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I t  has been frequently observed that the immune response is characterized by a 
progressive increase in the avidity of the antibody for the antigenic determinant (for 
references see reference 1). The effect of antigen dose and time after immunization on 
antibody affinity was systematically studied in a haptenic system by Eisen and Siskind 
(1), where it was found that affinity increased progressively with time after immuni- 
zation and that this increase was greater with lower doses of antigen. While the mecha- 
nism which controls these variations in affinity has not been definitely established it 
has been suggested that the observed changes in affinity could be explained on the 
basis of preferential selection, by antigen, of cells capable of synthesizing antibody of 
high affinity. As antigen concentration decreases progressively after immunization, 
only cells beating antibody molecules of a high affinity would be able to capture antigen 
and be stimulated to divide and to synthesize antibody. Such a theory assumes the 
existence of lymphoid cells precommitted to synthesis of a particular antibody mole- 
cule. This antibody would presumably be represented on the cell surface. The inter- 
action of this cell-associated antibody with antigen, or "processed antigen," is pre- 
sumed to lead to proliferation and antibody formation. Evidence for a selection of 
populations of antibody-forming cells on the basis of the energetics of the antigen- 
antibody interaction has been presented for a variety of different immunological 
systems (2-6).1 

I t  is well known tha t  passive an t ibody  can specifically suppress an active 
an t ibody  response to concomitant ly  adminis tered antigen (7-12). We have 
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previously shown that  the abili ty of an ant ibody to suppress is related to the 
affinity of the an t ibody /o r  the haptenic determinant  (13). While the mecha- 

nism of suppression is not  definitively established, it is generally assumed that  
suppression is mediated through the binding of antigen, by  circulating anti- 
body, which prevents it from stimulating antibody-forming cells. If this theory 

is correct, one would expect that  passive ant ibody would preferentially sup- 
press low affinity cells resulting in an increase in the affinity of the ant ibody 

synthesized. This prediction was tested in the experiments to be reported here. 
In  addition, the effect of antigen dose on the kinetics of ant ibody synthesis and 
on the affinity of the ant ibody formed was studied in detail in order to gain 
further insight into the mechanisms involved in the control of ant ibody syn- 
thesis. 

Materials and Methods 

Antigens and Haptens.--Dinitrophenylated bovine gamma globulin (DNP-BGO) and 
dinitrophenylated bovine fibrinogen (DNP-BF) were prepared by the reaction of either 
2,4-dinitrobenzene sulfonic acid or 2,4-dinitrofluorobenzene with protein, at room tempera- 
ture under alkaline conditions as described previously (14-16). DNP-proteins were purified 
by acid precipitation and extensive dialysis. The concentration of protein solutions was deter- 
mined by drying a known volume to constant weight, at 95°C. Dry weights were corrected for 
the weight of buffer present. The degree of DNP substitution was estimated spectrally from 
the absorbancy at 360 m]z assuming all DNP to be present on the epsUon-amino groups of 
lysine and using the molar extinction coefficient for free N,e-2,4-dinitrophenyl-L-lysine 
(e-DNP-L-lysine) at 360 m# (17,530) (17). A single preparation of DNP-BGG containing 60 
DNP groups/mole and a single preparation of DNP-BF containing 150 groups/mole were 
used throughout. 

e-DNP-L-lysine was purchased from Cyclo Chemical Corp., Los Angeles, Calif. 2,4-di- 
nitrophenol (DNP-OH) was obtained from Fisher Scientific Corporation, N. Y., and recrystal- 
lized from water before use. Sodium lauryl sulfate was obtained from Fisher Scientific Corpora- 
tion, and recrystallized from 95% ethanol before use. 2,4-dinitrofluorobenzene was obtained 
from Eastman Organic Chemicals, Rochester, N. Y., and 2,4-dinitrobenzene sulfonic acid from 
Fisher Scientific Corporation. 

Immunization Procedures.--2-2 ~/~ kg female rabbits were used throughout. Rabbits were 
immunized by a single injection of varying amounts of DNP-BGG emulsified in a total volume 
of 2.5 ml of complete Freund's adjuvant divided among five sites (four foot-pads and subcu- 
taneously into the back of the neck). If passive antibody was to be administered it was given 
intravenously, using a single pool of rabbit anti-DNP-BGG antiserum. Details are indicated 
in footnotes to appropriate tables. 

Precipitin Reactions.--Measurements of antibody concentration were made, in all cases, 
by quantitative precipitin reaction using DNP-BF as precipitating antigen• Complete precipi- 
tin curves, involving at least five points, were carried out on every serum. Only antihapten 
antibody was measured since the carrier used for precipitation was different than that used for 
immunization. Precipitin reactions were carried out in phosphate-buffered saline (PBS: 0.15 
M NaC1, 0.01 ~ potassium phosphate buffer, pH, 7.4) by the method of Eisen et al. (15, 18). 
Washed specific precipitates were dissolved in 0.02 ~ sodium lauryl sulfate and their absorb- 
ancy determined at 360 and 278 m/z. The 278 in# absorbancy was corrected for absorbancy due 
to antigen by use of the absorbancy at 360 m/z and the 278 m/~/360 m/z absorbancy ratio for 

• 1% the antigen. ElCm for rabbit anti-DNP antibody at 278 m/z was taken as 14.0. Data is expressed 
as milligram of antibody protein per milliliter of serum. 
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Purification of Antibody.--Anti-DNP antibody was purified by the procedure described by 
Farah et al. (18). Briefly, antibody was eluted with 0.1 - DNP-OH, in the presence of 35 
mg/mi streptomycin sulfate from specific precipitates formed at equivalence with DNP-BF. 
Hapten was removed by extensive dialysis and chromatography on Dowex I-X8 ion exchange 
column. 

Measurement of Antibody-Hapten A.finity.--Measurements of the association constant 
(affinity) for the reaction of purified anti-DNP antibody with its homologous antigenic de- 
terminant ~-DNP-L-lysine, were carried out by the method of fluorescence quenching described 

TABLE I 

Immune Response of Normal Rabbits to Varying Doses of DNP-BGG* 

Anti-DNP concentratlon,:~ mg/ml (No. of animal~l) 

Antigen dose Time after immunization, days 

4 7 41 

mg 

0.05 

0.5 

5.O 

50.0 

0.01 
(10) 

0.04 
(6) 

0.07 
(3) 

0.07 
(10) 

0.18 
(6) 

ii0: 
(12) [ 

0.26 
(8) 

1.06 
(25) 

1.78 
(6) 

20 27 

0.08 0.44 
(12) (9) 

0.61 2.31 
(11) (6) 

1.16 1.80 
(18) (24) 

1.14 1.09 
(5) (5) 

0.54 
(9) 

4.23 
(7) 

t .98  
(7) 

1.36 
(4) 

* Rabbits were immunized by a single injection of antigen emulsified in complete Freund's 
adjuvant. 

Antibody concentration was measured by quant i~t ive  precipitin reaction using DNP-BF 
as antigen. The antibody concentrations listed are the mean values from a series of individual 
animals tested. The numbers in parenthesis indicate, in each case, the number of animals 
tested. 

by Velick et al. (19). The details of titration and methods of calculation, were precisely as 
described by Eisen and Siskind (1). Measurements were, in all cases, carried out in PBS, at  
21°C in a thermostated Aminco-Bowman Spectrophotofluorometer using an exciting wave- 
length of approximately 280 In# and recording fluorescent emission at approximately 350 m#. 
For convenience in presentation of data affinities were generally expressed as the standard 
free energy change (AF °) for the reaction between antibody and hapten calculated from the 
equilibrium constant by use of the usual thermodynamic relationship: AF ° = -- R T In K0, 
where R is the gas constant, T the absolute temperature, and In K0 the natural logarithm of 
the average Intrinsic association constant for the reaction. Thus, the more negative AF ° the 
greater the affinity. 

RESULTS 

Effect of Varying Antigen Dose on the Kinetics of Antibody Formatlon.--Table 
I indicates the immune response of rabbits to doses of DNP-BGG varying 
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from 50 #g to 50 mg in complete Freund's adjuvant. I t  is immediately apparent 
that with higher antigen doses levels of circulating anti-DNP antibody, de- 
tected by precipitin reactions, appeared earlier after immunization than with 
lower antigen doses. With 50 mg of antigen, peak antibody concentrations 
were observed at 13 days after immunization followed by a fall in fiter and a 
plateaning at relatively low antibody concentration. In sharp contrast was the 

TABLE II 
Affinity of AntI-DNP Antibody Formed by Normal Rabbits in Response to Varying Doses of 

DNP-BGG* 

Affinity of anti-DNP amtibody,* --AF ° in kcal/mole (No. of animals) 

Antigen dose Time after immunization, days 

13 20 27 41 

rag 

0.05 

0.5 

5.0 

50.0 

8.72 
(6) 

8.96 
(17) 

8.46 
(6) 

9.88 
(3) 

10.3 
(7) 

9,70 
(8) 

8.06 
(5) 

10.0 
(9) 

11,2 
(7) 

10.2 
(5) 

8.52 
(5) 

Ii.i 
(S) 

12.7 
(7) 

11.0 
(5) 

9.54 
(4) 

* Rabbits were immunized by a single injection of antigen emulsified in complete Freund's 
adjuvant. 

Free energy change for the reaction of anti-DNP antibody with e-DNP-L-lysine at 21°C 
in PBS. AF °, in kcal/mole, was calculated from the association constant for hapten as deter- 
mined by fluorescence quenching by use of the relationship: AF ° = --R T in K0 • The free 
energies listed are the mean values from a series of individual animals tested. The numbers 
in parenthesis indicates, in each case, the number of animals tested. 

response to 0.5 mg of antigen. In this case the response began slowly so that at 
13 days the mean antibody concentration was only 15 % of that observed at 13 
days after 50 mg of antigen. However, after 13 days the amount of antibody 
present in the circulation of rabbits immunized with 0.5 mg of antigen in- 
creased rapidly so that by 41 days after immunization the mean concentration 
of antibody was more than three-fold greater than that resulting from im- 
munization with 50 mg of antigen. 5 mg of antigen led to a response intermediate 
between 50 and 0.5 mg while 0.05 mg resulted in a slowly developing and weak 
immune response. The kinetics of the appearance of antibody in the serum of 
immunized rabbits is thus markedly effected by the dose of antigen used. Higher 
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doses of antigen result in an initial accentuated burst of ant ibody snythesis 
followed by  an apparent inhibition of antibody formation as compared with the 
response to lower doses of antigen. 

Effect of Antigen Dose on the Affinity of the Antibody Synthesized.--Yal order to 
further evaluate the effects of antigen dose on the immune response the affinities 
of the ant ibody synthesized at various times, in response to different doses of 
antigen, were determined. The data obtained is presented in Table I I .  As has 

TABLE II I  
Effect of Passive Anti-DNP Antibody on the A~nity of the Anti-DNP Antibody Formed by 

Rabbits in Response to Immunization with DNP-BGG* 

No passive antibody 

Antibody 
concentration 

mg/ml 
2.16 
0.89 
1.53 
0.54 
1.40 
0.98 
1.20 
1.36 

~tverage 1.26 

Ko§ 

9.0 X 10 ~ 
7.7 X 10 6 
9.5 X 106 
1.2 X 107 
2.7 X 106 
3.5 X 10 r 
1.4 X l0 T 
3.0 X l0 T 

-AF°[I 

10.7 
9.30 
9.42 
9.56 
8.66 

10.2 
9.65 

10.1 

9.70 

Received passive antibody~ 

Antibody 
concentration 

rag/~ 

0.26 
0.68 
0.71 
0.28 
0.15 
0.26 

0.39 

Ko§ 

3.1 X 108 
1.4 X i0 s 
5.7 X 107 
8.0 X 106 
2.3 X 10 s 
3.3 X 10 s 

-~*11 

11.5 
11.0 
10.5 
9.31 

11.3 
11.5 

10.9 

* Rabbits were immunized with 5 mg DNP-BGG emulsified in complete Freund's adjuvant 
and bled 20 days after immunization. 

:~ Received 20 mg rabbit anti-DNP antibody intravenously 1 day prior to immunization 
and 10 nag anti-DNP antibody intravenously at weekly intervals. 

§ K0 in liters/mole as determined by fluorescence quenching for the reaction of anti-DNP 
antibody with e-DNP-L-lysine at 21°C in PBS. 

[[ Free energy change for the reaction of antibody with e-DNP-L-lysine at 21°C in PBS 
expressed in units of kcal/mole. 

been observed by  previous workers (1) there is a progressive increase in affinity 
with time after immtmization. The ant ibody found on day 13, the earliest time 
after immunization at which sufficient ant ibody was present to be purified, was 
of the same affinity regardless of the dose of antigen used for immunization. 
Following immunization with 0.5 mg of antigen a rapid increase in affanity oc- 
curred from day 13 to day 41. With 5 mg of antigen the affinity of the ant ibody 
increased with time after immunization but the rate of increase was less than 
after immunization with 0.5 mg. With 50 mg of antigen no significant change in 
affinity was observed between days 13 and 27 after immunization. Thus, 
while with antigen doses between 0.5 and 50 mg the affinity of the ant ibody 
formed is the same at day 13, at day 41 there is a marked difference in as- 
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sociation constants: the lower doses resulting in antibody of significantly 
greater affinity (between 2 and 3 kcal/mole more negative AF°). This difference 
in free energy corresponds to approximately two orders of magnitude in terms 
of association constants. In contrast to the pattern of increased affinity with 
decreased antigen dose seen between 50 and 0.5 mg of antigen the antibody 
response to 0.05 mg DNP-BGG was of somewhat lower affinity than the re- 
sponse to 0.5 mg of antigen (in terms of equilibrium constants approximately 
10-fold lower). 

The affinity increased with time after immunization and the increase was 
delayed when high doses of antigen were used. With a very low antigen dose 
affinity was somewhat reduced. 

Effect of Suppression with Passive Antibody on Antibody Affinity.--Rabbits 
were injected with 20 mg rabbit anti-DNP antibody 1 day prior to immuniza- 
tion with 5 nag DNP-BGG in complete Freund's adjuvant. The animals re- 
ceived additional injections of 10 mg rabbit anti-DNP antibody 6 and 13 days 
after immunization. Animals were bled 20 days after immunization, antibody 
purified, and affinities determined. As can be seen in Table III passive antibody 
resulted in approximately 70% depression of anti-DNP antibody formation. 
The amount of passive antibody given was such that unimmunized control 
animals receiving only passive antiserum had serum antibody concentrations 
below 0.03 mg/ml. Thus, the passive antibody did not contribute significantly 
to the total antibody present on day 20 and thus could not influence the affinities 
observed. It is clear that suppression by passive antibody resulted in an increase 
of about 1 kcal/mole in the affinity of the antibody synthesized (approximately 
a 10-fold increase in association constant). 

DISCUSSION 

It  has been shown that the dose of antigen effects the kinetics of appearance 
of serum antibody, and the affinity of the antibody synthesized. Higher doses of 
antigen result in a more rapid appearance of detectable levels of serum antibody 
and significantly higher antibody levels early after immunization. However, 
with higher antigen doses peak levels of antibody appear early after immuniza- 
tion and antibody concentration plateau at levels below those reached after 
immunization with lower antigen doses. Thus a high antigen dose results in a 
relative depression of the antibody-forming system late after immunization. A 
very low antigen dose (50 ~g) leads to a slow and weak immune response. The 
affinity of the antibody formed increases progressively after immunization. 
This increase in affinity is more rapid following low doses of antigen. Similar 
results have been reported previously by Eisen and Siskind (1). Comparable 
observations have also been made with respect to the response of guinea pigs 
to a haptenic determinant by Goidl et al. 2 and by Nussenzweig and Benacerraf 

Goidl, E. A., W. E. Paul, G. W. Siskind, and B. Benacerraf. The effect of antigen dose 



SISKIND, DUNN, AND WALKER 61 

(20). It  should be noted that at 13 days the affinities of the serum antibody 
formed following doses of antigen varying from 0.5 to 50 ~ug are essentially 
indistinguishable. Differences in affinity following different doses of antigen 
are reflected primarily in the subsequent rate of increase in affinity. Following 
50 mg of antigen no increase in affinity was observed up to 27 days after im- 
munization. Finally, it was observed that specific suppression of antibody forma- 
tion by passive antibody results in a moderate increase in affinity of the residual 
antibody synthesized. 

We have assumed that antigen (or "processed" antigen) acts in the immune 
response to select populations of precommitted lymphoid cells, stimulating them 
to proliferate and to synthesize antibody. This process is assumed to take place 
via an interaction with "antibody" molecules located presumably on the surface 
of lymphoid cells. This cell-associated an tibody would presumably correspond 
to the antibody synthesized by that cell following interaction with antigen. On 
the basis of a competition of cells for antigen there is a selection of those cells 
bearing antibody molecules of highest affinity for the antigenic determinant. 
Evidence for the operation of such a thermodynamically driven selection system 
acting in the control of the immune response has been reported for several im- 
mune systems. Paul et al. have reported evidence for such a model in the selec- 
tion of cells participating in the secondary immune response (3) and in the 
antigen-mediated stimulation of thymidine uptake in vitro (4). It has further 
been shown by Theis et al. 1 that induction of partial tolerance lowers the 
affinity of antibody produced suggesting that tolerance induction is also based 
on the interaction of antigen with antibody-like molecules: higher affinity cells 
being more readily rendered tolerant. Observations by Paul et al. (2) on the 
"termination" of tolerance by immunization with cross-reacting antigens are 
also consistent with a selection of populations of cells by antigen on the basis of 
the energetics of antigen-antibody interaction. The studies of Fazekas de St. 
Groth and Webster (5, 6) on "original antigenic sin" can also be interpreted as 
supporting the theory outlined above. It has been generally assumed that the 
suppression of antibody synthesis by passive antibody (7-13) is due to the 
binding of antigen by circulating antibody preventing it from stimulating 
antibody-forming cells. In terms of the theory outlined above passive antibody 
would be viewed as competing with cells for available antigen. As predicted by 
this theory we have found that high affinity antibody is more effective in sup- 
pression than is low affinity antibody (13). 

The data which we have presented here is generally supportive of the above 
hypothesis. The increase in affinity with time and the greater increase in 
affinity with lower doses of antigen can both be understood in terms of increased 
selective pressure for antibody-forming cells of high affinity as antigen con- 

and time after immunization on the amount of antihapten antibody. Submitted for publica- 
tion. 
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centration decreases. The increase in affinity following passive antibody is fully 
consistent with the expectations of this hypothesis. Passive antibody competes 
with cells for antigen. "Low affinity cells" compete poorly for antigen as com- 
pared with cells bearing high affinity antibody molecules. Thus, "low affinity 
cells" are suppressed more readily than are "high affinity cells" and the average 
association constant of the antibody produced is consequently higher. This, it 
should be noted, is in contrast to results which we obtained in studying tolerance 
induction. ~ I t  appears that although "low affinity cells" are more readily sup- 
pressed, "high affinity cells" are more readily rendered tolerant. This points to 
a dear distinction in mechanism for these two different forms of depression ot 
immunological reactivity. 

Several points should be noted explicitly since they may require the introduc- 
tion of some modifications to the simple theory outlined above. First of all, 
with 50 mg of antigen a depression of antibody concentration was observed fol- 
lowing an initial rapid immune response. In comparison with the response to 
0.5 mg of antigen, 50 mg clearly resulted in a depression of the immune response 
and markedly different kinetics of serum antibody formation. This might repre- 
sent an induction of tolerance by high antigen concentration in "high affinity 
ceils" resulting in a decrease in amount and affinity of the antibody synthe- 
sized. The possibility of tolerance induction functioning to control antibody 
affinity has also been postulated, by Goidl et al. 2 on the basis of observations 
of the response of guinea pigs to various doses of antigen. That tolerance may 
be involved in the variations seen in affinity was also suggested by Eisen (22). 
An additional possibility exists. The mechanism whereby a potential antibody- 
forming cell is stimulated either to merely divide or to differentiate and secrete 
antibody is not known. I t  appears probable that cell multiplication can occur, 
along with preparation for a secondary response, with relatively little antibody 
formation. For example we have observed (unpublished data) that animals im- 
munized with 0.05 mg of antigen, while producing relatively weak primary 
responses, gave vigorous secondary responses upon boosting at 50 days. I t  is 
possible that differentiation for antibody formation requires either that the cell 
be exposed to multiple "hits" by antigen or that it binds multiple antigen 
molecules. A single "hit" or binding by few antigen molecules might result in 
proliferation without differentiation to antibody secretion. A large dose of 
antigen would thus favor differentiation of ceils for antibody production, re- 
suiting in the rapid appearance of high antibody titers, but would tend to 
deplete the pool of proliferating cells and thus later limit the extent of the im- 
mune response. Lower doses of antigen, which would result in less immediate 
diversion of cells for antibody synthesis, would favor a more sustained and 
ultimately a greater immune response. Furthermore, with high antigen con- 
centrations little selective pressure exists and the antibody formed would be 
expected to remain at relatively low affinity for a longer time. The relative 
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importance of the three factors which we have discussed above in determining 
the character of the immune response to high doses of antigen cannot be specified 
at this time. In addition, one should note that 13 days after immunization the 
affinity of the antibody present was the same over a 100-fold change in antigen 
dose (0.5-50 rag). Apparently relatively little selection occurred up to this 
time in immunization. In considering this finding it must be remembered that 
with respect to affinity there is presumably present in the animal a normal 
distribution of potential antibody-forming cells. Prior to contact with antigen 
the vast majority of cells potentially capable of reacting with the antigen would 
be of "average" affinity while only a few cells capable of synthesizing antibody 
of very high affinity would exist. For the cells capable of synthesizing antibody 
of high affinity to divide sufficiently to become a predominant part of the total 
population requires time. In addition, tolerance induction in high affinity cells 
might exist which would further tend to limit the initial affinity observed. I t  is 
thus not surprising that with the methods used the initial antibody formed is 
similar in affinity over a wide antigen dose range. 

Finally, we must consider the observation that with a very low antigen dose 
(0.05 rag) affinity is somewhat lower than after 0.5 nag of antigen. 0.5 
mg appears to be the optimal antigen dose not only with respect to amount 
of antibody synthesized but also with respect to the affinity of the antibody. 
This is somewhat surprising and the explanation is not immediately obvious. 
Induction of low dose tolerance, difficulties in efficient distribution of small 
amounts of antigen, depletion of antigen prematurely so as to have insufficient 
recruitment of antibody-forming cells from the pool of proliferating cells to give 
a fair representation of the true potential of the later stage in the immune 
response are only a few of the possibilities which must be considered. Once 
antigen stores are completely depleted, of course, no further selective pressure 
can exist. This might become a significant factor with very low antigen doses. 
Based upon equilibrium considerations alone one would expect that with a very 
small antigen dose only cells bearing antibody of very high a f f i i ty  would 
capture antigen and be stimulated to produce antibody. I t  is reasonable to 
assume that equilibrium conditions frequently do not prevail in the in vivo 
situation. If stimulation of antibody-forming cells does not occur under strictly 
equilibrium conditions then statistical considerations would presumably play 
some role in determining the population of cells that responds to antigen. 
Although at equilibrium antigen would most likely be bound to "high a f f i i ty  
cells," if the system were not at equilibrium, and stimulation depended purely 
upon random hits between antigen molecules and potential antibody-forming 
cells then, that a cell belonging to the relatively large population of cells capable 
of forming antibody of "average" affinity might come into contact with antigen 
would be more likely than that a cell belonging to the very small group of 
"high affinity cells" would encounter antigen. Such statistical considerations, 
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based upon the assumption that prior to contact with antigen the vast majority 
of potentially responding cells are capable of synthesizing antibody of "aver- 
age" affinity, might well account for the finding that early in immunization 
(13 days) no difference in affinity is observed after markedly different antigen 
doses, and might also account for the finding that with a very low antigen dose 
(0.05 rag) antibody affinity was lower than would be expected from purely 
thermodynamic considerations. Essentially one envisages two opposing factors: 
(a) equilibrium considerations which would tend to maximize antibody affin- 
ity; and (b) statistical factors which would tend towards production of "aver- 
age" affinity antibody. If this were the case then the existence of an antigen 
dose leading to optimal antibody affinity might reasonably be expected. 

It  thus appears clear that antigen dose is important in controlling the charac- 
ter of the immune response. Selection of cell populations by virtue of the bind- 
ing affinity, for antigen, of cell-associated antibody appears to be one mecha- 
nism involved in this control process. Induction of tolerance in high affinity cells 
by excessive doses of antigen may also play an important role in control of the 
immune response. It is also possible that antigen dose is involved in controlling 
the relationship between cell proliferation and differentiation for antibody 
formation. Similar considerations may be involved in Sterzl's observations 
that with a high dose of sheep red ceils one obtains better primary responses 
but subsequent boosting gives a poorer secondary response as compared with a 
smaller primary dose (22, 23). 

Uhr (7) suggested that circulating antibody may function as an important 
mechanism in controlling the immune response. By virtue of its interaction 
with antigen, circulating antibody serves to limit further antibody synthesis. 
It  has also been suggested that the termination of 19S antibody synthesis might 
be mediated by the appearance of 7S antibody (10). We have previously sug- 
gested that in systems where multiple antigens are present, circulating antibody 
might serve to shift the specificity of the immune response (24). On the basis of 
the data presented here an additional factor in the control functions of circulat- 
ing antibody may be suggested. It appears that low affinity antibody-producing 
cells are more readily suppressed than are high affinity antibody-producing 
ceils. Circulating antibody would thus be expected to preferentially suppress 
function of low affinity antibody-forming ceils and in this manner direct the 
immune response towards producing increasingly higher affinity antibody. 

SU~'~AI~.Y 

The effect of antigen dose on the kinetics of circulating antibody synthesis 
and on antibody affinity was studied in a haptenic system. High doses of 
antigen resulted, early in immunization, in higher concentrations of antibody 
followed later in the immune response by decreased serum levels of antibody as 
compared with lower doses of antigen. The affinity of the initial antibody 
synthesized was very similar over a wide antigen dose range. Subsequently, 
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however, a rapid rise in affanity was seen in animals immunized with low doses 
of antigen, while relatively little change in affanity was seen in animals im- 
munized with higher antigen doses. Suppression of active antibody formation 
by passive antiserum led to an increase in antibody affinity. 

The results are discussed in terms of the mechanisms involved in the selec- 
tion of a population of ceils to participate in the immune response and the 
mechanisms whereby antigen dose and circulating antibody function to control 
antibody synthesis. 
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