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A B S T R A C T

The solution grown doped ZnO based transparent electrode has shown great potential in future generation flexible
and smart devices due to its abundance in earth, low cost, simple and low temperature synthesis process. But
solution grown doped ZnO possesses one major drawback, its mobility decreases rapidly with an increase in
doping concentration. To eliminate this issue, the understanding of factors that limiting mobility is a prerequisite.
But till date, there are very limited resources with detailed understanding of mobility limiting factors in solution
grown TCO. Here in this report, with the morphological, optical and electrical investigations, the mobility limiting
factor comes out to be surface related property and assigned to be the defects related to surface adsorbed oxygen
and oxygen species at the surface. Furthermore, we have modified the surface to remove the surface adsorbed
oxygen species by a low temperature (70 �C) simple solution process. Surface modified sample shows more than
two orders of improvement in resistivity without any significant change in the transparency in visible range.
1. Introduction

The demand for efficient transparent conducting oxides (TCOs) is
increasing exponentially which is further fuelled by its wide range of op-
toelectronic applications, such as transparent electronic devices e.g. LEDs
[1, 2], front contact of electronic flat panel display [3], thin film transistor
[4, 5], chemical sensors [6] andmost importantly transparent front contact
in Si solar cells [7, 8, 9]. To be a good candidate for practical use in the
industrial devices, the TCO should posses the properties like high electrical
conductivity, higher optical transparency in the visible spectral range and
stability against hostile environment [10, 11]. Tin doped In2O3 (ITO) is the
leading commercially used TCO materials till date due to its satisfactory
electrical and optical properties for the optoelectronic device applications.
Till date, the search for the low cost and earth abundant alternative of the
conventional ITO was still continuously developed due to the toxicity and
scarcity of Indium in earth [12]. On the other hand, aluminium doped zinc
oxide (AZO) has drawnmuch attention of research community due to their
large band-gap energy of >3 eV and comparable resistivity of the order of
10�4 Ω-cm. Apart from low production cost, ZnO possesses many other
advantages such as: non-toxicity, excellent thermal and chemical stability
against hostile environment [13, 14].

There are plenty of reports on the different doping process of AZO
such as Radio frequency magnetron sputtering [15], pulsed laser
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deposition [16], atomic layer deposition [17], etc. But most of the
techniques involve either costly instruments, higher orders of vacuum or
the synthesis procedures are very complicated. On the other hand, to
decrease the resistivity, most of the synthesis processes require high
temperature growth or high temperature post growth annealing treat-
ment which makes the procedure unsuitable for TCO deposition on
flexible substrates [18, 19]. Several groups have reported lower re-
sistivity after post growth treatment. Lee et al. [20] have observed a 3
times decrease in resistivity after post growth annealing at 600 �C. Gao
et al. [21] have reported up to three order decrease in resistivity due to
reduction process in presence of hydrogen atmosphere at 400 �C. Basi-
cally all the post growth treatments are done at higher temperature (400
�C to 700 �C). So, it is not possible to apply post growth annealing
treatment for TCO on flexible substrates. Recently, Mickan et al. [15]
have reported highly conductive AZO by reactive high impulse magne-
tron sputtering method at room temperature. In recent days, researchers
are interested in flexible devices even wearable electronic devices for
which the low temperature grown TCO is mandatory. In this regard,
researchers are in search for a low cost easy synthesis method to syn-
thesize TCO at a temperature <100 �C.

Solution grown method is a simple low cost thin film deposition
technique by which uniform large area AZO thin film can be produced at
large scale. Apart from the various advantages, it has one major
eptember 2022
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drawback. The mobility of solution grown AZO thin film decreases
rapidly with an increase in Al doping which limits the conductivity [22].
However, the clear understanding of the mobility limiting factors in so-
lution grown AZO is missing in the literature. On the other hand, to
improve the mobility and conductivity, understanding of mobility
limiting factors is a prerequisite.

Therefore, in this report, we have investigated solution grown AZO
thin film and demonstrated the in-depth understanding of mobility
limiting factors. We further demonstrated a surface engineering method,
by which the resistivity of the as grown AZO can be reduced bymore than
two orders at a temperature 80 �C without any significant change in
transparency in the visible (400–800 nm) range. To the best of our
knowledge, this is the first report about more than two orders improve-
ment in resistivity by post growth treatment at a temperature bellow 100
�C.

2. Experimental methods

ZnO and AZO thin films were deposited by sol-gel spin coating
technique on the glass substrate as reported earlier [22]. Briefly, the sol
was prepared by taking 0.1 M of zinc acetate di-hydrate in dehydrated
isopropyl alcohol with the addition of 0.1 M diethanolamine. The solu-
tion was then vigorously stirred for 1 h and kept it for 2 days to check the
stability of the sol. For different concentration of Al doping, required
amount aluminum nitrate was added to the sol during continuous stir-
ring. Thin films are deposited on ultra-sonically cleaned glass substrate
Figure 1. (a) X-ray diffraction pattern of undoped and Al doped ZnO thin film, (b), (c
respectively.
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by spin coating technique. All the samples are further modified by sulfur
treatment by dipping in a 10 mM solution of thioacetamide for 1 h at the
temperature 80 �C. Then the samples are dried in an oven at a temper-
ature 80 �C for 2 h. To evaluate the exact reason behind the mobility
enhancement we have performed 1, 3, 5, and 7 h sulfur treatment of the
1% Al doped sample.

The investigation regarding crystalline phase was carried by X-ray
diffractometer (XRD, Seifert, model: XDAL 3000), surface and morpho-
logical characterization was carried out be Field Emission Scanning
Electron Microscopy (FESEM; JEOL 2100F) and elemental mapping was
carried out by high resolution transmission electron microscopy
(HRTEM, model JEM2010). X-ray photoelectron spectroscopy was done
by XPS instrument (Omicron: Serial no. 0571). The room temperature
emission spectra were recorded using a He–Cd laser (Kimmon Koha Co.,
Ltd.; model KR1801C) with 325 nm laser excitation source, a Newport
monochromator with an attached photomultiplier tube (Horiba Jobin
Yvon, Model: iHR 320). The absorbance spectra are measured by UV–VIS
spectrophotometer (Parkin Elmer, Model: Lamda 35; Serial no.
101N6022703). Room temperature Hall measurement was performed in
Ecopia Hall Measurement System (Model: HMS 3000).

3. Result and discussions

The X-ray diffraction (XRD) patterns of undoped and doped samples
are shown in Figure 1. All the samples show diffraction peaks corre-
sponds to wurtzite phase of ZnO [23, 24]. No other phase of ZnO or Al2O3
) and (d) are the FESEM images of undoped, 1% Al doped and 5% Al doped ZnO
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has been observed which ensures the doping of Al in the ZnO crystals.
The intensity of the peaks decreases with an increase in Al doping con-
centration. That might be due to the degradation of crystalline quality as
Al doping concentration increases. Similar degradation in crystal quality
due to Al doping has been observed by Mahroug et al. [25] and Li et al.
[26] Interestingly the 002 peak shows a right shift for the samples with
1% of Al doped or more (shown in supplementary information,
Figure S1). This shift indicates the doping of Al in the crystallite site. As
the effective ionic radius of Al3þ (53.5 pm) is less than that of Zn2þ (74
pm), therefore according to linear Vegard's law, we may expect a higher
angle shift of 002 peak when Zn is substituted by Al [27, 28].

The FESEM images of the representative samples are shown in
Figure 1(b)–(d). As the Al content increases, the grain size decreases. The
grain size of undoped sample is irregular and varies from 17 nm to 115
Figure 2. (a) UV–Vis transmittance spectra of all the samples. (b) RTPL spectra of th
undoped and 0.5%, 1% and 2% Al doped samples respectively.
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nm and which becomes uniform with size ~20 to 25 nm in case of 1% Al
doped sample. The grain size becomes <20 nm in case of 5% Al doped
ZnO sample. The change in grain size with an increase in Al content also
observed by Mridha et al. [22] and Shrinatha et al. [29].

The transmittance spectra of the samples are shown in Figure 2(a). All
the samples show more than 85% transmittance throughout the visible
range of wavelength (400–800 nm) irrespective their doping concen-
tration whereas commercial ITO shows transparency of 80–85% in
400–800 nm wavelength regions [30]. The absorption edge is shifted
towards shorter wavelength with an increase in Al doping concentration.
We have calculated the optical band gap (Shown in table TS1 of sup-
plementary information) and found to be increasing with an increase in
Al doping concentration. This shifting is due to the Burstein–Moss effect
[31]. The room temperature photoluminescence spectra of the samples
e samples. (c)–(f) are the Gaussian multi peak fittings of the visible emissions of



Table 1. Ratio of visible and orange emission with doping concentration.

Sample (% Al doping) Ivisible/Iorange

0 3.2

0.5 2.03

1 0.61

2 0.63
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are shown in Figure 2(b). Undoped ZnO thin film shows a sharp and
strong UV emission centered at 380 nm and a broad comparable visible
emission centered 500 nm. The UV emission intensity decreases with an
increase in Al doping concentration. The visible emission also decreases
as Al doping concentration increases. Similar decrease in emission
quality due to Al doping also reported byWang et al. [32] and Sahal et al.
[33] Interestingly visible emission peak position shifts towards longer
wavelength and orange emission dominates in case of 1% and 2% Al
doped samples. For better understanding, we have deconvoluted the
visible emission peak (Figure 2(c)–(f)) and found that relative contri-
bution of orange emission peak to the total visible emission increases up
to 2% Al doped sample (Table 1). The relative contribution of orange
emission peak (~2 eV) increases rapidly with an increase in Al doping
concentration up to 1%. Then there is no significant change between 1%
and 2% Al doped sample. For 5% Al doped sample emission is so poor
therefore de-convolution could not be performed. It is well established
that the visible emission in ZnO is due to the presence of defects [34, 35].
Therefore, as the visible emission peak shifts from green to orange, we
may expect the change in defect types.

The electrical properties of the samples are shown in Figure 3. The
carrier concentration increases from 4.38 � 1016 for undoped ZnO to
1.03 � 1019 for 1% Al doped sample. Beyond 1% Al doping, the carrier
concentration decreases a little. Similar phenomenon also has been
observed by Mridha et al. [22] and Banerjee et al. [36] for Al doped ZnO.
Figure 3. Hall measurement of the samples (Van der Paw method). (a) Carrier conce
Change in carrier mobility and relative change of orange emission with the change
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The resistivity and mobility of the samples are shown in Figure 3(b) and
(c). Resistivity value decreases from 86.79 Ω-cm for ZnO and attains a
minimum value of 3.69 Ω-cm for 1% Al doped ZnO and it increases
slowly for higher doping concentration. The resistivity values are higher
than the commercial TCO (~10�4). This is because low temperature and
air ambient synthesis procedure creates lots of surface defects and scat-
tering centres at the grain boundaries. Other hand, low activation of
dopants at low temperature processing might be the reason [37]. The
change in carrier concentration is more than three orders but the
decrease in resistivity is only one order in case of 1% Al doped sample.
This difference of two orders in resistivity and carrier concentration is
due to the rapid decrease in mobility with an increase in Al doping
concentration. The mobility decreases with an increase in Al doping
concentration and attains a minimum value of 0.16 cm2 V�1 s�1 for 1%Al
doping from 1.66 cm2 V�1 s�1 in case of undoped ZnO sample i.e. more
than one order decrease in case of 1% Al doped sample than that of
undoped sample.

The mobility in doped metal oxide is described by Matthiessen's rule:
1
μ ¼ P

i

1
μi

¼ 1
μimpurity

þ 1
μgb

þ 1
μhopping

þ 1
μphonon

þ ………

where μimpurity, μgb, μhopping, and μphonon are the mobility limiting factors
that influence mobility from impurity scattering, scattering at grain
boundary, retardation by hopping transport, and phonon scattering,
respectively. Ionized impurity scattering increases with the increase in
doping concentration and hence limited the mobility in doped metal oxide
thin films. Cornelius et al. [38] have described that the mobility of Al
doped ZnO compact thin films are either controlled by ionized impurity
scattering or grain boundary limited transport depending upon the free
electron density. Steinhauser et al. [39] have reported that the mobility is
limited by grain boundary contribution in low carrier regime and
controlled by intra-grain mobility limiting factors for carrier concentration
~1020. Elmar et al. [40] also reported that for carrier concentration
~1019, the mobility is governed by grain boundary effects. Considering
the carrier concentration ~ 1018 and the change in grain size with Al
ntration, (b) Carrier mobility, (c) Resisticity of undoped and doped samples. (d)
in doping concentration.



Figure 4. (a) XRD patterns of the sulfur treated samples. (b), (c) and (d) are the FESEM images of the samples undoped, 1%, and 5% Al doped samples after sul-
fur treatment.

Figure 5. (a) Absorption and (b) Photoluminescence spectra of the samples after sulfur treatment.
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doping concentration, we can conclude that the mobility in our solution
grown samples is grain boundary limited. According to Seto model the
mobility in grain boundary limited conduction is governed by Eq. (1):

μ¼ μ0 expð�ΦB =KTÞ (1)

where μ0 is in-grain mobility and ΦB is the potential barrier at grain
boundary. Therefore, the change in barrier height at the grain boundary
can be the reason behind lower carrier mobility in higher doping regime.
Interestingly, the gradual decrease in carrier mobility and the gradual
increase in orange emission as the doping concentration increases indi-
5

cate some close relationship between orange emission and carrier
mobility. The relative contribution of orange emission increases in a
similar manner of decrease in carrier concentration (Figure 3(d)). The
Orange emission in solution grown ZnO is very common and origin of
which is still controversial. There are reports who assigned interstitial
oxygen (Oi) as the source of orange emission [41, 42]. In contrary Djurisic
et al. [43] have reported surface adsorbed species like O2

�, OH� are
responsible for the orange emission in solution grown ZnO and Fan et al.
[44] reported that the chemisorbed oxygen or other oxygen-containing
species (e.g., OH�) are responsible for yellow orange emission.
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Now, as the Al doping concentration increases, the formation of Oi is
favorable due to the charge neutralization tendency of the crystal [26].
On the other hand the crystallite size decreases as the Al doping con-
centration increases i.e. the surface to volume ratio increases. Therefore,
we may expect an increase in surface adsorbed oxygen species. There-
fore, decrease in carrier mobility might be either due to increase in Oi in
the crystal or due to increase in surface to volume ratio i.e. chemisorbed
oxygen species.

Fan et al. [44] also reported the orange emission is due to chem-
isorbed oxygen or hydroxyl groups which are further responsible for
band bending at the surface of ZnO nanostructures. In air ambient, the
surface of solution grown ZnO nanostructure is covered by ionized oxy-
gen species and hydroxyl groups. These surface defects trap free electrons
from the conduction band and create depletion region at the surface of
ZnO [44]. This negative charge distribution at the surface causes upward
shifting of the conduction band. The barrier height ΦB depends on the
amount of surface traps and hence limited the mobility according to the
Seto formula [45].

To evaluate the exact reason, we have modified the surface of ZnO to
remove chemisorbed oxygen species from the surface. If our proposition
of chemisorbed oxygen species is right then any surface modification to
remove the surface traps will reduce the barrier height and as a conse-
quence the mobility will be enhanced. Therefore, we have performed
post growth surface modification by developing a thin ZnS layer on the
doped and undoped ZnO. The structural and morphological character-
izations (Figure 4(a)–(d)) indicate the formation of ZnS layer over ZnO
and without any such significant change in morphology. In case of
modified samples, the XRD peak intensity corresponding to ZnO wurtzite
phase decreases sharply. This indicates that due to the ionic exchange the
crystalline quality of the ZnO film surface degrades. In modified samples,
the 002 peak of ZnO is slightly shifted to the higher 2θ angle. The shift
might be due to the change in stress in the crystal and the change in
defect states at the surface. Higher angle shift of 002 peak of ZnO due to
Figure 6. Electrical measurement of the samples before and after sulfur treatment. (
electrical parameters with sulfur treatment time.
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the crystal stress also have been reported by Fang et al. [46] Along with
the peaks of ZnO, a small hump around 2θ value 29.3� has been observed
in case of sulfur treated samples. This peak is identified as 111 peak of
cubic ZnS as reported by Panigrahi et al. [47] However the intensity is
very poor. This indicates that there might be a very thin coating of ZnS
over ZnO thin film or the coating is mostly amorphous in nature. To be
confirmed about the formation of ZnS over ZnO, we have performed the
elemental mapping by transmission electron microscopy. The mapping
shows presence of Zn, Al, O and S which confirms the formation of ZnS
over ZnO (Figure S2 of Supplementary Information). The presence of
comparable S atoms along with Zn, O and Al further confirms the prop-
osition that crystalline quality of ZnS is poor. The poor crystalline quality
of ZnS over ZnO synthesized by solution growth has also been reported
by Lin et al. [48].

The absorbance spectra of the samples are shown in Figure 5(a). It is
clear that the formation of ZnS layer on ZnO have not degraded the
transmittance of the samples significantly.All the samples showmore than
80% transparency in the visible region which is almost comparable to the
transparency of commercial TCO (80–85% in 400–800 nm of illumina-
tion). Interestingly the room temperature PL spectra (Figure 5(b)) show
the absence of orange red emission for all the samples which is in good
agreement with our proposition. Again the emission quality degrades as
the Al doping concentration increases. The increase in green emission is
due to the formation of ZnO1�xSx at the interface. This emission is in well
agreement with our previous report [49] and Panigrahi et al. [47].

The electrical measurements of modified samples are shown in
Figure 6(a)–(c). The carrier concentration of the treated samples shows
increases from 4.38�1016 for untreated to 8.34�1017 in sulfur treated
ZnO sample. But in case of 1% Al doped sample, Carrier concentration
decreases a little whereas for higher doping concentration the carrier
concentration decreases more. The resistivity of the samples maintains
the same trend like untreated samples but with decreased values of more
than one order as shown in Table 2.
a) Carrier concentration, (b) resistivity and (c) carrier mobility. (d) Variation of



Table 2. Electrical measurements of the samples, before and after sulfur
treatment.

Al doping
(%)

As grown After sulphur treatment

n
(�1016)

μ (cm2

V�1 s�1)
ρ (Ohm-
cm)

n
(�1016)

μ (cm2

V�1 s�1)
ρ (Ohm-
cm)

0.0 4.31 1.66 86.79 83.4 16.27 0.46

0.5 283 0.46 4.77 426 7.99 0.18

1.0 1010 0.16 3.69 710 5.33 0.16

2.0 1050 0.12 4.9 385 2.21 0.72

5.0 277 0.15 14.3 49.5 4.08 3.08
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For ZnO sample resistivity value decreases to 0.46 Ω-cm from 86.79
Ω-cm and that for 1% Al doepd sample decreases to 0.16 Ω-cm from 3.69
Ω-cm due to sulfur treatment. That is the resistivity decreases more than
two orders due to sulfur treatment. The mobility of 1% Al doped sample
increases from 0.16 cm2 V�1s�1 to 5.33 cm2 V�1s�1. This high mobility is
comparable to the mobility reported for high temperature processed Al
doped ZnO [50, 51, 52]. Nearly 33 times enhancement in mobility due to
surface modification further confirms our proposition that mobility in
solution grownZnO is governed by grain boundary and particularly in this
case, mobility is governed by the surface defects related to the chem-
isorbed oxygen species.

To be further confirmed about surface dependency of mobility, we
have varied the surface modification time from zero to 7 h (Figure 6(d))
and found that all the changes in carrier concentration, resistivity and
mobility are happening justwithin 1 h ofmodification process. For further
modification time, mobility decreases a little. The changes in orange
emission over sulfur treatment time (Shown in Figure S3 of Supplemen-
tary Information) clearly show that the changes in orange emission is
wiped out within 1 h of treatment although there is no such significant
change in other visible emission. This result further confirms that the
mobility in solution grown ZnO is governed by the defects responsible for
orange emission in ZnO i.e. surface absorbed oxygen related trap states.

4. Conclusions

Here, in this report, we have investigated the reason of low carrier
mobility in solution grown Al doped ZnO nanocrystalline thin film. With
the help of structural and photoluminescence characterization, we have
established that the defect responsible for orange emission is responsible
for low carrier mobility in nanocrystalline ZnO thin film. We also have
proposed a novel low temperature (80 �C) remedy to modify AZO surface
by sulfur treatment and observedmore than two orders of improvement in
resistivity and more than one order improvement in mobility and hence
resistivity of the AZO films. The sulfur treated samples show enhanced
mobility as well as reduced orange red emission. The enhancement in
mobility is highest for highest carrier concentration which leaves us the
scope tomodify the existing ZnO based TCO surface to get highermobility
and lowest resistivity. This approach will be very much beneficial to
improve themobility and resistivity ofAZOdepositedonflexible substrate
where high temperature treatment is not possible.
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