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Toll-like receptors (TLRs), also known as pattern recognition receptors, respond to

exogenous pathogens and to intrinsic danger signals released from damaged cells

and tissues. The tetrapyrrole heme has been suggested to be an agonist for TLR4,

the receptor for the pro-inflammatory bacterial component lipopolysaccharide (LPS),

synonymous with endotoxin. Heme is a double-edged sword with contradictory

functions. On the one hand, it has vital cellular functions as the prosthetic group

of hemoproteins including hemoglobin, myoglobin, and cytochromes. On the other

hand, if released from destabilized hemoproteins, non-protein bound or “free” heme

can have pro-oxidant and pro-inflammatory effects, the mechanisms of which are not

fully understood. In this review, the complex interactions between heme and TLR4 are

discussed with a particular focus on the role of heme-binding serum proteins in handling

extracellular heme and its impact on TLR4 signaling. Moreover, the role of heme as

a direct and indirect trigger of TLR4 activation and species-specific differences in the

regulation of heme-dependent TLR4 signaling are highlighted.
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INTRODUCTION

Toll-like receptors (TLRs) recognize invading pathogens and are essential sensors and regulators
of the innate immune system (1, 2). Bacterial, fungal, and viral infections activate various TLRs
that play a role in host defense but may also cause sepsis and tissue injury. Stimulation of TLRs by
their respective specific ligands initiates signaling cascades that mediate activation of transcription
factors and secretion of pro-inflammatory molecules (1, 2). For instance, TLR4 is stimulated by the
prototypical pro-inflammatory bacterial wall compound lipopolysaccharide (LPS), also known as
endotoxin (3). More recently, other compounds have been described to interact and stimulate TLR4
including hyaluronic acid, the dust mite protein Der p 2, nickel and various endogenous molecules
released from injured cells, that are collectively termed danger-associated molecular patterns
(DAMPs) (4–7). In particular, the red blood cell-derived product heme has been implicated in TLR4
signaling and has been proposed to be a DAMP that affects inflammatory responses in a variety
of pathophysiological conditions (8–15). Heme is an iron-containing tetrapyrrole with important
functions in various biological processes as a prosthetic moiety of hemoproteins in its covalent
or non-covalent bound form (16, 17). For example, in hemoglobin and myoglobin, heme is used
for oxygen transport and storage, whereas in cytochromes it is involved in electron transport, and
generation of energy. Heme is also important for enzymes such as cyclooxygenase-2, nitric-oxide
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synthase-1, NADPH oxidases, catalases, and peroxidases
(16, 18). In contrast, non-protein bound heme, also
termed “free” heme, can be harmful and cause pro-oxidant,
pro-inflammatory, and cytotoxic effects as previously reviewed
elsewhere (12, 13, 19, 20). Additionally, heme can mediate
the recruitment of leukocytes, platelets, and red blood cells
to the vascular endothelium. Many of the pro-inflammatory
effects of heme have been associated with activation of TLR4
signaling, as initially demonstrated in macrophages (10).
However, TLR4 signaling by heme appears to involve highly
complex regulatory mechanisms, which are dependent on
the applied models and experimental conditions (15, 21). For
example, conflicting findings on potential heme-dependent
pro-inflammatory effects have been reported in kidney
injury models applying TAK-242, a specific inhibitor of
TLR4 signaling, and TLR4 knockout mice (22–25). Hence,
mechanistic details on how heme may mediate its pro-
inflammatory regulation through direct or indirect interactions
with TLR4 are not fully understood. In this review, the
complex relationships between heme and TLR4 are discussed
with a particular focus on the role of serum heme-binding
proteins (HBPs).

DIRECT ACTIVATION OF TLR4 SIGNALING
BY HEME

The mechanistic basis of how TLR4 signaling may be activated
by heme has been primarily studied in mouse models with
genetic TLR4 deficiency and with small molecule inhibitors of
TLR4. For example, it has been demonstrated that treatment of
TLR4-deficient macrophages with purified exogenous heme fails
to induce expression of pro-inflammatory cytokines (10) and
activation of the inflammasome (26). Moreover, inflammatory
activation of the endothelium by heme has been found to
be counter-acted in TLR4−/− mice and by administration of
TAK-242 (27). Interestingly, in studies with human embryonic
kidney 293 cells, heme, and LPS applied together expressed
additive effects suggesting that they activate TLR4 by different
mechanisms (28). Although such findings support a role of heme
in direct TLR4 signaling, an activation site for heme-binding
in this receptor is still elusive. As efficient TLR4-dependent cell
activation by LPS requires the complex interplay of TLR4 with
CD14, myeloid differentiation protein-2 (MD-2) and the serum
protein lipopolysaccharide binding protein (LBP) (29) it is likely
that cooperation of these proteins is also critically involved in
heme-dependent TLR4 signaling (Figure 1). Notably, a heme
activation site has recently been identified in humanMD-2 which
appears to play a critical regulatory role in TLR4 signaling by
heme (30).

INDIRECT REGULATION OF TLR4
SIGNALING BY HEME

TLR4 ligands other than LPS can mediate TLR4 signaling
independent of direct interactions with the receptor. For
example, both, hyaluronic acid and the dust mite allergen Der
p 2, have been demonstrated to induce TLR4 signaling indirectly

(31, 32). Similarly, accumulating evidence indicates that certain
pro-inflammatory heme effects may also be independent of direct
heme-binding to TLR4.

Generation of Reactive Oxygen Species
(ROS)
Pro-oxidant properties of free heme can cause the generation
of ROS via the Fenton reaction of Fe(II) and H2O2 [reviewed
elsewhere (14, 20, 33)]. As activation of TLRs and generation
of ROS can be complementary in settings of so-called oxidative
stress (34), it is likely that heme-induced ROS generation
may also indirectly activate TLR4 signaling (Figure 1). It
should be noted that ROS can rapidly oxidize phospholipids,
which in turn initiate pro-inflammatory responses via TLR2
and/or TLR4. Independently, an inhibition of the oxidized
1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine
(OxPAPC)-induced pro-inflammatory effects has been reported
after down-regulation of TLR4 either by the antagonist eritoran
or by antisense nucleotides (35–37).

Lipid Oxidation
Oxidized low-density lipoproteins reportedly cause activation of
TLR4 (38) and binding of heme can rapidly bind to and oxidize
lipoproteins in the serum (39, 40) (Figure 1). As binding of heme
to lipoproteins occurs faster than that to serum HBPs such as
hemopexin (Hx) and albumin, it is conceivable that oxidized
lipoproteins can induce TLR4-mediated inflammatory signaling
and expression of inflammatory cytokines. Yet, depending
on the tissue, these inflammatory effects may contribute to
arteriosclerosis, rheumatic diseases, and others (33, 40, 41).

Interaction With Lipid Raft-Associated
Proteins
Due to its lipophilic nature, heme can form aggregates and
interact with the hydrophobic phospholipid bilayer in lipid
membranes affecting TLR4 signaling (42). Membrane lipid
rafts are dynamic cellular assemblies of saturated sphingolipids,
cholesterol, and selected proteins (43). There are some
transmembrane proteins located in lipid rafts including CD44
and CD36, both of which are involved in TLR4 signaling. Ample
data indicate that TLR4 and accessory proteins can associate
with lipid rafts and that TLR4-raft association is stimulated by
bacterial LPS (44). Depending on the TLR4 ligand, different co-
receptors can be involved. For instance, the ability of LPS to
activate TLR4 depends on CD14, a glycophosphatidylinositol-
anchored protein and co-receptor of MD-2 for LPS recognition
(45), which may also control internalization of heme via TLR4
(10). Interestingly, soluble TLR4 co-receptor CD14 has recently
been reported to mediate pro-inflammatory effects of heme in a
whole blood model (46).

Disruption of Lipid-Rafts
Extraction or sequestration of cholesterol with cyclodextrin or
nystatin has been shown to disturb clustering of TLR4 and
accessory proteins in rafts and to inhibit LPS-induced TNF-
α production (47). According to recent reports, naturally high
content of cholesterol in sickle and normal red blood cells
provides protection against free heme-induced oxidative stress
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FIGURE 1 | Schematic on TLR4 signaling by heme and the role of heme-binding blood proteins. TLR4 activation depends on the serum protein lipopolysaccharide

(LPS)-binding protein, the co-receptor CD14 and myeloid differentiation protein-2 (MD-2) for bacterial recognition. Free heme can activate TLR4-mediated signaling

and soluble CD14 has been found to be critical for the regulatory effects of heme. Heme-binding proteins (HBPs) including hemopexin (Hx), albumin,

alpha1-microglobulin (A1M), and alpha1-antitrysin (AAT) play critical roles for neutralization of heme and potential heme-dependent interactions with TLR4 to activate

TLR4 signaling. The potential role of lipid rafts in TLR4 signaling and scavenger receptors, such as CD36 and CD91, in mediating cellular effects of heme are depicted.

ROS, reactive oxygen species.

and membrane damage during normal and hemolytic conditions
(48). Because cholesterol depletion affects lipid raft assembly,
membrane trafficking, and TLR signaling, we speculate that free
heme or specific heme-HBP complexes may have modulatory
effects on TLR4 signaling via lipid rafts. Thus, we hypothesize
that heme, depending on its conformational state, might be
incorporated into rafts of the plasma membrane, affect lipid
raft fluidity, polarity, thickness, and tension-properties, which,
in turn, may influence recruitment (assembly) of TLRs and
signaling. Thus, via unspecific hydrophobic interactions with
lipid rafts, heme alone or in complex with HBPs may affect TLR4
signaling (Figure 1).

In summary, heme may mediate TLR4 activation via various
indirect mechanisms including production of ROS, oxidation of
lipoproteins, and modulation of lipid rafts in cell membranes.

HEME INTERACTIONS WITH SERUM
HEME-BINDING PROTEINS AND ROLE IN
TLR4 SIGNALING

Heme toxicity and its pro-inflammatory effects have been
demonstrated in experimental disease models like sickle cell
disease (SCD), malaria, sepsis, atypical hemolytic uremic
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syndrome, arteriosclerosis, or ischemia-reperfusion injury (27,
41, 49–52). The damaging effects of free heme can be blocked
by intracellular factors like heme oxygenases and ferritin,
and extracellular factors such as various plasma proteins,
respectively (Figure 1). Only if both intra- and extracellular
defense mechanisms are overwhelmed, cellular toxicity arises
(12, 33, 53). Independent reports have provided evidence
that neutralization of free heme via Hx, the serum protein
with the highest known heme-binding affinity (Kd <10−12 in
humans), counteracted the detrimental effects of heme (42, 54–
57). However, serum concentrations of Hx are low (about 0.6–
1.2 g/L), and in conditions of severe hemolysis (55) decreased
systemic levels of Hx might not be sufficient to neutralize
larger amounts of free heme. Therefore, other plasma proteins
including albumin, alpha-1-microglobulin (A1M), and alpha1-
antitrypin (AAT) appear to be also involved in binding and
neutralization of free heme (12, 33, 58, 59). Although albumin
binds heme with an affinity about 100-fold lower than Hx, the
high concentration of albumin in serum (35–53 g/L) might
compensate any potential deficiency in Hx. This, in part, may
explain beneficial effects of albumin infusion to individuals with
severe sepsis (60) and malaria (61, 62). Notably, albumin is a
negative acute phase protein in humans and it is conceivable
that during severe inflammatory conditions, when the heme-
neutralizing capacity of albumin decreases, other acute-phase
proteins such as AAT will participate. AAT is a HBP with
binding affinity similar to albumin (59) and it has previously
been demonstrated that AAT markedly reduces free heme
neutrophil-activating effects, including the production of ROS
(63). Serum HBPs not only bind and neutralize free heme
with different binding affinities, but may also acquire novel
biological activities via specific interactions with heme (64–
66). For example, the HBPs Hx and A1M have recently
been shown to exhibit differential heme transporter functions
and are reciprocally regulated during SCD. While Hx directs
heme to the liver and mediates its hepatic up-take via
the scavenger receptor low-density lipoprotein receptor-related
protein-1 (LRP1, synonymous with CD91) (67, 68), A1M directs
heme to the kidney where it may cause detrimental effects
including acute kidney injury (69). Finally, it has been found
that the interplay of immunoglobulins with heme may alter their
binding affinity for bacterial antigens (70).

The question, which form(s) of protein-associated heme
is/are inert or biologically active in vivo remains open. For
instance, high concentrations of albumin-associated heme in
the presence of serum failed to induce inflammatory responses
in endothelial cells and macrophages (21). Likewise, the
local and systemic exposure to protein-associated heme did
not induce inflammatory gene expression in mouse models.
Heme-mediated signaling via NF-kB only occurred in serum-
free conditions in cell cultures of macrophages (21). These
findings imply that only the complete absence of serum
proteins may allow TLR4 interactions of free heme or
specific heme-HBP complexes which, in turn, activate pro-
inflammatory pathways. Thus, direct heme-mediated TLR4
signaling appears to be unlikely in relevant clinical conditions,
because levels of “free” heme in vivo appear to be orders of

magnitude below those conditions applied in vitro to cause
pro-inflammatory effects.

In conclusion, pro-inflammatory effects of heme are critically
dependent on heme interactions with serum HBPs, which can
largely vary in different pathophysiological settings.

HEME AS A SECOND HIT FOR TLR4
ACTIVATION

Cell-free hemoglobin and heme derived from lysed red
blood cells have been reported to synergize with the pro-
inflammatory effects of TLR4 agonists in culture models of
mouse macrophages (11). These findings suggest that free
heme may substantially aggravate inflammatory responses in
settings of bacterial or viral infections with simultaneous
intravascular hemolysis. Due to the difficulties in determining
the biologically relevant concentrations of free heme, the
mechanisms that mediate the synergism of heme with different
TLR agonists are unclear. Independently, free heme has been
demonstrated to synergistically activate the NOD-like receptor
family pyrin domain containing 3 (NLRP3) inflammasome
in LPS-primed macrophages (26) and endothelial cells (71).
The NLRP3 inflammasome is a multimeric protein complex
comprising a sensor, an adaptor and the zymogen procaspase-
1, which leads to activation of caspase-1 and release of the
pro-inflammatory interleukins, IL-1β, and IL-18 (72). Heme
activates the NLRP3 inflammasome leading to IL-1β production
by peritoneal macrophages and in human endothelial cells, but
this effect of heme is lost in NLRP3-deficient mice. Finally,
free heme may contribute to the inflammatory activation of
the endothelium via complement activation as demonstrated
in various experimental models of intravascular hemolysis
(51, 73). These studies have also provided experimental
evidence that free heme may be an important second signal
for pre-existing conditions of pro-inflammatory endothelial
activation to further escalate the inflammatory vascular damage
in disorders such as SCD and atypical hemolytic uremic
syndrome (74).

In summary, heme may synergize with a variety of
pro-inflammatory agonists to aggravate activation of TLR4
and inflammation.

SPECIES-SPECIFIC DIFFERENCES OF
HEME-DEPENDENT TLR4 SIGNALING IN
INFLAMMATION

Because heme interactions with TLR4 have largely been studied
in rodent models, the extent to which these models apply
to human conditions is very important. Due to the specific
pathogens encountered by mice and humans, various aspects
in the innate and adaptive immune systems are different
between these two species (75). Thus, human and murine
responses to TLR4 activation have some similarities, but also
profound differences (76). For example, Akashi et al. reported
that the lipid moiety of endotoxin, lipid A, acts agonistically
on mouse, but not on human TLR4/MD-2 (77), which has
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more recently also been confirmed in structural studies on
the TLR4/MD-2 complex (78). It is also important to point
out that murine and human TLR4 share 67–71 and 79–81%
similarity at the nucleotide and amino acid levels, respectively
(79, 80). Amino acid similarity between the mouse and human
TLR4 sequences is 62% in the extracellular domain, 70%
in the transmembrane domain, and 83% in the cytoplasmic
domain (81). In mice, as in humans, cells of myeloid origin
such as monocytes, macrophages, microglia, and granulocytes
exhibit the highest levels of TLR4 expression. However, in
sharp contrast to human macrophages and monocytes, which
increase TLR4 expression in response to LPS, mouse peritoneal
macrophages, and neutrophils decrease TLR4 expression after
LPS challenge (82). Schroder et al. reported differences in the
gene regulation of human and murine macrophages following
LPS stimulation. Although various genes targeted by TLR4
signaling are more rapidly induced by LPS in human than in
mouse macrophages, several negative feedback loops of the TLR4
pathway are differentially regulated in mouse macrophages (76).
Existing knowledge suggests that rabbits and swine may be
closer to humans than mice concerning TLR4 sequences and
function. In fact, humans, swine, and rabbits are sensitive to
LPS with physiological changes induced by a dose at nonograms
per kilogram whereas mice are highly resistant to LPS with
physiological changes induced by a dose at milligrams per
kilogram (83, 84).

Given these above mentioned variations, it does not come as
a surprise that mouse and human TLR4 signaling in response
to free or HBP-bound heme appears to exhibit substantial
differences (85). Moreover, TLR4 activation by LPS has also been
found to cause opposing effects on the regulation of intracellular
heme levels and heme oxygenase-1 expression in murine and
human macrophages (86, 87). Furthermore, determinations of
Hx in mouse models of endotoxemia, burn wound infections
and peritonitis as compared to those in patients with sepsis
and severe burns revealed that systemic levels of this HBP
increased above baseline in each murine model, but decreased
in comparable human inflammatory conditions (88). Hence, Hx
is induced during the so-called acute phase response in rodents,
but not in human (33, 89, 90). Another example is AAT (59),
because plasma baseline concentrations of AAT in mice are
about four times higher than in human plasma (normal levels
in human plasma 1.3–2 g/L) (91), which may be important
for neutralization and/or susceptibility to free heme toxicity.
Thus, species-specific profiles of serum proteins may determine

principle differences between mouse and human as shown for
defense strategies against bacterial infections (92). Overall, mice
have evolved in a different environment to humans, have a
markedly lower body weight and have significantly shorter
lifespans and, therefore, it is worth considering that the response
to heme in mice may not occur in precisely the same way
in humans (75, 93). Consequently, TLR4 activation in humans
by heme is different from that in mouse models and such
evolutionary differences need to be taken into account when
translating findings from mouse disease models into human
clinical applications.

In conclusion, species-specific differences between mouse and
human appear to also apply to heme- and HBP-dependent
pathways in TLR4 signaling.

CONCLUSIONS AND OUTLOOK

The regulatory role of heme in TLR4 signaling might be
dependent on direct and indirect interactions. In particular, the
interplay of heme with specific serum HBPs appears to play
a major modulatory role in inflammatory conditions. Due to
species-specific differences in heme-dependent TLR4 signaling
findings from mouse models in experimental inflammatory
diseases need to be carefully interpreted when translated
to clinical settings. A major challenge will be to establish
methods for determination of free heme in physiological and
pathophysiological settings to allow a better understanding of the
link between heme and the innate immune system.
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