw)3 ⊕mw)4(C) = 0.0084

m(A, C) = ((((mw ⊕mw)1 ⊕mw)2 ⊕mw)3 ⊕mw)4(A, C) = 0.0037

The fusion results of other methods are shown in Table 3, and they are simply com-
pared in the form of a bar chart in Figure 2.

Table 3. Fusion results with different methods in the numerical example.

Methods m(A) m(B) m(C) m(A,B) m(A,C) m(B,C) m(A,B,C)

Ni et al.’s method [50] 0.6513 0.1648 0.1730 0.0016 0.0096 0.0016 0
Gan et al.’s method [51] 0.6881 0.1385 0.1572 0.0007 0.0074 0.0007 0

Deng et al.’s method [49] 0.9820 0.0039 0.0107 0 0.0034 0 0
Zhang et al.’s method [52] 0.9820 0.0033 0.0115 0 0.0032 0 0
Yuan et al.’s method [53] 0.9886 0.0002 0.0072 0 0.0039 0 0

The proposed method 0.9887 0.0007 0.0084 0 0.0037 0 0

In the proposed method, appropriate data preprocessing is applied before the final
data fusion, such as using the Deng entropy to measure the uncertainty of information,
which is conducive to the fusion of conflicting data. Therefore, according to the experimen-
tal results of this method, even if the second group of evidence has a big conflict with other
evidence, we can still infer that A is the correct target, which is in line with our intuition
and proves the effectiveness of this method. At the same time, in comparison with other
fusion methods, we found that the methods of Ni et al.’s [50] and Gan et al.’s [51] carried
out uncertainty measurement and data fusion for the subset of propositions that are not
needed for decision-making. The process is more cumbersome and will lead to dispersal
of confidence. The method proposed in this paper avoids this problem, makes the fusion
result more credible, and facilitates decision-making. Compared with the other methods
mentioned, this method takes more uncertainty into account in the process of negation of
BPA, which makes the measurement results more accurate.
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Figure 2. Comparison of fusion results of different methods in the numerical example.

5. Application

In this section, taking the fault diagnosis experiment of a motor rotor in [54] as an
example, the proposed method is applied to the engineering application program that
needs decision analysis to verify the effectiveness of the method.

5.1. Problem Statement

According to the experimental content in [54], there are three different fault modes of
the motor rotor, which are {F1} = {rotor unbalance}, {F2} = {rotor misalignment}, {F3} = {sup-
port loosening}. In this experiment, vibration acceleration sensors are placed in different
positions to collect vibration signals, and the amplitude of the acceleration vibration fre-
quency under three different frequencies of Freq1, Freq2 and Freq3 is defined as the fault
characteristic variable. Table 4 shows the data from three vibration acceleration sensors
ms1 (·), ms2 (·) and ms3 (·).

Table 4. Fault diagnosis data modeled as BPAs in the application problem.

Freq1 Freq2 Freq3

BOE {F2} {F3} {F1,F2} {F1,F2,F3} {F2} {F1,F2,F3} {F1} {F2} {F1,F2} {F1,F2,F3}

ms1 (·) 0.8176 0.0003 0.1553 0.0268 0.6229 0.3771 0.3666 0.4563 0.1185 0.0586
ms2 (·) 0.5658 0.0009 0.0646 0.3687 0.7660 0.2341 0.2793 0.4151 0.2652 0.0404
ms3 (·) 0.2403 0.0004 0.0141 0.7452 0.8598 0.1402 0.2897 0.4331 0.2470 0.0302
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5.2. Data Fusion Procedure Based on the Proposed Method

According to the method mentioned in Section 3 of this paper, the data processing
proceeds as follows:

Step 1: Data obtained from sensors is modeled as BOE.

This section directly uses the fault diagnosis data modeled as BPA in [54] and shows it
in Table 4. For the detailed process of modeling sensor data as BPA in Table 4, please refer
to [54].

Step 2: Uncertainty measure of BPA with the Deng entropy.

In this paper, we use the Deng entropy to measure uncertainty, and use Formula (11)
to calculate the Deng entropy of each BOE. The detailed calculation process of the Deng
entropy of the BPA value at Freq1 vibration acceleration frequency is shown as follows:

Ed(ms1) = − ∑
A⊆X

ms1(A) log2
ms1(A)

2|A| − 1
= 1.1196

Ed(ms2) = − ∑
A⊆X

ms2(A) log2
ms2(A)

2|A| − 1
= 2.3975

Ed(ms3) = − ∑
A⊆X

ms3(A) log2
ms3(A)

2|A| − 1
= 3.0161

The Deng entropy of BOE at Freq2 and Freq3 vibration acceleration frequencies is also
calculated and shown in Table 5.

Table 5. Uncertainty with the Deng entropy of BPAs in the application problem.

Ed(·) Freq1 Freq2 Freq3

Ed(ms1 ) 1.1196 2.0146 2.0040
Ed(ms2 ) 2.3975 1.4422 2.2691
Ed(ms3 ) 3.0161 0.9784 2.1677

Step 3: Calculate the negation of BPA.

In this paper, the general method of Yin et al. is used to calculate the negation of BPA.
Through Formula (12), for Freq1 vibration acceleration frequency, each negation of BPA is
calculated as follows:

ms1({F2}) =
1−ms1({F2})

n− 1
= 0.0608

ms1({F3}) =
1−ms1({F3})

n− 1
= 0.3332

ms1({F1, F2}) =
1−ms1({F1, F2})

n− 1
= 0.2816

ms1({F1, F2, F3}) =
1−ms1({F1, F2, F3})

n− 1
= 0.3244

ms2({F2}) =
1−ms2({F2})

n− 1
= 0.1447

ms2({F3}) =
1−ms2({F3})

n− 1
= 0.3330

ms2({F1, F2}) =
1−ms2({F1, F2})

n− 1
= 0.3118

ms2({F1, F2, F3}) =
1−ms2({F1, F2, F3})

n− 1
= 0.2104
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ms3({F2}) =
1−ms3({F2})

n− 1
= 0.2532

ms3({F3}) =
1−ms3({F3})

n− 1
= 0.3332

ms3({F1, F2}) =
1−ms3({F1, F2})

n− 1
= 0.3286

ms3({F1, F2, F3}) =
1−ms3({F1, F2, F3})

n− 1
= 0.0849

Using the same method, we can calculate the negation of BPA under Freq2 and Freq3,
and the results are shown in Table 6.

Table 6. Negation of BPAs for the original evidence in the application problem.

Negation
of BPAs

Freq1 Freq2 Freq3

{F2} {F3} {F1,F2} {F1,F2,F3} {F2} {F1,F2,F3} {F1} {F2} {F1,F2} {F1,F2,F3}

ms1 (·) 0.0608 0.3332 0.2816 0.3244 0.3771 0.6229 0.2111 0.1812 0.2938 0.3138
ms2 (·) 0.1447 0.3330 0.3118 0.2104 0.2341 0.7659 0.2402 0.1950 0.2449 0.3199
ms3 (·) 0.2532 0.3332 0.3286 0.0849 0.1402 0.8598 0.2367 0.1890 0.2511 0.3232

Step 4: Uncertainty measure of the negation of BPA with the Deng entropy.

In this step, we calculate the Deng entropy of the negation of BPA to obtain more
uncertain information. With Equation (13), the Deng entropy of the negation BPA at Freq1
vibration acceleration frequency is calculated as follows:

Ed(ms1) = − ∑
A⊆X

ms1(A) log2
ms1(A)

2|A| − 1
= 3.1727

Ed(ms2) = − ∑
A⊆X

ms2(A) log2
ms2(A)

2|A| − 1
= 3.0141

Ed(ms3) = − ∑
A⊆X

ms3(A) log2
ms3(A)

2|A| − 1
= 2.6189

Similarly, the Deng entropy of the negation of the BPA under Freq2 and Freq3 can be
calculated. The results are shown in Table 7.

Table 7. Deng entropy of negation of the BPAs in the application problem.

Ed(·) Freq1 Freq2 Freq3

Ed(ms1 ) 3.1727 2.7047 3.3107
Ed(ms2 ) 3.0141 2.9352 3.2635
Ed(ms3 ) 2.6189 2.9985 3.2789

Step 5: Calculate the final uncertainty of BOE.

The final uncertainty of BOE is based on two measurements of BPA and the negation
of BPA by the Deng entropy. In this step, the two uncertainty degrees of BOE under Freq1
are added to obtain the final uncertainty degree Edu:

Edu(ms1) = 1.1196 + 3.1727 = 4.2923

Edu(ms2) = 2.3975 + 3.0141 = 5.4116

Edu(ms3) = 3.0161 + 2.6189 = 5.6350

The final uncertain degree of BOE under Freq2 and Freq3 is shown in Table 8.
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Table 8. Uncertain degree of the BPAs in the application problem.

Edu(·) Freq1 Freq2 Freq3

Edu(ms1 ) 4.2923 4.7193 5.3147
Edu(ms2 ) 5.4116 4.3774 5.5326
Edu(ms3 ) 5.6350 3.9769 5.4466

Step 6: Calculate the weight of each BOE.

Through Formula (14), the weight of each BOE under the Freq1 vibration acceleration
frequency is calculated as follows:

ws1 =
Edu(ms1)

∑3
i = 1 Edu(ms1)

= 0.2798

ws2 =
Edu(ms2)

∑3
i = 1 Edu(ms2)

= 0.3528

ws3 =
Edu(ms3)

∑3
i = 1 Edu(ms3)

= 0.3674

For the vibration acceleration frequencies of Freq2 and Freq3, the weight of each BOE
is shown in Table 9.

Table 9. Weight of body of evidence (BOE) in the application problem.

Wsi(·) Freq1 Freq2 Freq3

Ws1 (·) 0.2798 0.3610 0.3262
Ws2 (·) 0.3528 0.3348 0.3396
Ws3 (·) 0.3674 0.3042 0.3343

Step 7: Calculate the modified BPA.

According to Equation (15), the modified BPA under Freq1 can be calculated as follows:

mw({F2}) =
3

∑
i = 1

wsi mi({F2}) = 0.5167

mw({F3}) =
3

∑
i = 1

wsi mi({F3}) = 0.0005

mw({F1, F2}) =
3

∑
i = 1

wsi mi({F1, F2}) = 0.0714

mw({F1, F2, F3}) =
3

∑
i = 1

wsi mi({F1, F2, F3}) = 0.4114

The modified BPA of Freq2 and Freq3 can also be calculated by Equation (15), and the
results are shown in Table 10.

Table 10. Modified BPAs based on the proposed method for data fusion.

Freq1 Freq2 Freq3

{F2} {F3} {F1,F2} {F1,F2,F3} {F2} {F1,F2,F3} {F1} {F2} {F1,F2} {F1,F2,F3}

mw(·) 0.5167 0.0005 0.0714 0.4114 0.7429 0.2572 0.3113 0.4346 0.2113 0.0429
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Step 8: Use Dempster’s rule to combine modified BPAs.

By using Equation (16), the modified BPA of Freq1 is fused as follows:

m({F2}) = ((((mw ⊕mw)1 ⊕mw)2({F2}) = 0.8871

m({F3}) = ((((mw ⊕mw)1 ⊕mw)2({F3}) = 0.0002

m({F1, F2}) = ((((mw ⊕mw)1 ⊕mw)2({F1, F2}) = 0.0430

m({F1, F2, F3}) = ((((mw ⊕mw)1 ⊕mw)2({F1, F2, F3}) = 0.0697

Table 11 shows the fusion results of Freq2 and Freq3.

Table 11. Data fusion results for fault diagnosis in the application.

Freq1 Freq2 Freq3

{F2} {F3} {F1,F2} {F1,F2,F3} {F2} {F1,F2,F3} {F1} {F2} {F1,F2} {F1,F2,F3}

Results 0.8871 0.0002 0.0430 0.0697 0.9833 0.0170 0.3349 0.6323 0.0333 0.0002

5.3. Discussion

The following tables and Figure 3 show the data fusion results under different methods.
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According to Tables 11–14, the proposed method has consistent diagnostic results with
other methods, that is, F2 has the highest confidence at any test frequency. Therefore, the
fault diagnosis experiment results show that the fault type is F2, and the effectiveness of
the proposed method is also verified. In addition, according to Tables 12–14 and Figure 3,
we can find that the method proposed in this paper has higher confidence for F2 than
the data fusion method proposed in the literature [50,51,54], and it effectively avoids the
confidence dispersion existing in the literature [50,51], which leads to the problem that is not
conducive to decision making. This is because the proposed method obtains more uncertain
information through the negation of BPA, improves the accuracy of information processing,
and reduces the loss of information. In addition, this method combines the Deng entropy
with the negation BPA, which also ensures the ability to deal with conflicting data.
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Table 12. Data fusion results of different methods in the application under Freq1.

Method
Freq1

{F1} {F2} {F3} {F1,F2} {F1,F3} {F2,F3} {F1,F2,F3}

Ni et al.’s method [50] 0.1616 0.5051 0.1619 0.0587 0.0425 0.0425 0.0276
Gan et al.’s method [51] 0.1124 0.6408 0.1128 0.0591 0.0288 0.0288 0.0166
Jiang et al.’s method [54] 0 0.8861 0.0002 0.0582 0 0 0.0555

The proposed method 0 0.8871 0.0002 0.0430 0 0 0.0697

Table 13. Data fusion results of different methods in the application under Freq2.

Method
Freq2

{F1} {F2} {F3} {F1,F2} {F1,F3} {F2,F3} {F1,F2,F3}

Ni et al.’s method [50] 0.3938 0.3525 0.1697 0.0487 0.0162 0.0162 0.0030
Gan et al.’s method [51] 0.0666 0.7944 0.0666 0.0199 0.0199 0.0199 0.0121
Jiang et al.’s method [54] 0 0.9621 0 0 0 0 0.0371

The proposed method 0 0.9833 0 0 0 0 0.0170

Table 14. Data fusion results of different methods in the application under Freq3.

Method
Freq3

{F1} {F2} {F3} {F1,F2} {F1,F3} {F2,F3} {F1,F2,F3}

Ni et al.’s method [50] 0.1787 0.5278 0.1787 0.0348 0.0348 0.0348 0.0097
Gan et al.’s method [51] 0.4337 0.3679 0.1262 0.0498 0.0098 0.0098 0.0022
Jiang et al.’s method [54] 0.3384 0.5904 0 0.0651 0 0 0.0061

The proposed method 0.3349 0.6323 0 0.0333 0 0 0.0002

6. Open Issues for Future Work

In the framework of DST, this paper proposes a new data fusion method that combines
the Deng entropy and the negation of BPA, which can effectively deal with conflicts in the
data fusion of evidence and improve the accuracy of information processing. However, it
should be noted that this method is based on the framework of evidence theory and uses
Deng entropy to measure the uncertainty of information. Although the fusion method is
optimized, there are still some open issues in DST and Deng entropy.

First, the application of the classical Dempster-Shafer evidence theory has limitations.
The classical DST is defined under the closed world hypothesis, under which the focal
element of evidence theory does not include the empty set mass function. This type of
“incomplete information” is missed by the uncertainty information classification under
the closed world assumption, leading to some open issues. According to the open world
hypothesis [55–57], many new methods of uncertainty measurement and data fusion have
been proposed [58,59], but there is still no universally accepted uncertainty quantification
method. In the process of further research in this area, we suggest that the open world
assumption should be considered more comprehensively.

Second, open issues exist in the properties of Deng entropy. In literature [60], the five
properties that must be verified by the total uncertain measure (TU) established by Klir and
Wierman [61] are used to analyze the Deng entropy, and [62] also verifies the properties of
some improved Deng entropy. It is found that Deng entropy only satisfies the probabilistic
consistency among the five properties. Therefore, all the properties mentioned in [59,63,64]
should be fully considered in future research on the improved or proposed methods of
uncertainty measurement.

Finally, under the closed world and open world assumptions, a belief entropy or
uncertainty measure has no universally accepted properties, and some existing properties
are considered controversial. For example, for a theoretical measurement that distinguishes
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two uncertainties of discord and non-specificity, the range attribute is considered ques-
tionable. So far, only the upper entropy measure can satisfy the basic properties proposed,
while for other measurement methods, it is difficult to verify all the attributes, which
affects the development of new reliability entropy or measurement methods. Therefore,
we believe that in the following work, some new properties should be obeyed by the
measurement method.

7. Conclusions

The method of studying negation can obtain uncertainty information of evidence
from a new perspective; the uncertainty in the evidence and the negation of evidence
should be addressed simultaneously. Therefore, this paper proposes an improved data
fusion method based on Deng entropy for measuring the uncertain degree in BPA and the
negation of BPA.

This method constructs a new uncertainty measurement strategy, which takes the
original BPA’s Deng entropy as the first part of the uncertainty degree and the negation of
BPA’s Deng entropy as the second part of the uncertainty degree, and finally aggregates
them together as the final uncertainty degree of the BOE. This strategy enables the method
to overcome the data conflicts reported by sensors, and at the same time to consider more
uncertainties. It has the advantages of improving the accuracy of information processing
and reducing the loss of information. On this basis, this method modifies the evidence
according to the uncertainty measurement results, and uses DS classical combination
rules for data fusion. While using weights to modify the evidence, this method retains
the combination rule framework of Dempster-Shafer theory, and has the advantages of
generality and additivity of the Dempster-Shafer theory. Finally, the method is applied to
numerical examples and fault detection experiments, and the experimental results verify
the effectiveness and superiority of the method.
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