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Similarity measure is an important tool in multiple criteria decision-making problems, which can be used to measure the
difference between the alternatives. In this paper, some new similarity measures of single-valued neutrosophic sets (SVNSs) and
interval-valued neutrosophic sets (IVNSs) are defined based on the Euclidean distance measure, respectively, and the proposed
similarity measures satisfy the axiom of the similarity measure. Furthermore, we apply the proposed similarity measures to
medical diagnosis decision problem; the numerical example is used to illustrate the feasibility and effectiveness of the proposed
similarity measures of SVNSs and IVNSs, which are then compared to other existing similarity measures.

1. Introduction

-e concept of fuzzy set (FS) A � 〈xi, uA(xi)〉|xi ∈ X􏼈 􏼉 in
X � x1, x2, . . . , xn􏼈 􏼉 was proposed by Zadeh [1], where the
membership degree uA(xi) is a single value between zero
and one. -e FS has been widely applied in many fields,
such as medical diagnosis, image processing, supply de-
cision-making [2–4], and so on. In some uncertain decision-
making problems, the degree of membership is assumed not
exactly as a numerical value but as an interval. Hence, Zadeh
[5] proposed the interval-valued fuzzy set (IVFS). However,
the FS and IVFS only have the membership degree, and they
cannot describe the nonmembership degree of the element
belonging to the set. For example, in the national entrance
examination for postgraduate, a panel of ten professors
evaluated the admission of a student; five professors con-
sidered the student can be accepted, three professors dis-
approved of his or her admission, and two professors
remained neutral. In this case, the FS and IVFS cannot
represent such information. In order to solve this problem,
Atanassov et al. [6] proposed the intuitionistic fuzzy set
(IFS) E � 〈xi, uE(xi), vE(xi)〉|xi ∈ X􏼈 􏼉, where uE(xi)(0≤
uE(xi)≤ 1) and vE(xi)(0≤ vE(xi)≤ 1) represent the mem-
bership degree and nonmembership degree, respectively,

and the indeterminacy-membership degree πE(xi) � 1−
uE(xi)− vE(xi). -e IFS is more effective to deal with the
vague information than the FS and IVFS. -en, the in-
formation about the admission of the student can be rep-
resented as an IFS E � 0.5, 0.3, 0.2, where 0.5, 0.3, and 0.2
stand for the membership degree, nonmembership degree,
and indeterminacy-membership degree, respectively.
However, the IFS also have limitation in expressing the
decision information. For example, three groups of experts
evaluate the benefits of the stock, a group of experts thinks
the possibility of the stock that will be profitable is 0.6, the
second group of experts thinks the possibility of loss is 0.3,
the third group of experts is not sure whether the stock that
will be profitable is 0.4. In this case, the IFS cannot express
such information because 0.6 + 0.3 + 0.4> 1. -erefore,
Wang et al. [7] proposed a single-valued neutrosophic set
(SVNS) N � 〈xi, TN(xi), IN(xi), FN(xi)〉|xi ∈ X􏼈 􏼉, where
TN(xi), IN(xi) and FN(xi) represent the degree of the
truth-membership, indeterminacy-membership, and falsity-
membership, respectively, and they belong to [0, 1]. So, the
information about the benefits of the stock can be repre-
sented as N � 0.6, 0.4, 0.3. However, due to the uncertainty
of the decision-making environment in multiple criteria
decision-making problems, the single numerical value
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cannot meet the needs of evaluating information. -en,
Wang [8] defined the interval-valued neutrosophic set
(IVNS) based on the SVNS, which used the interval to
describe truth membership degree, indeterminacy mem-
bership degree, and falsity membership degree, respectively.
Since the neutrosophic set was proposed, there have been
some researchers focusing on this subject [9–12].

On the other hand, similarity measure is an important
tool in multiple criteria decision-making problems, which
can be used to measure the difference between the alter-
natives. Many studies about the similarity measure are
obtained. For example, Beg et al. [13] proposed a similarity
measure of FSs based on the concept of ϵ − fuzzy transitivity
and discussed the degree of transitivity of different similarity
measures. Song et al. [14] considered the similarity measure
of IFSs and proposed corresponding distance measure be-
tween intuitionistic fuzzy belief functions. Majumdar and
Samanta [15] proposed a similarity measure between SVNSs
based on the membership degree.

In addition, cosine similarity measure is also an im-
portant similarity measure, and it can be defined as the
inner product of two vectors divided by the product of their
lengths. -ere are some scholars who study the cosine
similarity measures [16–21]. For example, Ye [16] proposed
the cosine similarity measure and weighted cosine simi-
larity measure of IVFSs with risk preference, and they were
applied to the supplier selection problem. -en, Ye [17]
proposed the cosine similarity measure of IFSs and
applied it to medical diagnosis and pattern recognition.
Furthermore, Ye [18] defined the cosine similarity measure
of SVNSs and IVNSs, but when the SVNSs N1 ≠N2,
cos(N1, N2) � 1 (the example can be seen in Section 3).
Furthermore, Ye [19] proposed the improved cosine
similarity measures of SVNSs and IVNSs based on cosine
function.

In this paper, we propose a new method to construct the
similarity measures of SVNSs, which is based on the existing
similarity measure proposed byMajumdar and Samanta [15]
and Ye [18], respectively. -ey play an important role in
practical application, especially in pattern recognition,
medical diagnosis, and so on. Furthermore, we will propose
the corresponding similarity measures of IVNSs.

-e rest of the paper is organized as follows. In Section
2, the basic definition and some properties about SVNS and
IVNS are given. In Section 3, we proposed a method
to construct the new similarity measures of SVNSs and
IVNSs, respectively. In Section 4, we apply the proposed
new similarity measures to medical diagnosis problems, the
numerical examples are used to illustrate the feasibility and
effectiveness of the proposed similarity measures, which are
then compared to other existing similarity measures. Fi-
nally, the conclusions and future studies are discussed in
Section 5.

2. Preliminaries

In this section, we give some basic knowledge about the
SVNS and the IVNS. Some existing distance measures are
also introduced, which will be used in the next section.

2.1. SVNS

Definition 1. Given a fixed set X � x1, x2 , . . . , xn􏼈 􏼉 [7], the
SVNS N in X is defined as follows:

N � 􏼊xi, TN xi( 􏼁, IN xi( 􏼁, FN xi( 􏼁􏼋 xi ∈ X
􏼌􏼌􏼌􏼌􏽮 􏽯, (1)

where the function TN(xi) : X⟶ [0, 1] defines the truth-
membership degree, the function IN(xi) : X⟶ [0, 1]

defines indeterminacy-membership degree, and the func-
tion FN(xi) : X⟶ [0, 1] defines the falsity-membership
degree, respectively. For any SVNS N, it holds that
0≤TN(xi) + IN(xi) + FN(xi)≤ 3 (∀xi ∈ X).

For any two SVNSs N1 � {〈xi, TN1
(xi), IN1

(xi), FN1
(xi)〉|xi ∈ X} and N2 � {〈xi, TN2

(xi), IN2
(xi), FN2

(xi)〉

|xi∈ X}}, the following properties are satisfied:

(1) N1 ⊆N2 if and only if TN1
(xi)≤TN2

(xi), IN1
(xi)≥ IN2

(xi), and FN1
(xi)≥FN2

(xi)

(2) N1 � N2 if and only if N1 ⊆N2 and N2 ⊆N1

2.2. IVNS

Definition 2. Given a fixed set X � x1, x2, . . . , xn􏼈 􏼉 [8], the
IVNS N′ on X is defined as follows:

N′ � 􏼚􏼜xi, T
L
N′ xi( 􏼁, T

U
N′ xi( 􏼁􏽨 􏽩, I

L
N′ xi( 􏼁, I

U
N′ xi( 􏼁􏽨 􏽩,

F
L
N′ xi( 􏼁, F

U
N′ xi( 􏼁􏽨 􏽩􏼝 xi ∈ X

􏼌􏼌􏼌􏼌 􏼛,

(2)

where TN′(xi) � [TL
N′(xi), TU

N′(xi)], IN′(xi) � [IL
N′(xi),

IU
N′(xi)], and FN′(xi) � [FL

N′(xi), FU
N′(xi)] represent the

truth-membership function, the indeterminacy-member-
ship function, and the falsity-membership function, re-
spectively. For any xi ∈ X, it holds that TN′(xi), IN′(xi),

FN′(xi)⊆ [0, 1] and 0≤TU
N′(xi) + IU

N′(xi) + FU
N′(xi)≤ 3.

For any two IVNSs N1′ � {〈xi, [TL
N1′

(xi), TU
N1′

(xi)],

[IL
N1′

(xi), IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′

� {〈xi, [TL
N2′

(xi), TU
N2′

(xi)], [IL
N2′

(xi), IU
N2′

(xi)], [FL
N2′

(xi), FU
N2′

(xi)]〉 |xi ∈ X}, the following properties are satisfied:

(1) N1′ ⊆N2′ if and only if TL
N1′

(xi)≤TN2′
L(xi),T

U
N1′

(xi)≤
TU

N2′
(xi),I

L
N1′

(xi)≥IL
N2′

(xi),I
U
N1′

(xi)≥IU
N2′

(xi),F
L
N1′

(xi)≥
FL

N2′
(xi),and FU

N1′
(xi)≥FU

N2′
(xi)

(2) N1′ � N2′ if and only if N1′ ⊆N2′ and N2′ ⊆N1′

Remark 1. When TL
N1′

(xi) � TU
N1′

(xi), IL
N1′

(xi) � IU
N1′

(xi), FL
N1′

(xi) � FU
N1′

(xi), the IVNS N1′ is reduced to the SVNS N1.

2.3. Existing Distance Measures between SVNSs and IVNSs

Definition 3. Let N1 � {〈xi, TN1
(xi), IN1

(xi), FN1
(xi)〉

|xi ∈ X} and N2 � {〈xi, TN2
(xi), IN2

(xi), FN2
(xi)〉|xi∈X}}

be any two SVNSs in X � {x1, x2, . . . , xn} [15]; then, the
Euclidean distance between SVNSs N1 and N2 is defined as
follows:
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DSVNS N1, N2( 􏼁 �

������������������������������������������������������������

􏽐
n
i�1 TN1

xi( 􏼁−TN2
xi( 􏼁􏼐 􏼑

2
+ IN1

xi( 􏼁− IN2
xi( 􏼁􏼐 􏼑

2
+ FN1

xi( 􏼁−FN2
xi( 􏼁􏼐 􏼑

2
􏼔 􏼕

3n

􏽶
􏽴

.
(3)

Definition 4. Let N1′ � {〈xi, [TL
N1′

(xi), TU
N1′

(xi)], [IL
N1′

(xi),

IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′ � {〈xi,[TL
N2′

(xi),T
U
N2′

(xi)],[IL
N2′

(xi), I
U
N2′

(xi)],[FL
N2′

(xi),F
U
N2′

(xi)]〉|xi ∈X}

be any two IVNSs in X � x1,x2, . . . , xn􏼈 􏼉 [22]; the Euclidean
distance between IVNSs N1′ and N2′ is defined as follows:

DIVNS N1′, N2′( 􏼁

�

����������������������������������������������������������������������������������������������������������������������

􏽐
n
i�1 TL

N1′
xi( 􏼁−TL

N2′
xi( 􏼁􏼒 􏼓

2
+ TU

N1′
xi( 􏼁−TU

N2′
xi( 􏼁􏼒 􏼓

2
+ IL

N1′
xi( 􏼁− IL

N2′
xi( 􏼁􏼒 􏼓

2
+ IU

N1′
xi( 􏼁− IU

N2′
xi( 􏼁􏼒 􏼓

2
+ FL

N1′
xi( 􏼁−FL

N2′
xi( 􏼁􏼒 􏼓

2
+ FU

N1′
xi( 􏼁−FU

N2′
xi( 􏼁􏼒 􏼓

2
􏼢 􏼣

6n

􏽶
􏽴

.

(4)

Next, we propose a new method to construct the sim-
ilarity measures of SVNSs and IVNSs based on the Euclidean
distance measure.

3. Several New Similarity Measures

-e similarity measure is a most widely used tool to evaluate
the relationship between two sets. -e following axiom
about the similarity measure of SVNSs (or IVNSs) should be
satisfied:

Lemma 1. Let X � x1, x2, . . . , xn􏼈 􏼉 be the universal set [18]
if the similarity measure S(N1, N2) between SVNSs (or
IVNSs) N1 and N2 satisfies the following properties:

(1) 0≤ S(N1, N2)≤ 1
(2) S(N1, N2) � 1 if and only if N1 � N2

(3) S(N1, N2) � S(N2, N1).

8en, the similarity measure S(N1, N2) is a genuine
similarity measure.

3.1. 8e New Similarity Measures between SVNSs. To in-
troduce the new similarity measure between SVNSs, we
first review the similarity measure S1SVNS between N1 and
N2 defined by Majumdar et al. [15], which is given as
follows:

Definition 5. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set [15],
for any two SVNSs N1 � {〈xi, TN1

(xi), IN1
(xi), FN1

(xi)〉

|xi ∈ X} and N2 � {〈xi, TN2
(xi), IN2

(xi), FN2
(xi)〉 |xi∈ X};

the similarity measure of SVNSs between N1 and N2 is
defined as follows:

S1SVNS N1, N2( 􏼁 �
􏽐

n
i�1 min TN1

xi( 􏼁, TN2
xi( 􏼁􏼐 􏼑 + min IN1

xi( 􏼁, IN2
xi( 􏼁􏼐 􏼑 + min FN1

xi( 􏼁, FN2
xi( 􏼁􏼐 􏼑􏼐 􏼑

􏽐
n
i�1 max TN1

xi( 􏼁, TN2
xi( 􏼁􏼐 􏼑 + max IN1

xi( 􏼁, IN2
xi( 􏼁􏼐 􏼑 + max FN1

xi( 􏼁, FN2
xi( 􏼁􏼐 􏼑􏼐 􏼑

. (5)

It is already known that the similarity measure S1SVNS
defined by Majumdar et al. [15] satisfies the properties
in Lemma 1. It is proposed based on the membership
degree; in this section, we adopt the various methods for
calculating the similarity measure between neutrosophic
sets.

Firstly, we propose a new method to construct a new
similarity measure of SVNSs, which is based on the simi-
larity measure proposed by Majumdar et al. [15] and the
Euclidean distance; it can be defined as follows:

Definition 6. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set, for
any two SVNSs N1 � {xi, TN1

(xi), IN1
(xi), FN1

(xi)|xi ∈ X}

and N2 � {xi, TN2
(xi), IN2

(xi), FN2
(xi)|xi ∈ X}; a new sim-

ilarity measure S∗1SVNS(N1, N2) is defined as follows:

S
∗
1SVNS N1, N2( 􏼁 �

1
2

S1SVNS N1, N2( 􏼁 + 1−DSVNS N1, N2( 􏼁( 􏼁.

(6)

-e proposed similarity measure of SVNSs satisfies the
following -eorem 1.

Theorem 1. 8e similarity measure S∗1SVNS(N1, N2) between
N1 � {〈xi, TN1

(xi), IN1
(xi), FN1

(xi)〉|xi ∈ X} and N2 �

{〈xi, TN2
(xi), IN2

(xi), FN2
(xi)〉|xi ∈ X} satisfies the follow-

ing properties:

(1) 0≤ S∗1SVNS(N1, N2)≤ 1
(2) S∗1SVNS(N1, N2) � 1 if and only if N1 � N2

(3) S∗1SVNS(N1, N2) � S∗1SVNS(N2, N1)
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Proof.

(1) Because DSVNS(N1, N2) is an Euclidean distance
measure, obviously, 0≤DSVNS(N1, N2)≤ 1. Fur-
thermore, according to Proposition 4.2.2 by
Majumdar et al. [15], we know 0≤ S1SVNS(N1,

N2)≤ 1. -en, 0≤ 1/2(S1SVNS(N1, N2) + 1−DSVNS
(N1, N2))≤ 1, i.e., 0≤ S∗1SVNS(N1, N2)≤ 1.

(2) If S∗1SVNS(N1, N2) � 1, we have S1SVNS(N1, N2)+

1−DSVNS(N1, N2) � 2, that is, S1SVNS (N1, N2) �

1 + DSVNS(N1, N2). Because DSVNS(N1, N2) is the
Euclidean distance measure, 0≤DSVNS(N1, N2)≤ 1.
Furthermore, 0≤ S1SVNS(N1, N2)≤ 1 is obtained in
Proposition 4.2.2 [15], then S1SVNS(N1, N2) � 1 and
DSVNS(N1, N2) � 0 should be established at the same
time. If the Euclidean distance measure DSVNS
(N1, N2) � 0, N1 � N2 is obvious. According to
Proposition 4.2.2 by Majumdar et al. [15], when
S1SVNS(N1, N2) � 1, N1 � N2; so, if S∗1SVNS(N1,

N2) � 1, N1 � N2 is obtained.

On the other hand, when N1 � N2, according to for-
mulae (3) and (5) DSVNS(N1, N2) � 0 and S1SVNS(N1, N2) �

1 are obtained respectively. Furthermore, we can get
S∗1SVNS(N1, N2) � 1.

(3) S∗1SVNS(N1, N2) � S∗1SVNS(N2, N1) is straightforward.

From -eorem 1, we know the proposed new simi-
larity measure S∗1SVNS(N1, N2) is a genuine similarity
measure.

On the other hand, cosine similarity measure is also
an important similarity measure. In 2014, Ye [18] pro-
posed a cosine similarity measure between SVNSs as
follows: □

Definition 7. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set
[18], for any two SVNSs N1 � {〈xi, TN1

(xi), IN1
(xi),

FN1
(xi)〉|xi ∈ X} and N2 � {〈xi, TN2

(xi), IN2
(xi), FN2

(xi)〉

|xi ∈ X}, the cosine similarity measure betweenN1 andN2 is
defined as follows:

S2SVNS N1, N2( 􏼁 �
1
n

􏽘

n

i�1

TN1
xi( 􏼁TN2

xi( 􏼁 + IN1
xi( 􏼁IN2

xi( 􏼁 + FN1
xi( 􏼁FN2

xi( 􏼁
������������������������
T2

N1
xi( 􏼁 + I2N1

xi( 􏼁 + F2
N1

xi( 􏼁
􏽱 ������������������������

T2
N2

xi( 􏼁 + I2N2
xi( 􏼁 + F2

N2
xi( 􏼁

􏽱 . (7)

From Example 1, we know the cosine similarity measure
defined by Ye [18] does not satisfy Lemma 1.

Example 1. For two SVNSs N1 � x, 0.4, 0.2, 0.6 and
N2 � x, 0.2, 0.1, 0.3, we can easily know N1 ≠N2. But
using formula (7) to calculate the cosine similarity measure
S2SVNS(N1, N2), we have S2SVNS(N1, N2) � 1. -at is to say,
when N1 ≠N2, S2SVNS(N1, N2) � 1, which means the cosine
similarity measure S2SVNS(N1, N2) defined by Ye [18] does
not satisfy the necessary condition of property 2 in Lemma 1;
thus, it is not a genuine similarity measure. Furthermore, Ye
[19] proposed the improved cosine similarity measures of
SVNS based on the cosine similarity measure proposed by
Ye [18], which overcomes its shortcoming.

In this paper, we go on proposing another new similarity
measure of SVNSs based on the cosine similarity measure
proposed by Ye [18] and the Euclidean distance DSVNS. It
considers the similarity measure not only from the point of
view of algebra but also from the point of view of geometry,
which can be defined as:

Definition 8. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set, for
any two SVNSs N1 � {〈xi, TN1

(xi), IN1
(xi), FN1

(xi)〉

|xi ∈ X} and N2 � {〈xi, TN2
(xi), IN2

(xi), FN2
(xi)〉|xi ∈ X};

a new similarity measure S∗2SVNS(N1, N2) is defined as follows:

S
∗
2SVNS N1, N2( 􏼁 �

1
2

S2SVNS N1, N2( 􏼁 + 1−DSVNS N1, N2( 􏼁( 􏼁.

(8)

Remark 2. Using formula (8) to calculate Example 1
again, for two SVNSs N1 � x, 0.4, 0.2, 0.6 and N2 � x,

0.2, 0.1, 0.3, we have S∗2SVNS(N1, N2) � 0.8920. We can see
that the proposed new similarity measure S∗2SVNS(N1, N2)

overcomes the shortcoming of cosine similarity measure
S2SVNS(N1, N2) defined by Ye [18].

Theorem 2. 8e similarity measure S∗2SVNS(N1, N2) between
N1 � {〈xi, TN1

(xi), IN1
(xi), FN1

(xi)〉|xi ∈X} and N2 � {〈xi,

TN2
(xi), IN2

(xi), FN2
(xi)〉|xi ∈X} satisfies the following

properties:

(1) 0≤ S∗2SVNS(N1, N2)≤ 1
(2) S∗2SVNS(N1, N2) � 1 if and only if N1 � N2

(3) S∗2SVNS(N1, N2) � S∗2SVNS(N2, N1)

Proof. -e proof of the properties (1) and (3) are similar to
-eorem 1; here, we only give the proof of property (2).

If S∗2SVNS(N1, N2) � 1, we have S2SVNS(N1, N2) + 1−
DSVNS(N1, N2) � 2, i.e., S2SVNS(N1, N2) � 1 + DSVNS(N1,

N2). Because DSVNS(N1, N2) is the Euclidean distance
measure, 0≤DSVNS(N1, N2)≤ 1. According to the property
of S2SVNS(N1, N2) in Ye [18], 0≤ S2SVNS(N1, N2)≤ 1; then,
S2SVNS(N1, N2) � 1 and DSVNS(N1, N2) � 0 should be held
at the same time. When S2SVNS(N1, N2) � 1, we have
TN1

(xi) � k · TN2
(xi), IN1

(xi) � k · IN2
(xi), and FN1

(xi) �

k · FN2
(xi) (k is a constant). When DSVNS(N1, N2) � 0, we

have N1 � N2. -en N1 � N2 is obtained.
On the other hand, according to formulae (3) and (7), if

N1 � N2, DSVNS(N1, N2) � 0 and S2SVNS(N1, N2) � 1 are
obtained, respectively; then we can get S∗2SVNS(N1, N2) � 1.

-us, S∗2SVNS(N1, N2) satisfies all the properties in
-eorem 2. □
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3.2. Some New Similarity Measures between IVNSs. In some
situations, it is difficult to provide the truth-membership
degree, false-membership degree, and indeterminate-mem-
bership degree with a precise numerical value; Wang [8] used
the interval numbers to express the related membership
degrees. Furthermore, Broumi et al. [22] proposed the cor-
responding similarity measure of IVNSs based on the simi-
larity measure S1SVNS proposed by Majumdar et al. [15].

Definition 9. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set, for
any two IVNSs N1′ � {〈xi, [TL

N1′
(xi), TU

N1′
(xi)], [IL

N1′
(xi),

IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′ � {〈xi,[TL
N2′

(xi)T
U
N2′

(xi)],[IL
N2′

(xi), I
U
N2′

(xi)],[FL
N2′

(xi),F
U
N2′

(xi)]〉 |xi ∈ X}

[22]; the similarity measure between IVNSs N1′ and N2′ is
defined as follows:

S1IVNS N1′, N2′( 􏼁

�
􏽐

n
i�1 min TL

N1′
xi( 􏼁, TL

N2′
xi( 􏼁􏼒 􏼓 + min TU

N1′
xi( 􏼁, TU

N2′
xi( 􏼁􏼒 􏼓 + min IL

N1′
xi( 􏼁, IL

N2′
xi( 􏼁􏼒 􏼓 + min IU

N1′
xi( 􏼁, IU

N2′
xi( 􏼁􏼒 􏼓 + min FL

N1′
xi( 􏼁, FL

N2′
xi( 􏼁􏼒 􏼓 + min FU

N1′
xi( 􏼁, FU

N2′
xi( 􏼁􏼒 􏼓􏼚 􏼛

􏽐
n
i�1 max TL

N1′
xi( 􏼁, TL

N2′
xi( 􏼁􏼒 􏼓 + max TU

N1′
xi( 􏼁, TU

N2′
xi( 􏼁􏼒 􏼓 + max IL

N1′
xi( 􏼁, IL

N2′
xi( 􏼁􏼒 􏼓 + max IU

N1′
xi( 􏼁, IU

N2′
xi( 􏼁􏼒 􏼓 + max FL

N1′
xi( 􏼁, FL

N2′
xi( 􏼁􏼒 􏼓 + max FU

N1′
xi( 􏼁, FU

N2′
xi( 􏼁􏼒 􏼓􏼚 􏼛

.

(9)

Remark 3. If TL
Nj
′(xi) � TU

Nj
′(xi), IL

Nj
′(xi) � IU

Nj
′(xi), FL

Nj
′(xi) �

FU
Nj
′(xi)(j � 1, 2), then the similarity measure S1IVNS(N1′, N2′)

is reduced to the similarity measure S1SVNS(N1, N2).
Similarly to Section 3.1, we propose a corresponding

similarity measure between IVNSs, which is based on the
similarity measure S1IVNS(N1′, N2′) and the Euclidean dis-
tance DIVNS(N1′, N2′) defined in Definition 4.

Definition 10. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set,
for any two IVNSs N1′ �{xi, [TL

N1′
(xi), TU

N1′
(xi)], [IL

N1′
(xi),

IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]|xi ∈ X} and N2′ � {xi, [TL
N2′

}(xi),

TU
N2′

(xi)], [IL
N2′

(xi), IU
N2′

(xi)], [FL
N2′

(xi), FU
N2′

(xi)]|xi ∈ X}; a
new similarity measure S∗1IVNS (N1′, N2′) is defined as
follows:

S
∗
1IVNS N1′, N2′( 􏼁 �

1
2

S1IVNS N1′, N2′( 􏼁 + 1−DIVNS N1′, N2′( 􏼁( 􏼁.

(10)

-e proposed similarity measure also satisfies -eo-
rem 3.

Theorem 3. 8e similarity measure S∗1IVNS(N1′, N2′) satisfies
the following properties:

(1) 0≤ S∗1IVNS(N1′, N2′)≤ 1
(2) S∗1IVNS(N1′, N2′) � 1 if and only if N1′ � N2′

(3) S∗1IVNS(N1′, N2′) � S∗1IVNS(N2′, N1′)

Proof. -e proof is similar to -eorem 1; hence, we omit it
here.

Next, we will use the same method to define the simi-
larity measure S∗2IVNS(N1′, N2′) between IVNS, which is based
on the cosine similarity measure S2IVNS(N1′, N2′) proposed
by Ye [21] (Definition 11) and the Euclidean distance
DIVNS(N1′, N2′) defined in formula (4). □

Definition 11. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set, for
any two IVNSs N1′ � {〈xi, [TL

N1′
(xi), TU

N1′
(xi)], [IL

N1′
(xi),

IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′� {〈xi,[TL
N2′

(xi),T
U
N2′

(xi)],[IL
N2′

(xi),I
U
N2′

(xi)],[FL
N2′

(xi),F
U
N2′

(xi)]〉|xi ∈X};
the cosine similarity measure S∗2IVNS(N1′,N2′) is defined as
follows [21]:

S2IVNS N1′, N2′( 􏼁 �
1
n

􏽘
n

i�1

·
TL

N1′
xi( 􏼁TL

N2′
xi( 􏼁 + TU

N1′
xi( 􏼁TU

N2′
xi( 􏼁 + IL

N1′
xi( 􏼁IL

N2′
xi( 􏼁 + IU

N1′
xi( 􏼁IU

N2′
xi( 􏼁 + FL

N1′
xi( 􏼁FL

N2′
xi( 􏼁 + FU

N1′
xi( 􏼁FU

N2′
xi( 􏼁

����������������������������������������������������������������

TL
N1′

xi( 􏼁􏼒 􏼓
2

+ TU
N1′

xi( 􏼁􏼒 􏼓
2

+ IL
N1′

xi( 􏼁􏼒 􏼓
2

+ IU
N1′

xi( 􏼁􏼒 􏼓
2

+ FL
N1′

xi( 􏼁􏼒 􏼓
2

+ FU
N1′

xi( 􏼁􏼒 􏼓
2

􏽲 ����������������������������������������������������������������

TL
N2′

xi( 􏼁􏼒 􏼓
2

+ TU
N2′

xi( 􏼁􏼒 􏼓
2

+ IL
N2′

xi( 􏼁􏼒 􏼓
2

+ IU
N2′

xi( 􏼁􏼒 􏼓
2

+ FL
N2′

xi( 􏼁􏼒 􏼓
2

+ FU
N2′

xi( 􏼁􏼒 􏼓
2

􏽲 .

(11)

Example 2. For two IVNSs N1′ � x, [0.3, 0.4], [0.2, 0.3],

[0.4, 0.5] and N2′ � x, [0.6, 0.8], [0.4, 0.6], [0.8, 1], according
to formula (11), we have S2IVNS(N1′, N2′) � 1, but N1′ ≠N2′.
In this case, the necessary condition of (2) in Lemma 1 is
not satisfied. -erefore, the cosine similarity measure
S2IVNS(N1′, N2′) proposed by Ye [22] is not a genuine sim-
ilarity measure. Motivated by this, we will propose a new
similarity measure S∗2IVNS(N1′, N2′) based on S2IVNS(N1′, N2′)

and the Euclidean distance measure DIVNS(N1′, N2′) as
follows:

Definition 12. Let X � x1, x2, . . . , xn􏼈 􏼉 be a universal set, for
any two IVNSs N1′ � {〈xi, [TL

N1′
(xi), TU

N1′
(xi)], [IL

N1′
(xi),

IU
N1′

(xi)], [FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′� {〈xi,[TL
N2′

(xi),T
U
N2′

(xi)],[IL
N2′

(xi), I
U
N2′

(xi)],[FL
N2′

(xi),F
U
N2′

(xi)]〉|xi ∈X};
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a new similarity measure S∗2IVNS (N1′,N2′) can be defined as
follows:

S
∗
2IVNS N1′, N2′( 􏼁 �

1
2

S2IVNS N1′, N2′( 􏼁 + 1−DIVNS N1′, N2′( 􏼁( 􏼁.

(12)

Remark 4. In Example 2, when N1′ ≠N2′, the similarity
measure S2IVNS(N1′, N2′) � 1, this is inconsistent with the real
decision problems. But, using formula (12) to calculate it again,
we have S∗2IVNS(N1′, N2′) � 0.8185. Obviously, the proposed
similarity measure S∗2IVNS(N1′, N2′) can rectify the existing
cosine similarity measure S2IVNS(N1′, N2′) defined by Ye [22].

Theorem 4. 8e similarity measure S∗2IVNS(N1′, N2′) satisfies
the following properties:

(1) 0≤ S∗2IVNS(N1′, N2′)≤ 1
(2) S∗2IVNS(N1′, N2′) � 1 if and only if N1′ � N2′

(3) S∗2IVNS(N1′, N2′) � S∗2IVNS(N2′, N1′)

Proof. -e proof is similar to -eorem 2, we also omit it
here.

In the next section, we will apply the proposed new
similarity measures to medical diagnosis decision problem;
numerical examples are also given to illustrate the appli-
cation and effectiveness of the proposed new similarity
measures. □

4. Applications of the Proposed
Similarity Measures

4.1. 8e Proposed Similarity Measures between SVNSs for
Medical Diagnosis. We first give a numerical example about
a medical diagnosis (adapted from Ye [19]) to illustrate the
feasibility of the proposed new similarity measures S∗1SVNS
and S∗2SVNS between SVNSs.

Example 3. Consider a medical diagnosis decision problem;
suppose a set of diagnoses Q � Q1(viral fever), Q2􏼈

(malaria), Q3(typhoid), Q4(gastritis), Q5(stenocardia)} and
a set of symptoms S � S1(fever), S2(headache), S3(stomach􏼈

pain), S4(cough), S5(chestpain)}. Assume a patient P1 has all
the symptoms in the process of diagnosis, the SVNS evaluate
information about P1 is

P1(Patient) � 􏼈〈S1, 0.8, 0.2, 0.1〉, 〈S2, 0.6, 0.3, 0.1〉,

〈S3, 0.2, 0.1, 0.8〉, 〈S4, 0.6, 0.5, 0.1〉,

〈S5, 0.1, 0.4, 0.6〉􏼉.

(13)

-e diagnosis information Qi(i � 1, 2, . . . , 5) with re-
spect to symptoms Si(i � 1, 2, . . . , 5) also can be represented
by the SVNSs, which is shown in Table 1.

By applying formulae (6) and (8), we can obtain the
similarity measure values S∗1SVNS(P1, Qi) and S∗2SVNS(P1, Qi);
the results are shown in Table 2.

From the above two similarity measures S∗1SVNS and
S∗2SVNS, we can conclude that the diagnoses of the patient P1

are all malaria (Q2). -e proposed two similarity measures
S∗1SVNS and S∗2SVNS produce the same results as Ye [19], which
means the proposed similarity measures are feasible and
effective.

4.2. 8e Proposed Similarity Measures between IVNSs for
Medical Diagnosis. We know if the doctor examines the
patient two or three times a day, then the interval values of
multiple inspections for the patient are obtained. In this
section, we will apply the proposed similarity measures
S∗1IVNS and S∗2IVNS to medical diagnosis, the example is also
adapted from Ye [19].

Example 4. Let us reconsider Example 3, assume a patient
P2 has all the symptoms, which can be expressed by the
following IVNS information.

P2(Patient) � 􏼈〈S1, [0.3, 0.5], [0.2, 0.3], [0.4, 0.5]〉,

〈S2, [0.7, 0.9], [0.1, 0.2], [0.1, 0.2]〉,

〈S3, [0.4, 0.6], [0.2, 0.3], [0.3, 0.4]〉,

〈S4, [0.3, 0.6], [0.1, 0.3], [0.4, 0.7]〉,

〈S5, [0.5, 0.8], [0.1, 0.4], [0.1, 0.3]〉􏼉.

(14)

-e same way as Example 3 in Ye [19], the diagnosis
information of SVNSs Qi with respect to symptoms Si(i �

1, 2, · · · , 5) are transformed into IVNSs, which are shown in
Table 3.

By applying formulae (10) and (12), we obtain the
similarity measure values S∗1IVNS(P2, Qi) and S∗2IVNS(P2, Qi),
the results are shown in Table 4.

From the two similarity measure values in Table 4, we
can see that the patient P2 suffers from typhoid (Q3); the
diagnosis results are the same as shown by Ye [19].

Table 1: -e relation between the diagnosis and the symptom for
SVNS decision information.

S1 S2 S3 S4 S5

Q1
<0.4, 0.6,
0.0>

<0.3, 0.2,
0.5>

<0.1, 0.3,
0.7>

<0.4, 0.3,
0.3>

<0.1, 0.2,
0.7>

Q2
<0.7, 0.3,
0.0>

<0.2, 0.2,
0.6>

<0.0, 0.1,
0.9>

<0.7, 0.3,
0.0>

<0.1, 0.1,
0.8>

Q3
<0.3, 0.4,
0.3>

<0.6, 0.3,
0.1>

<0.2, 0.1,
0.7>

<0.2, 0.2,
0.6>

<0.1, 0.0,
0.9>

Q4
<0.1, 0.2,
0.7>

<0.2, 0.4,
0.4>

<0.8, 0.2,
0.0>

<0.2, 0.1,
0.7>

<0.2, 0.1,
0.7>

Q5
<0.1, 0.1,
0.8>

<0.0, 0.2,
0.8>

<0.2, 0.0,
0.8>

<0.2, 0.0,
0.8>

<0.8, 0.1,
0.1>

We can calculate the similarity measures S∗1SVNS(P1, Qi) and
S∗2SVNS(P1, Qi)(i � 1, 2, . . . , 5), and then the diagnoses of the patient P1 can
be classified by Rj � argmax

1≤i≤5
S∗jSVNS(P1, Qi)􏽮 􏽯(j � 1, 2).

Table 2: -e similarity measures between P1 and Qi.

Q1 Q2 Q3 Q4 Q5

S∗1SVNS(P1, Qi) 0.6663 0.7188 0.5387 0.4594 0.4336
S∗2SVNS(P1, Qi) 0.8223 0.8378 0.6377 0.5500 0.4881
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4.3. Comparative Analyses of Existing Similarity Measures.
To illustrate the effectiveness of the proposed similarity
measures for medical diagnosis, we will apply the existing
similarity measures of SVNSs and IVNSs for comparative
analyses.

At first, we introduce the existing similarity measures
between SVNSs as follows:

Let N1 � {〈xi, TN1
(xi), IN1

(xi), FN1
(xi)〉 ∣ xi ∈ X} and

N2 � {xi, TN2
(xi), IN2

(xi), FN2
(xi) ∣ xi ∈ X} be two SVNSs

in X � x1, x2, . . . , xn􏼈 􏼉, the existing similarity measures
between N1 and N2 are defined as follows:

(1) Broumi et al. [23] proposed the similarity measure
SMSVNS:

SMSVNS N1, N2( 􏼁 � 1−DSVNS N1, N2( 􏼁. (15)

(2) Şahin and Ahmet [24] proposed the similarity
measure SDSVNS:

SDSVNS N1, N2( 􏼁 �
1

1 + DSVNS N1, N2( 􏼁
. (16)

(3) Ye [19] proposed the improved cosine similarity
measures SC1SVNS and SC2SVNS:

SC1SVNS N1, N2( 􏼁 �
1
n

􏽘

n

i�1
cos

π · max TN1
xi( 􏼁−TN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, IN1
xi( 􏼁− IN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, FN1
xi( 􏼁−FN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (17)

SC2SVNS N1, N2( 􏼁 �
1
n

􏽘

n

i�1
cos

π TN1
xi( 􏼁−TN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + IN1
xi( 􏼁− IN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + FN1
xi( 􏼁−FN2

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

6
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (18)

(4) Yang et al. [25] proposed the similarity measure
SYSVNS(N1, N2):

SYSVNS N1, N2( 􏼁 �
SCSVNS N1, N2( 􏼁

SCSVNS N1, N2( 􏼁 + DSVNS N1, N2( 􏼁
.

(19)

Example 3′. We apply formulae (5), (7), and (15)–(19) to
calculate Example 5 again; the similarity measure values
between P1 and Qi(i � 1, 2, . . . , 5) are shown in Table 5.

As we can see from Table 5, the patient P1 is still assigned
to malaria (Q2), and the results are same as the proposed
similarity measures in this paper, which means the proposed
similarity measures are feasible and effective.

Next, we introduce the existing similarity measures
between IVNSs as follows:

Let N1′ � {〈xi, [TL
N1′

(xi), TU
N1′

(xi)], [IL
N1′

(xi), IU
N1′

(xi)],

[FL
N1′

(xi), FU
N1′

(xi)]〉|xi ∈ X} and N2′ � {xi, [TL
N2′

(xi), TU
N2′

(xi)], [IL
N2′

(xi), IU
N2′

(xi)], [FL
N2′

(xi), FU
N2′

(xi)]|xi ∈ X} be two
IVNSs in X � x1, x2, . . . , xn􏼈 􏼉, the existing similarity mea-
sures between N1′ and N2′ are defined as follows:

(1) Broumi et al. [23] proposed the similarity measure
SMIVNS:

SMIVNS N1′, N2′( 􏼁 � 1−DIVNS N1′, N2′( 􏼁. (20)

(2) Şahin and Ahmet [24] proposed the similarity
measure SDIVNS:

SDIVNS N1′, N2′( 􏼁 �
1

1 + DIVNS N1′, N2′( 􏼁
. (21)

Table 3: -e relation between the diagnosis and the symptom for IVNS decision information.

S1 S2 S3 S4 S5

Q1
<[0.4, 0.4], [0.6, 0.6],

[0.0, 0.0]>
<[0.3, 0.3], [0.2, 0.2],

[0.5, 0.5]>
<[0.1, 0.1], [0.3, 0.3],

[0.7, 0.7]>
<[0.4, 0.4], [0.3, 0.3],

[0.3, 0.3]>
<[0.1, 0.1], [0.2, 0.2],

[0.7, 0.7]>

Q2
<[0.7, 0.7], [0.3, 0.3],

[0.0, 0.0]>
<[0.2, 0.2], [0.2, 0.2],

[0.6, 0.6]>
<[0.0, 0.0], [0.1, 0.1],

[0.9, 0.9]>
<[0.7, 0.7], [0.3, 0.3],

[0.0, 0.0]>
<[0.1, 0.1], [0.1, 0.1],

[0.8, 0.8]>

Q3
<[0.3, 0.3], [0.4, 0.4],

[0.3, 0.3]>
<[0.6, 0.6], [0.3, 0.3],

[0.1, 0.1]>
<[0.2, 0.2], [0.1, 0.1],

[0.7, 0.7]>
<[0.2, 0.2], [0.2, 0.2],

[0.6, 0.6]>
<[0.1, 0.1], [0.0, 0.0],

[0.9, 0.9]>

Q4
<[0.1, 0.1], [0.2, 0.2],

[0.7, 0.7]>
<[0.2, 0.2], [0.4, 0.4],

[0.4, 0.4]>
<[0.8, 0.8], [0.2, 0.2],

[0.0, 0.0]>
<[0.2, 0.2], [0.1, 0.1],

[0.7, 0.7]>
<[0.2, 0.2], [0.1, 0.1],

[0.7, 0.7]>

Q5
<[0.1, 0.1], [0.1, 0.1],

[0.8, 0.8]>
<[0.0, 0.0], [0.2, 0.2],

[0.8, 0.8]>
<[0.2, 0.2], [0.0, 0.0],

[0.8, 0.8]>
<[0.2, 0.2], [0.0, 0.0],

[0.8, 0.8]>
<[0.8, 0.8], [0.1, 0.1],

[0.1, 0.1]>
We can calculate the similarity measures S∗1IVNS(P2, Qi) and S∗2IVNS(P2, Qi)(i � 1, 2, · · · , 5), and the diagnosis of the patient P2 can be classified by
Rj � argmax

1≤i≤5
S∗jIVNS(P2, Qi)􏽮 􏽯(j � 1, 2).

Table 4: -e similarity measures between P2 and Qi.

Q1 Q2 Q3 Q4 Q5

S∗1IVNS(P2, Qi) 0.5783 0.4610 0.6273 0.5772 0.5401
S∗2IVNS(P2, Qi) 0.6804 0.5729 0.7503 0.7061 0.6734
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(3) Broumi and Smarandache [22] proposed the
improved cosine similarity measures SC1SVNS and
SC2SVNS:

SC1IVNS N1′, N2′( 􏼁 �
1
n

􏽘

n

i�1
cos

π
4

max T
L
N1′

xi( 􏼁−T
L
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, I
L
N1′

xi( 􏼁− I
L
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, F
L
N1′

xi( 􏼁−F
L
N2′

xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼔

+ max T
U
N1′
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(23)

(4) Yang et al. [25] proposed the similarity measure
SYSVNS(N1′, N2′):

SYIVNS N1′, N2′( 􏼁 �
SCIVNS N1′, N2′( 􏼁

SCIVNS N1′, N2′( 􏼁 + DIVNS N1′, N2′( 􏼁
.

(24)

Example 4′. Applying formulae (9), (11), and (20)–(24) to
calculate Example 6 again, the similarity measure values
between P2 and Qi(i � 1, 2, . . . , 5) are shown in Table 6.

-e results of Table 6 show that the patient P2 should be
assigned to typhoid (Q3), they are same as the proposed
similarity measures S∗1IVNS and S∗2IVNS in the paper, which
means the proposed methods are feasible and effective.

-e proposed similarity measures in the paper have
some advantages in solving multiple criteria decision-
making problems. -ey are constructed based on the
existing similarity measures and Euclidean distance, which
not only satisfy the axiom of the similarity measure but also
consider the similarity measure from the points of view of
algebra and geometry. Furthermore, they can be applied
more widely in the field of decision-making problems.

5. Conclusions

-e similarity measure is widely used in multiple criteria
decision-making problems. -is paper proposed a new
method to construct the similarity measures combining the
existing cosine similarity measure and the Euclidean distance

measure of SVNSs and IVNSs, respectively, which are based
on the above existing similarity measures and the Euclidean
distance measure. And, the similarity measures are proposed
not only from the points of view of algebra and geometry but
also satisfy the axiom of the similarity measure. Furthermore,
we apply the proposed similarity measures to medical di-
agnosis decision problems, and the numerical example is used
to illustrate the feasibility and effectiveness of the proposed
similarity measure, which are then compared to other existing
similarity measures. In future research, we will focus on
studying the similarity measure between linguistic neu-
trosophic set and the application of the proposed similarity
measures of neutrosophic sets, such as pattern recognition,
supplier selection, and so on.
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