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Abstract
Purpose The JIGSAWS dataset is a fixed dataset of robot-assisted surgery kinematic data used to develop predictive models
of skill. The purpose of this study is to analyze the relationships of self-defined skill level with global rating scale scores and
kinematic data (time, path length and movements) from three exercises (suturing, knot-tying and needle passing) (right and
left hands) in the JIGSAWS dataset.
Methods Global rating scale scores are reported in the JIGSAWSdataset and kinematic datawere calculated usingROVIMAS
software. Self-defined skill levels are in the dataset (novice, intermediate, expert). Correlation coefficients (global rating scale-
skill level and global rating scale-kinematic parameters) were calculated. Kinematic parameters were compared among skill
levels.
Results Global rating scale scores correlated with skill in the knot-tying exercise (r� 0.55, p� 0.0005). In the suturing
exercise, time, path length (left) and movements (left) were significantly different (p<0.05) for novices and experts. For
knot-tying, time, path length (right and left) and movements (right) differed significantly for novices and experts. For needle
passing, no kinematic parameter was significantly different comparing novices and experts. The only kinematic parameter
that correlated with global rating scale scores is time in the knot-tying exercise.
Conclusion Global rating scale scores weakly correlate with skill level and kinematic parameters. The ability of kinematic
parameters to differentiate among self-defined skill levels is inconsistent. Additional data are needed to enhance the dataset
and facilitate subset analyses and future model development.

Keywords Motion analysis · JIGSAWS · ROVIMAS

Introduction

The paradigm for surgical education since the time of Hal-
stead was “see one, do one, teach one” but this has undergone
radical change in the last 30 years with the advent of laparo-
scopic surgery (1987), the Institute of Medicine “To err
is human” report (1999) [1] and introduction of the com-
mon duty-hour restrictions by the Accreditation Council for

This paper was presented in part at ACCAS 2019, Tokyo Japan, 23–25
November 2019.

B Alan Kawarai Lefor
alefor@g.ecc.u-tokyo.ac.jp

1 Department of Bioengineering, School of Engineering, The
University of Tokyo, Tokyo, Japan

2 Department of Mechanical Engineering, School of
Engineering, The University of Tokyo, Tokyo, Japan

3 Imperial College London, London, UK

Graduate Medical Education (2003). These three watershed
eventsmandated a newsurgical education paradigm.Thenew
approach to surgical education is based on objective assess-
ment and obtaining competence, also known as proficiency,
instead of subjective assessment that characterizes the Hal-
steadian paradigm.

Simulation is a cornerstone of surgical and procedural
education. Along with changes in teaching, there have been
changes in assessment. Simulation allows proficiency-based
training, deliberate and distributed practice, which are the
three pillars of a surgical curriculum [2]. There have been
many attempts to develop objective methods of assessing
surgical skill [3, 4]. A variety of global rating scales (GRS)
were developed including the OSATS score [5], the GEARS
score [6] andGOALS [7] to quantitatively assess skills which
depend on assessment by trained observers. Checklists have
also been used to assess surgical skills and have been used
alone or in combination with GRS [8]. There have been no
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attempts to quantify the performance of open surgery, other
than using a GRS. Skill in open surgery does not necessarily
correlate with skill in minimally invasive surgery [3].

Hand motion studies that quantitatively assess the perfor-
mance of laparoscopic surgery are valid for assessing surgical
skill [9–14]. Hand motion studies of simulated procedures
are easy to conduct but many not reflect actual surgical skill
while studies during laparoscopic surgery are complicated
by concerns for the sterile field and the need for sensors to
be placed on the hands of operating surgeons [9, 11–13].

Robotic minimally invasive surgery (RMIS) allows the
collection of detailed motion data during surgery without
concern for the sterile field enabling the collection of more
data than from hand motion studies. Metrics of surgical
performance in RMIS including time, movements and path
length (PL) have been validated and can differentiate novice
from expert surgeons [15–18]. RMIS is performed almost
exclusively with the daVinci system (Intuitive Surgical, Sun-
nyvale, CA, USA). Obtaining motion data from the da Vinci
requires approval of the Intuitive Corporation and has been
authorized for only a few institutions. Data are delivered
according to the format specified in the application program-
ming interface (API) [19]. One of the earliest approaches
used to analyze these data is the Robotics Video and Motion
Assessment Software (ROVIMAS), developed for this pur-
pose (by one of the authors of this study, AD) [11, 17].
ROVIMAS analyzes data from the da Vinci surgical system
and reports time, PL and number of movements and other
parameters and has also been used to quantify improved dex-
terity in RMIS compared with laparoscopic surgery using
parameters other than time [20]. Alternatives have been
developed to obtain hand motion data during RMIS with-
out the API data [21].

The JHU-ISI Gesture and Skill Assessment Working Set
(JIGSAWS) dataset was generated at Johns Hopkins Uni-
versity and is a standardized dataset from simulated RMIS
with three exercises (suturing, knot-tying and needle passing)
performed by eight participants with varied prior experience
[22]. JIGSAWS is the largest publicly available dataset for
gesture analysis, and previous work has focused on skill
evaluation, gesture classification, gesture segmentation and
surgical task recognition [23]. The dataset is fixed and cannot
be modified. Since data from one’s own da Vinci system are
unavailable to most investigators, the data in JIGSAWS are
used to evaluate new models to predict surgical skill. Studies
using the JIGSAWSdata include an assessment of skill based
on video data applied to a convolutional neural network [24],
studies of holistic features of the data [25] and gesture anal-
ysis [26]. Investigators have used the JIGSAWS dataset to
develop predictive models with a deep learning framework,
as well as a neural network and a deep neural network which
were then used to evaluate study participants [27–29].

The purpose of this study is to examine the relationships
of self-defined (SD) skill levels, GRS scores and kinematic
parameters in the JIGSAWS dataset. We hypothesized that
global rating scale (GRS) scores and/or kinematic parame-
ters correlate with skill level (SD by hours of robotic surgery
experience) and can differentiate among the SD skill lev-
els in the JIGSAWS dataset. The correlation of GRS scores
with skill levels will be evaluated. For each of the three exer-
cises (suturing, knot-tying and needle passing), kinematic
parameters (time, path length and movements) will be calcu-
lated from the JIGSAWS dataset using ROVIMAS software.
The ability of kinematic parameters to differentiate among
skill levels and correlation of kinematic parameterswithGRS
scores will be evaluated.

Methods

JIGSAWS dataset

Three robotic-assisted surgery simulation exercises (sutur-
ing, knot-tying and needle passing) were performed on a
da Vinci surgical system at Johns Hopkins University [22].
Motion data collected from the da Vinci API were collected
and made available online [30]. This study is an analysis of
the published dataset.

The dataset includes kinematic data, video data, gestures
and a GRS score. Data were collected from participants per-
forming five trials of three exercises (suturing, knot-tying and
needle passing) using the da Vinci surgical system. Kine-
matic data were collected directly from the da Vinci API.
The GRS score is a modified OSATS scale assigned dur-
ing each trial by a trained observer. Global rating scale data
are provided as part of the JIGSAWS dataset and require
no analysis. The GRS score has six scales including respect
for tissue, suture/needle handling, time and motion, flow of
operation, overall performance and quality of final product,
measured from 1 to 5. [22].

Data were collected from eight participants (referred to in
the dataset as B, C, D, E, F, G, H and I), who performed the
three exercises. Each performance by a participant is referred
to as a trial, for a maximum of 40 trials for each of the three
exercises [22]. The developers of the dataset described cor-
ruption of data for some trials. Data for these trials are not
available. The actual number of trials analyzed for each exer-
cise is shown in Table 1 [22]. SD skill levels were based on
participant self-classifications based on hours of experience
as novice (<10h), intermediate (10–100h) or expert (>100h)
operators. There were four novices (B, G, H and I), two inter-
mediates (C and F) and two experts (D and E) based on SD
skill levels.

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:2017–2025 2019

Table 1 JIGSAWS dataset
global rating scale scores
according to skill level and task.
Skill level is self-declared by the
participant according to criteria
in [12]

Suturing Knot-tying Needle passing

Number of trials 39 36 28

Novice 17.5±4.40 10.7±4.19 16.0±5.14

Intermediate 25.1±4.09 17.1±4.28 14.0±6.05

Expert 16.3±3.65 17.7±3.02 12.4±2.35

Correlation of self-declared skill levels
with global rating scale scoresa

r� 0.104
p� 0.53

r� 0.55
p� 0.0005

r� − 0.293
p� 0.13

Global rating scale scores are reported as mean± standard deviation
aSpearman’s correlation

ROVIMAS

ROVIMAS was developed to analyze data from the da Vinci
surgical system and has also been used to evaluate hand
motion data frommagnetic sensors on the surgeons’ hands in
the operating room [12, 17]. ROVIMAS calculates the time
for a procedure, the number of movements and PL. Some
mathematical notation is needed to define these three param-
eters which form the basis of motion analysis of RMIS data.

• Time is measured by the clock.
• A single movement is defined as a change in velocity
which reaches its maximum as the movement occurs and
then returns nearly to zero as the movement is completed
[11, 31]. ROVIMAS calculates the distance dAB, between
points A and B in the time interval dt using:

dAB �
√
(xB − xA)2 + (yB − yA)2 + (zB − zA)2

with (xA, yA, zA) as the coordinates of the first point and (xB,
yB, zB) for the second point [11]. The movement pattern is
shown by plotting the distance values versus time, and the
slope of the resulting line for a movement gives the velocity.
This is observed for both sharp and smooth movements. A
Gaussian filter is used to smooth the data to differentiate
between sudden and controlledmovements [11, 17]. The total
number of movements is obtained by adding the local high
peaks in the smoothed signal [11].

• The total PL of the master controller is calculated by sum-
ming all the partial distances [9], whereN is the number of
partial distances and di is the distance between two neigh-
boring points:

PL �
N∑
i�1

di

Kinematic data

Data in JIGSAWSwere recorded at 30Hz,with 19 data points
for each of the four controllers: Right Master, Left Master,

Right Slave andLeft Slave, resulting in 76 values at each time
point as a subset of the 192 values provided by the da Vinci
API. ROVIMAS was designed to accept data from version
4.1 of the API [19]. Therefore, the data were converted from
the format in the JIGSAWS dataset to the format accepted
by ROVIMAS. The conversion was performed by custom
software written in Visual C# (Microsoft Corp, Redmond
WAUSA). Since data were recorded at a constant 30 Hz, the
time for each trialwas calculated by the number of data points
divided by 30, yielding the time for each trial in seconds.

Statistical analysis

The global rating scale scores and data for time, movements
and PL were collected and grouped according to SD skill
levels by each participant for all trials of the exercises. Data
were compared using the Mann–Whitney U test using Excel
(Microsoft Corp, RedmondWAUSA) and XLSTAT (Addin-
soft, Long Island City NY USA). A p value of<0.05 was
considered significant. The correlation of continuous vari-
ables of time, movements and PL with GRS scores was
evaluated using Pearson’s correlation. The correlation of the
categorical variable of SD skill level (novice, intermediate,
expert) with GRSwas evaluated with Spearman’s correlation
for each of the three exercises [32]. Correlation is classified
as strong (>0.7), moderate (>0.5) or weak (>0.3) [33].

Results

Global rating scale score and skill classification

The mean GRS scores comparing the three groups of partic-
ipants defined by SD skill level are shown in Table 1. The
correlation coefficients between the SD skill level (novice,
intermediate and expert) and the GRS are shown in Table 1.
Of the three exercises, only knot-tying had a significant cor-
relation (r� 0.55, p� 0.005) between SD skill level andGRS
scores.
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Table 2 JIGSAWS dataset
motion analysis using
ROVIMAS. Skill level is
self-declared by the participant
according to criteria in [12]

Time (s) Right path
length (m)

Right
movements

Left path
length (m)

Left
movements

Suturing

Novice 19
trials

137±49.6 0.290±0.230 34.5±25.2 3.02±0.76 40.3±13.5

Intermediate
10 trials

88.5±14.4 0.440±0.130 49.1±14.6 3.10±0.35 63.3±7.45

Expert 10 trials 101±20.0 0.500±0.530 47.8±44.7 1.72±0.25 14.7±4.62

Knot-tying

Novice 16
trials

71.5±18.9 0.16±011 21,8±13.2 1.58±0.66 17.0±9.41

Intermediate
10 trials

47.4±18.8 0.45±0.21 43.5±17.8 2.11±0.81 20.6±7.95

Expert 10 trials 44.0±5.06 0.31±0.12 37.1±13.1 1.02±0.18 13.5±4.14

Needle passing

Novice 11
trials

118.18±16.6 0.26±0.22 31.4±23.6 1.80±0.51 13.3±7.82

Intermediate 8
trials

93.38±30.4 0.50±0.21 50.0±17.4 2.06±0.50 32.5±7.41

Expert 9 trials 108.7±22.2 0.28±0.11 32.1±12.7 1.72±0.32 13.9±4.23

Values shown are the mean± standard deviation

Table 3 Probability values* comparing time, path length, movements and global rating scale (GRS) scores for suturing, knot-tying and needle
passing by novice (N� 4), intermediate (N� 2) and expert (N� 2) participants

Exercise Parameter Novice/intermediate* Intermediate/expert* Novice/expert* Correlation with GRS**

Suturing Time p< .05 0.060 p< .05 − 0.34

Global rating scale p< .05 p< .05 0.737 –

Left path length 0.512 p< .05 p< .05 0.11

Left movements p< .05 p< .05 p< .05 0.45

Right path length 0.120 0.730 0.242 − 0.14

Right movements 0.215 0.423 0.591 − 0.085

Knot-tying Time p< .05 0.956 p< .05 − 0.69

Global rating scale p< .05 0.985 p< .05 –

Left path length 0.097 p< .05 p< .05 − 0.39

Left movements 0.344 p< .05 0.465 − 0.14

Right path length p< .05 p< .05 p< .05 0.17

Right movements p< .05 0.26 p< .05 0.34

Needle passing Time 0.104 0.409 0.157 − 0.30

Global rating scale 0.503 0.901 0.083 –

Left path length 0.492 0.167 0.656 0.19

Left movements p< .05 p< .05 0.641 − 0.015

Right path length p< .05 p< .05 0.417 − 0.15

Right movements p< .05 p< .05 0.86 − 0.17

Skill level is self-declared by the participant according to criteria in [12]. Data for both hands are shown
*Probability values (p values), Mann–Whitney U test
**Pearson correlation coefficient

Kinematic data

Motion analysis of each of the three exercises is shown in
Tables 2 and 3. Correlation of the three kinematic parame-
ters with the self-described skill level is shown in Table 3.

Table 3 shows the values for differences in the three kine-
matic parameters according to skill levels for each exercise
based on SD skill level classification. PL and movements
are shown for both left and right hands in Tables 2 and 3,
including comparisons of all skill levels.
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Suturing exercise

There is a significant difference between novices and experts
for PL (p<0.0001) movements (p<0.0001) and time (p�
0.012) for the left hand but not the right hand. Movements
are the most consistent among the three parameters tested
being significantly different among all three skill levels for
the left hand, but not for the right hand.

Time and movements weakly correlate with GRS scores
(r� − 0.34 and 0.45, respectively). The correlation of move-
ments with GRS scores is positive for the left hand and
negative for the right hand. The GRS scores are significantly
different between the intermediate level and both novice and
expert levels.

ROVIMASprovides trajectory analysis and representative
analyses are shown for a novice participant (Fig. 1a) and an
expert (Fig. 1b) in the suturing exercise.

Knot-tying exercise

Table 3 shows that there is a significant difference for time
(p<0.0001) and PL (p� 0.045) comparing novice and expert
SD skill levels. Similar to the suturing exercise, there is no
pattern maintained for differences in significance comparing
the left and right hands.Movements are significantly different
between novices and experts for the right hand but not the
left hand.

There is a moderate correlation between time and
GRS score (r� − 0.69). There is a significant differ-
ence for GRS scores comparing expert/novice operators and
novice/intermediate operators. Left hand kinematic parame-
ters have a negative correlation with GRS, while right hand
parameters have a positive correlation, showing again that
there is no consistent pattern of differences between left and
right hands.

Representative trajectory analyses are shown for a novice
participant (Fig. 1c) and an expert (Fig. 1d) in the knot-tying
exercise. Representative scatter plots of PL (Fig. 2a), time
(Fig. 2b) andmovements (Fig. 2c) versus global rating scores
are shown for the knot-tying exercise which show moderate
correlation of GRS with time in this exercise.

Needle passing exercise

Of the three kinematic parameters, there are significant dif-
ferences for movements comparing intermediate/novice and
intermediate/expert operators for the left hand and right hand.
There are no significant differences comparing skill levels
for PL or time for the left hand but there are differences
for novice/intermediate and intermediate/expert for the right
hand.

There are no significant differences comparing GRS
scores among the skill levels, and GRS scores correlate

weakly with the kinematic parameters for both left and right
hands with no specific pattern in the sign of the correlation.

Representative trajectory analyses are shown for a novice
participant (Fig. 1e) and an expert (Fig. 1f) for the needle
passing exercise.

Discussion

Time, PL and number of movements have been validated
as kinematic parameters for the assessment of laparoscopic
surgical skills [14]. These three kinematic parameters were
evaluated for the eight participants in the three exercises
(suturing, knot-tying and needle passing) in the JIGSAWS
dataset using ROVIMAS software as well as the GRS for
each trial of the three exercises.

Previous studies have examined the correlation between
hand motion and surgical skill [9, 10, 12, 30, 34]. Hand
motion has also been used in the training of anesthesiolo-
gists [35]. Motion tracking devices have been attached to
surgeons’ hands during actual surgery and the data analyzed
by ROVIMAS [12]. This study found differences in sur-
geons with different skill levels for time, PL and number
of movements. Hand motion studies have also been done in
a simulation environment [9, 10]. Similar differences in tra-
jectory analysis were also reported by others [16, 19, 23, 36].
Trajectory analysis in these studies showed results similar to
those in the present study for the JIGSAWS data (Fig. 1), that
experts have a more focused trajectory.

A partial motion analysis of the JIGSAWS dataset has
been reported [16]. These investigators analyzed the sutur-
ing exercise and the knot-tying exercise but did not discuss
the needle passing exercise and used a different definition of
novice and expert operators based onGRSscores.Data in that
study show that motion analysis of the left hand (nondom-
inant for all JIGSAWS participants) is more important than
data from the right hand, and that dexterity can be assessed
based on nondominant hand performance. All participants in
the JIGSAWS dataset were right-hand dominant. The corre-
lation of kinematic parameters with GRS should be negative,
but in the suturing exercise, left hand parameters have a posi-
tive correlationwithGRS,while right hand parameters have a
negative correlation (Table 3). There is no consistent correla-
tion between kinematic parameters and GRS for either hand.
Similarly, differences in significance of kinematic parame-
ters between skill levels are not consistent regarding the left
or right hands. These results suggest that data for both hands
should be evaluated.

ROVIMAS analysis in this study using SD skill levels
shows that the PL for novices was longer than for experts
(Table 3). In a previous partial analysis of the JIGSAWS
dataset, the PL for the left handwas slightly longer for experts
than novices in the suturing exercise [16]. In the present
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Fig. 1 Three-dimensional Cartesian trajectory analysis (left hand is
shown in all graphs) provided by ROVIMAS shows that participants
classified as experts have fewer and more focused trajectories than
novices, similar to the patterns reported byothers [14, 21, 34]. The origin
of each graph is defined by the initial position of the instruments of the
da Vinci surgical system at startup and the positions of the instrument

tip shown. a, b Trajectory analysis of the suturing exercise completed
by participants B and E, self-described as a novice and expert, respec-
tively. c, d. Trajectory analysis of the knot-tying exercise completed by
participants I and D, self-described as a novice and expert, respectively.
e, f Trajectory analysis of the needle passing exercise completed by
participants I and D, self-described as a novice and expert, respectively
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Fig. 2 Representative scatter plots of path length (m) (a, r� − 0.36),
time (s) (b, r� − 0.65) and movements (c, r� − 0.33) versus global
rating scores for the knot-tying exercise. Linear trend lines are shown
in each figure

study, the PL is slightly shorter for experts. This may be
due to differences in the software used for analysis. A deep
surgical skill classification model was developed which used
SD skill classification [27]. Other studies developed models
using both classifications and showed nearly equal results
[28]. Other predictive models are based on the SD classifica-
tion [23, 25, 29]. These studies used kinematic data without
motion analysis.

The correlations of the three kinematic parameters with
GRS scores are generally weak in all three exercises in this
analysis (Table 3). The trend lines show a weak correlation
(Fig. 2), which is overall best for the time analysis in all
three exercises. A similar observation was made using data
from a clinical study [15]. Fard and colleagues stated that

time and PL are insufficient to explain all aspects of surgical
assessment [16]. In the suturing exercise, they computed a
correlation coefficient for time of 0.43 and PL of 0.27. Others
have reported that all objective kinematic parameters evalu-
ated including time and PL can distinguish between novice
and expert performance [18]. The differences in PL calcula-
tion between this study and previously published results are
acknowledged [16]. The reason for this difference is unclear
and difficult to explain, especially since the software from the
other study is not available. However, despite this difference,
we believe that results within this study, all of which were
calculated with ROVIMAS, are a valid basis of comparison.

The results of the knot-tying exercise are interesting
because there is a small difference in GRS scores between
intermediate and expert participants (Table 1, 17.1 and 17.7,
respectively), which was used to explain poor skill classifi-
cation performance for this exercise [23]. Despite this, there
is a moderate correlation between GRS score and time in this
exercise in the present analysis. The intermediate skill level
may be difficult to interpret. First, we expect the greatest
differences to be between novice and expert participants so
these data may show a greater difference. Using novice and
expert classifications alone reduces the problem to a binary
classification [16].

There are acknowledged limitations to this study. The data
provided in the JIGSAWS dataset and are used “as is” so that
any limitations in the data or methodology are inherent in
this study. The JIGSAWS dataset is limited in size which
limits the extent of this study as well as limiting the ability to
conduct appropriately powered subset analyses. ROVIMAS
cannot directly read the data in the JIGSAWS dataset, and
there is always a chance of data corruption in the conver-
sion process. Due to software limitations, it is not possible
to modify the source code of ROVIMAS and add desired
features.

It has been said that “It is somewhat surprising that there
are no tools in widespread use that are feasible, valid, and
reliable for assessment of technical surgical skill” [12]. The
“holy grail” of surgical assessment is a single tool which
can accurately evaluate surgical skill. It remains to be shown
that such assessments are clinically relevant [23]. It is also
unknown whether simulation education results in improved
clinical performance in robot-assisted surgery, in contrast to
laparoscopic surgery [37]. Objective assessment of clinical
surgical skill remains an elusive goal, in part because it has
not beenpossible to demonstrate a clear linkagebetween such
assessments and clinical performance partly because clinical
outcomes depend on a wide range of factors attributable to
both surgeon and patient.

The relationship between kinematic parameters and sur-
gical skill appears to be nonlinear and will need further
refinement of analytical tools to conduct nonlinear analyses,
such as a deep learning approach which has been performed
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by some investigators [27–29]. There is no shortage of assess-
ment tools, but assessment of surgical skill remains a complex
and difficult task to perform in a meaningful way [3, 4]. It is
reasonable to suggest that assessing surgical skill in RMIS
requires multiple simultaneous assessments including global
rating scales (such as GEARS, OSATS), gesture analysis and
motion analysis.

Conclusions

This study shows weak correlation of GRS scores with SD
skill level for suturing and needle passing, and moderate
correlation for knot-tying. Kinematic parameters do not cor-
relate strongly with GRS scores as one measure of skill, and
while some parameters can differentiate among different SD
skill levels, no one parameter consistently makes this differ-
entiation. The JIGSAWS dataset is of great importance in
studies of robotic-assisted surgery kinematic data because it
is publicly available and obtaining surgical robot motion data
may not otherwise be possible. This study provides further
insight into this dataset that is being used to develop models
to predict surgical skill. This dataset may be enhanced by
including more participants and more trials to allow appro-
priately powered subset analyses. These results should be
considered in the development of future assessment tools.
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