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Abstract

Background: Pancreatic adenocarcinoma (PAAD) is a nonimmunogenic tumor, and very little is known about the
relationship between the host immune response and patient survival. We aimed to develop an immune prognostic
model (IPM) and analyze its relevance to the tumor immune profiles of patients with PAAD.

Methods: We investigated differentially expressed genes between tumor and normal tissues in the TCGA PAAD
cohort. Immune-related genes were screened from highly variably expressed genes with weighted gene correlation
network analysis (WGCNA) to construct an IPM. Then, the influence of IPM on the PAAD immune profile was
comprehensively analyzed.

Results: A total of 4902 genes highly variably expressed among primary tumors were used to construct a weighted
gene coexpression network. One hundred seventy-five hub genes in the immune-related module were used for
machine learning. Then, we established an IPM with four core genes (FCGR2B, IL10RA, and HLA-DRA) to evaluate the
prognosis. The risk score predicted by IPM was an independent prognostic factor and had a high predictive value
for the prognosis of patients with PAAD. Moreover, we found that the patients in the low-risk group had higher
cytolytic activity and lower innate anti-PD-1 resistance (IPRES) signatures than patients in the high-risk group.

Conclusions: Unlike the traditional methods that use immune-related genes listed in public databases to screen
prognostic genes, we constructed an IPM through WGCNA to predict the prognosis of PAAD patients. In addition,
an IPM prediction of low risk indicated enhanced immune activity and a decreased anti-PD-1 therapeutic response.
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Introduction
Pancreatic adenocarcinoma (PAAD) is historically one of
the deadliest malignancies; the 5-year survival rate is less
than 9% for patients with all stages combined [1].

Furthermore, the incidence of PAAD is rapidly increas-
ing worldwide and is predicted to become the second
leading cause of cancer-related death in the future, be-
hind only lung cancer [2]. Treatment options for ad-
vanced PAAD are limited to gemcitabine-based
chemotherapy and are hampered by ineffective clinical
outcomes.
Immune surveillance is the first filter to identify and

eliminate aberrant or malignant cells [3], and PAAD is
regarded as a nonimmunogenic tumor [4]. Hence, most
tumor cells avoid recognition by host immune cells, pro-
moting PAAD progression. Although several immune-
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related parameters, such as CD8+ T cell infiltration and
PD-L1 expression, have been reported to predict the
prognosis of patients with PAAD [5], immune prognos-
tic models (IPMs) have not yet been developed for
PAAD.
Weighted gene correlation network analysis (WGCN

A) is a powerful approach in network modeling that is
useful for identifying cluster modules of highly related
genes, summarizing these clusters with module eigen-
genes (MEs) or intramodular hub genes, and relating
modules to one another and to external sample traits
[6]. Currently, WGCNA has been widely used in various
cancer-related studies to identify candidate biomarkers
[7, 8].
In the present study, we first built the WGCNA net-

work using primary tumors from 177 patients in The
Cancer Genome Atlas (TCGA) database. The WGCNA
network was constructed by highly variably expressed
among tumors, and immune scores calculated using the
“ESTIMATE” package [9] were used to identify
immune-related modules. By selecting hub genes in
these immune-related modules, this study developed an
IPM that may identify low-risk patients. Importantly,
our investigation indicated that low-risk patients pre-
dicted by the IPM present higher immune activity and
might experience a greater benefit from immunother-
apies than high-risk patients.

Materials and methods
Data collection
The RNA high-throughput sequencing (RNA-HTSeq)
read count data and clinical information from patients
with PAAD (n=177) were obtained from the GDC Data
Portal (https://portal.gdc.cancer.gov/). Normal tissue (n=
171) expression was obtained from the GTEx portal
(https://www.gtexportal.org/).

Pre-processing
The following pre-processing method was used: (1) re-
moving genes with counts ≤ 1 in all samples and (2) nor-
malizing expression data by variance stabilizing
transformation (VST). Highly variably expressed genes
(HVGS) were analyzed in R (version: 3.6.3), and a cutoff
of top quartile (>25%) are considered hypervariable.

WGCNA
The gene coexpression networks were constructed using
the WGCNA package [6]. A coexpression network was
constructed for all differentially expressed genes, and the
Pearson correlation coefficients were calculated between
all genes. A β (soft-thresholding power) parameter was
determined based on the scale-free topology of the net-
work to reconstruct the network with strongly correlated
genes and eliminate weakly correlated genes.

Evaluation of the levels of immune cell infiltration and
tumor purity
The levels of immune cell infiltration (immune score)
and tumor purity for each PAAD sample were calculated
using the “estimateScore” function in the “ESTIMATE”
package [9]. This method is based on the single sample
gene set enrichment analysis (ssGSEA) algorithm [10].

Construction of an immune-related prognostic model
The expression profiles of 2991 genes from patients in
TCGA PAAD cohort with survival information were an-
alyzed using a univariate Cox regression analysis. Ten
variables with both a log-rank P≤0.2 and likelihood
P≤0.2 in the univariate analysis were entered into the
primary IPM. Next, the “step” function in the survival
“package” with the option direction “both” compares im-
provements in the Akaike information criterion (AIC)
achieved by systematically deleting each candidate vari-
able and adding each candidate variable between the
upper and lower bound regressor sets supplied from the
current model and by deleting or adding the one variable
with best improvement in the AIC (smallest AIC).

Analysis of the immune-related signature
Gene sets for cytolytic activity (granzyme-A, perforin-1)
[11] and activated CD8 T cells [12] were used in previ-
ous studies. TCGA transcriptomic profiling data were
obtained from the GDC Data Portal (https://portal.gdc.
cancer.gov/). The expression of each target gene was
normalized by TPM, and the immune signatures were
measured as the geometric mean of gene expression re-
ported as the log2 value of TPM+1.
The innate anti-PD-1 resistance (IPRES) signatures

were calculated based on the average Z score across all
gene sets associated with tumor metastasis, as described
in a published study [13].

The association between the risk score and survival
outcome
Kaplan-Meier survival curves were used to show differ-
ences in survival, and the log-rank test was used to
evaluate the significance of differences in survival times.
We performed survival analyses using the R program-
ming function “survfit” in the “survival” package.

Statistical analysis
All statistical analyses were performed using R version
3.6.3 software (Institute for Statistics and Mathematics,
Vienna, Austria; www.r-project.org). The Wilcoxon test
was used to compare two continuous variables. Survival
was analyzed by constructing a Kaplan-Meier survival
plot, and the log-rank test calculated the P value. P <
0.05 was considered statistically significant.
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Results
Construction of the WGCNA
The coexpression network was constructed using the ex-
pression of 4902 HVGs in 177 PAAD samples. For
building signed networks with WGCNA, we choose β=
12 to compute gene co-expression similarity, resulting in
a scale-free topology index (R2) of 0.93 (Fig. 1a). Eight-
een coexpression modules were constructed and are
shown in different colors (Fig. 1b). MEs were examined

and the dynamic modules were merged into 11 modules
with a threshold of 0.25 to increase the reliability of the
module divisions (Fig. 1b).

Identification of module-trait relationships and hub genes
We further wanted to determine which module is more
closely related to immune profiles after identifying the
MEs. As described in a previous study, immune estima-
tion approaches should be tested to determine whether

Fig. 1 Construction of the gene coexpression network for PAAD. a Checking the scale-free topology when β = 12. b The consensus gene
dendrogram and corresponding module colors are shown. The vertical axis represents the gene expression value, and the horizontal axis
represents the genes. Each vertical line in the dendrogram relates to a gene, and each branch indicates highly coexpressed genes as a module
(one color). Twelve modules were detected and merged into 10 main modules. c Module-trait relationships. Each row represents a ME, the two
columns represent the immune score and tumor purity, and each cell contains the corresponding correlation and P value. The matrix is color-
coded by correlation according to the color legend. d Scatterplot of gene significance (y-axis) vs. module membership (x-axis) in the most
significant module (pink module, see panel c)
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they display a negative correlation with tumor purity
[14]. Hence, we calculated the immune score and tumor
purity for each PAAD sample to screen immune-related
modules (see the “Materials and methods” section). Fig-
ure 1c shows the module-trait heat map. The pink mod-
ule exhibited the highest correlation with the immune
score (R = 0.98, P < 0.001) and a significant negative cor-
relation with tumor purity (R = −0.95, P < 0.001). There-
fore, the pink module containing 640 genes was
identified as the module with immune significance.
Hub genes are highly interconnected with nodes in a

module and have been shown to be functionally signifi-
cant. In the present study, hub genes were defined by
module connectivity, as measured by the absolute value
of Pearson’s correlation coefficient (module membership
(MM) > 0.8), and by trait relationship, which was mea-
sured by the absolute value of Pearson’s correlation coef-
ficient (gene significance (GS) > 0.8). Eventually, 175
highly connective genes in the pink module were se-
lected as hub genes (Table S1). Moreover, GS and MM
were highly correlated in the pink module (Fig. 1d), im-
plying that hub genes of the pink module also tend to be
highly correlated with immune profiles.

Functional enrichment analysis of hub genes in the pink
module
Before developing an IPM for pancreatic cancer, we
must verify whether the hub genes are related to im-
munity. Therefore, we performed an enrichment analysis
of Gene Ontology (GO) terms associated with the hub
genes in the pink module using the R programming
function “enrichGO” in the “clusterProfiler” package
[15]. The top 20 clustering groups obtained in each root
category (biological process (BP), cellular component
(CC), and molecular function (MF)) in the GO enrich-
ment analysis are shown separately in Fig. 2. Hub genes in
the pink module were highly enriched in pathways closely
related to regulation of lymphocyte activation (Fig. 2a),
MHC protein complexes (Fig. 2b), and cytokine receptor
activity (Fig. 2c). Taken together, we identified an
immune-related gene set in PAAD based on WGCNA.

Construction of an IPM and evaluation of its predictive
ability
The univariate Cox regression analysis revealed that 10
of these hub genes in the pink module were probably re-
lated to the overall survival (OS) of patients with PAAD
(Table S2). A primary IPM was constructed by perform-
ing a multivariate Cox regression analysis of the expres-
sion levels of 10 immune-related genes. The optimized
IPM was chosen by determining the maximum AIC in a
stepwise regression analysis in both directions using the
R package (see the “Materials and methods” section).
Three core genes (FCGR2B, IL10RA, and HLA-DRA)

were included in the optimized IPM, and the covariates
IL10RA (hazard ratio (HR) 0.36; 95% CI 0.24−0.52, P <
0.001), FCGR2B (HR 1.46; 95% CI 1.03−2.06, P = 0.033),
and HLA-DRA (HR 1.61; 95% CI 1.12−2.32, P = 0.01)
were significant (Figure S1A). The risk score for each
sample was calculated utilizing the regression coeffi-
cients derived from the multivariate Cox regression ana-
lysis to multiply the normalized expression level of the 3
core genes. As shown in Figure S1B-D, the expression
levels of FCGR2B, IL10RA, and HLA-DRA in tumor sam-
ples (n=177) were significantly higher (q value < 0.001;
log2FoldChange > 1) than in normal pancreatic tissue
(n=171; from GTEx database).
As risk scores increased, the patient mortality risk in-

creased and the OS decreased (Fig. 3a, b). The cut-off
point (0.96) was set as the median risk score to assign
patients into high- and low-risk groups. As shown in
Fig. 3c, low-risk patients with PAAD (n=89) had a sig-
nificantly longer OS than high-risk patients with PAAD
(n=88) (log-rank test, P < 0.001). Furthermore, the risk
score was independently significant and the most valu-
able prognostic factor in TCGA PAAD cohort (HR 1.6;
95% CI 1.33–2.0, P < 0.001; Fig. 3d).

A low risk score indicated increased immune activity and
reduced features of the response to anti-PD-1 therapy
Since the prognostic model was constructed based on
immune-related genes, we wanted to further explore
whether patients with different risk scores have different
immune profiles and subsequently differences in sensi-
tivity to immunotherapies. The status of tumor-
infiltrating lymphocytes (TILs), particularly CD8+ T
cells, has been verified as the core determinant of im-
mune checkpoint inhibitor (ICI) treatment efficacy [16,
17]. Low-risk patients with PAAD presented significantly
greater numbers of activated CD8+ T cells than high-
risk patients with PAAD (Wilcoxon test, P < 0.001; Fig.
4a). Additionally, cytolytic T cell activity (CYT value),
which predicts the immunotherapy response [11, 18],
was also higher in low-risk patients with PAAD than in
high-risk patients with PAAD (Wilcoxon test, P < 0.001;
Fig. 4b).
On the other hand, an attenuation of the biological

processes that underlie IPRES signatures may improve
the response of various cancer types to anti-PD-1 ther-
apy, including PAAD [13]. Interestingly, as shown in Fig.
4 c, d , multiple IPRES signatures, including the mesen-
chymal transition, angiogenesis, and hypoxia, were sig-
nificantly downregulated in the low-risk group.
Collectively, a low-risk status is associated with in-
creased immune activity and the IPM prediction of a
low-risk status may serve as an indicator of the response
of PAAD to ICIs.
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Discussion
Previous studies have noted the strong relationship be-
tween the host immune response and survival of patients
with cancer [19–21]. Researchers frequently focus on
using well-established immune-related gene sets to

screen prognostic genes. However, a number of funda-
mental questions and problems remain to be solved; one
of these problems is that this method ignores differences
in the cancer types. Compared with other cancers,
PAAD has unique immunological conditions with a

Fig. 2 Analysis of enriched GO terms for the hub genes in the pink module. The analysis of enriched GO terms was performed using the
function “enrichGO” in the “clusterProfiler” package. Biological process (BP, panel a); cellular component (CC, panel b); molecular function (MF,
panel c). The y-axis represents the number of genes associated with the GO term. The intensity and color of dots are indicated on the right side
of the heatmap and are represented by their corresponding adjusted P values
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dense stromal environment and a highly immunosup-
pressive tumor microenvironment [22], implying the po-
tential for specific transcriptomic features of pancreatic
cancer. Therefore, researchers have not been able to eas-
ily determine whether the included immune-related gene
set accurately represents the characteristics of PAAD.
The WGCNA efficiently identifies modular immune-
related genes in specific cancer types to address this
problem. This technology focuses on the relationship be-
tween gene modules and disease traits instead of linking
thousands of genes to the disease. Consequently, hidden
key genes associated with a particular biological process
in cancer can be discovered using WGCNA.
In the present study, we constructed a prognostic

model for PAAD using four immune-related genes
(FCGR2B, IL10RA, and HLA-DRA) identified by
WGCNA and machine learning. To the best of our
knowledge, the genes that constitute our IPM have not
yet been reported to be associated with the prognosis of
patients with PAAD. FCGR2B, an inhibitory Fcgamma

receptor [23], has been proven to be a prognostic factor
for patients with glioblastoma [24]. The prognostic
values of IL10RA and HLA-DRA have been considered
even lower in the literature. However, in the multivariate
Cox analysis, the covariates IL10RA and HLA-DRA
remained significant in PAAD. Additionally, patients
classified into the high-risk group had significantly worse
outcomes, and the ROC analysis verified that the risk
score had good prognostic accuracy. Based on these re-
sults, the IPM was successfully established to assess the
prognosis of patients with PAAD.
In the era of immunotherapy, pancreatic cancer re-

mains an incurable disease because of an immunosup-
pressive and anti-inflammatory environment that results
in the escape of cancer cells from such therapies [25].
Nevertheless, some advances have been achieved using
therapy targeting PD-1 and its ligand PD-L1 [26, 27], sug-
gesting that some patients with PAAD indeed benefit from
ICIs. To date, the microsatellite instability (MSI) or mis-
match repair deficiency (dMMR) status remains the only

Fig. 3 Analysis of the prognostic value of the IPM. The risk scores (a) and OS (b) of each patient. The patients were ranked by risk score. The dot
plot shows the survival status of each patient. Red: deceased; pink: alive. Kaplan-Meier survival curves showing the OS times of patients stratified
into low/high-risk groups (c). P values were obtained from the log-rank test. Forest plot of the multivariate Cox regression proportional hazards
regression analysis of OS in TCGA PAAD cohort (d). CI, confidence interval; HR, hazard ratio
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clear marker of a benefit from PD-1 blockade in patients
with PAAD. Unfortunately, probably less than 1% of patients
with PAAD have a high MSI (MSI-H) or dMMR [28], imply-
ing a pressing need to identify potential predictive thera-
peutic biomarkers that will help patients derive greater
benefits from ICIs. Perhaps, the most unexpected finding in
our study is that low-risk PAAD is associated with increased
cytolytic cell infiltration, indicating an inflammatory pheno-
type. This type of PAAD suggests the presence of a pre-

existing anticancer immune response [29], and the majority
of patients with inflamed tumors will show an evident clinical
response to anti-PD-1/PD-L1 monotherapy [30]. However,
the immune infiltrate of pancreatic cancer is a part of the
tumor microenvironment. IPRES, a transcriptomic signature
associated with increased neoplasm invasion and angiogen-
esis, is associated with resistance to PD-1 blockade [13].
PAAD is a cancer type that contains IPRES-enriched tran-
scriptomic subsets involved in the majority of tumors [13].

Fig. 4 Associations between low/high risks and immune profiles. The activated CD8+ T cell fraction (a) and cytolytic activity (b) in the low-risk
PAAD group were significantly increased compared with the high-risk group. The IPRES signatures of the low-risk PAAD group were significantly
decreased compared with the high-risk group (c). P values were calculated with the Wilcoxon test; the box shows the upper and lower quartiles
(*P < 0.05, **P < 0.01, and ***P < 0.001). Heatmap showing scores for IPRES signatures in TCGA PAAD cohort (d)
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Interestingly, based on our data, the IPRES signatures in low-
risk patients with PAAD were significantly reduced com-
pared to high-risk patients. Thus, low-risk patients may
benefit from ICIs.
This study has several limitations. First, an external valid-

ation cohort is needed to verify the validity of the IPM pre-
diction. Second, without data from an ICI-treated cohort, we
were unable to evaluate whether patients with low-risk
PAAD exhibit a better response to ICIs than high-risk pa-
tients. Therefore, the study findings should be interpreted
with caution, and further studies are warranted.

Conclusions
In summary, we identified and validated an IPM based
on 3 immune-related genes with independent prognostic
significance for patients with PAAD. In addition, the
present study proposed that the risk score may be an
immunotherapeutic marker for PAAD.
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