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Background: Thyroid cancer (TC) is the most common endocrine malignancy, and
the incidence is increasing very fast. Surgical resection and radioactive iodine ablation
are major therapeutic methods, however, around 10% of differentiated thyroid cancer
and all anaplastic thyroid carcinoma (ATC) are failed. Comprehensive understanding
the molecular mechanisms may provide new therapeutic strategies for thyroid cancer.
Even though genetic heterogeneity is rigorously studied in various cancers, epigenetic
heterogeneity in human cancer remains unclear.

Methods: A total of 405 surgical resected thyroid cancer samples were employed (three
spatially isolated specimens were obtained from different regions of the same tumor).
Twenty-four genes were selected for methylation screening, and frequently methylated
genes in thyroid cancer were used for further validation. Methylation specific PCR (MSP)
approach was employed to detect the gene promoter region methylation.

Results: Five genes (AP2, CDH1, DACT2, HIN1, and RASSF1A) are found frequently
methylated (>30%) in thyroid cancer. The five genes panel is used for further epigenetic
heterogeneity analysis. AP2 methylation is associated with gender (P < 0.05), DACT2
methylation is associated with age, gender and tumor size (all P < 0.05), HIN1
methylation is associated to tumor size (P < 0.05) and extra-thyroidal extension
(P < 0.01). RASSF1A methylation is associated with lymph node metastasis (P < 0.01).
For heterogeneity analysis, AP2 methylation heterogeneity is associated with tumor
size (P < 0.01), CDH1 methylation heterogeneity is associated with lymph node
metastasis (P < 0.05), DACT2 methylation heterogeneity is associated with tumor size
(P < 0.01), HIN1 methylation heterogeneity is associated with tumor size and extra-
thyroidal extension (all P < 0.01). The multivariable analysis suggested that the risk
of lymph node metastasis is 2.5 times in CDH1 heterogeneous methylation group
(OR = 2.512, 95% CI 1.135, 5.557, P = 0.023). The risk of extra-thyroidal extension is
almost 3 times in HIN1 heterogeneous methylation group (OR = 2.607, 95% CI 1.138,
5.971, P = 0.023).
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Conclusion: Five of twenty-four genes were found frequently methylated in human
thyroid cancer. Based on 5 genes panel analysis, epigenetic heterogeneity is an
universal event. Epigenetic heterogeneity is associated with cancer development
and progression.

Keywords: epigenetic heterogeneity, DNA methylation, AP2, CDH1, DACT2, HIN1, RASSF1A

INTRODUCTION

Thyroid cancer (TC) is the most common endocrine malignancy
and the incidence is 3.4% of all cancers (Seib and Sosa, 2019).
Papillary thyroid cancer (PTC) and follicular thyroid cancer
(FTC) are two most common thyroid cancer types, account for
80% and 15% of all thyroid cancer cases. Poorly differentiated
thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma
(ATC) are account for 5% and 1%, respectively. Surgical resection
and radioactive iodine ablation are major therapeutic strategies
for thyroid cancer. Treatment failure was observed in about
10% of differentiated thyroid cancer and all ATC patients (Laha
et al., 2020; Prete et al., 2020). In the last 30 years, genetic study
suggests that the frequency of somatic mutations is relatively low
in thyroid cancer (Mazzaferri, 1999). The MAPK and PI3K/Akt
pathways were reported to be activated by somatic mutations
in thyroid cancer (Mercer and Pritchard, 2003; Ball et al.,
2007; Leboeuf et al., 2008; Salerno et al., 2009), and targeted
therapies were applied to advanced cancers by tyrosine kinase
inhibitors and anti-angiogenic drugs (Yamamoto et al., 2014;
Valerio et al., 2017). With the understanding of cancer biology
and molecular mechanism, precision medicine gets into the main
stage of the era. The key to tailor the management of cancer,
including thyroid cancer, is based on the better understanding
of the molecular pathways. Landscape of cancer genome study
has provided a lot of information of genetic alterations and
therapeutic targets for cancer therapy. Mutations in different
signaling pathways were found by genomic study in thyroid
cancer (Vogelstein et al., 2013; Cha and Koo, 2016). DNA
methylation was found frequently in human cancers, including
esophageal, colorectal, lung, gastric, and hepatic cancers (Esteller
et al., 2002; Brock et al., 2003; House et al., 2003; Guo et al.,
2006a,b, 2007, 2008; Licchesi et al., 2008; Wang et al., 2009,
2017; Jia et al., 2012, 2013; Hu et al., 2015; Li et al., 2015;
Zheng et al., 2017). However, epigenetics was not extensively
studied in thyroid cancer. Pan-cancer landscape of aberrant DNA
methylation across 24 cancers demonstrated that the methylation
frequency was lowest in PTC (Saghafinia et al., 2018). Aberrant
methylation of SOX17 and DACT2, the key components of
Wnt signaling, were found frequently in thyroid cancer (Li
et al., 2012; Zhao et al., 2014). Methylation of GPX3 was found
associated with thyroid cancer metastasis (Zhao et al., 2015).
Phenotypic and functional heterogeneity are hallmarks of human
cancers (Visvader, 2011). Subpopulations of cancer cells with
distinct phenotypic and molecular features within a tumor are
called intratumor heterogeneity (ITH) (Bedard et al., 2013). For
cancer genetic study, researchers mainly focused on mutational
activation of oncogenes or inactivation of tumor-suppressor
genes (TSGs). The theory of Darwinian-like clonal evolution of

a single tumor was employed to explain the phenomenon of ITH
(Nowell, 1976). However, the dominance of gene-centric views
is challenged by cancer stem cell hypothesis, and phenotypic
variability becomes the major topic of cancer research (Marusyk
et al., 2012). The concept of epigenetic silencing being involved in
Knudson’s two-hit theory was accepted and the causal relevance
of epigenetic changes in cancer is being recognized (Nagasaka
et al., 2010). The occurrence of abnormal epigenetic change is
more frequently than driver mutations in human cancer. In the
process of cancer initiation and development, disruption of the
“epigenetic machinery” plays an important role. The disruption
of “epigenetic machinery” may contribute to tumor phenotype
heterogeneity (Guo et al., 2019).

ITH plays an important role in chemotherapeutic resistance
(Guo et al., 2019). The best regimen for cancer therapy is to target
all different subpopulations of cancer cells at the same time, to
avoid chemo-resistance and reduce relapse (Pribluda et al., 2015).
Therapeutic failures are often attributed to adaptive responses of
cancer stem cells. Environmental and therapeutic pressures may
drive transcriptional plasticity through the response of epigenetic
regulators to cause durable disease remission in patients for
many cancer therapeutic drugs (Dawson, 2017). Epigenetic
heterogeneity is more dynamic compare to genetic heterogeneity.
Cancer epigenetic heterogeneity is in its infancy and there
are very limited studies involved in epigenetic heterogeneity
(Dawson, 2017; Guo et al., 2019).

In this study, we evaluated epigenetic heterogeneity by
examining promoter region methylation in a panel of genes in
primary thyroid cancer. These genes are frequently methylated
in thyroid and other cancers, and they are involved in different
cancer-related signaling.

MATERIALS AND METHODS

Patients and Specimens
A total of 405 samples from 135 cases of thyroid cancer (46
cases were served as discovery group for methylation screening
and all cases were served as validation group) were obtained
in Beijing Cancer Hospital from 2018 to 2020 (Supplementary
Table 1). For heterogeneity analysis, a total of 405 surgical
resected thyroid cancer samples were employed (three spatially
isolated specimens were obtained from different regions of the
same tumor). The median age was 42 years old (range 24–79 years
old), including 104 cases of female and 31 cases of male patients.
Cancer samples were classified according to the TNM staging
system (AJCC2018), including tumor stage I (n = 130), stage II
(n = 4), and stage III (n = 1). All of the tissue samples were
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immediately snap frozen in liquid nitrogen and preserved at
−80◦C before analysis. All samples were collected following the
guidelines approved by the Institutional Review Board of the
Beijing Cancer Hospital.

DNA Extraction, Bisulfite Modification,
Methylation Specific PCR, and Screening
for Representative Genes
Genomic DNA was extracted from frozen tissues, digested
with protease K and then extracted using the standard
phenol/chloroform procedure (Cao et al., 2013). Methylation-
specific PCR (MSP) primers were designed according to
genomic sequences around transcriptional start sites (TSS) and
synthesized to detect unmethylated (U) and methylated (M)
alleles. Bisulfite treatment was performed as previously described
(Herman et al., 1996). MSP primers were listed in Supplementary
Table 2. MSP amplification conditions were as follows: 95◦C
5 min, 1 cycle; 95◦C 30 s, 60◦C 30 s, 72◦C 40 s, 35 cycles;
72◦C 5 min, 1 cycle.

To screen representative genes for heterogeneity analysis,
twenty-four genes were selected as discovery group, including
MGMT, TIMP3, DAPK, MLH1, TMEM176A, DIRAS1,
SFRP1, SFRP2, HIN1, AP2, ER, DACT2, CDH1, RASSF1A,
SOX17, GATA4, BCL6B, GPX3, CRBP-1, p16, RUNX3, RARβ,
CDX2, and WIF1. All these genes were found frequently
methylated in esophageal, colorectal, lung, gastric and hepatic
cancers by our previous studies and others, except for AP2
(an important transcription factor). These genes were well
characterized and reported to be involved in different signaling
pathways. Among which, AP2, CDH1, DACT2, HIN1, and
RASSF1A genes were found frequently methylated (>30%) and
selected for heterogeneity analysis. The workflow is shown in
Supplementary Figure 1.

Statistical Analysis
The Chi-square or Fisher exact-test was used to analyze the
association of gene methylation status and clinical factors.
Logistic regression analysis was used to analyze the association
of methylation heterogeneity or clinical factors with lymph node
Metastasis and Extrathyroidal extension. P < 0.05∗, P < 0.01∗∗,
or P < 0.001∗∗∗ was regarded as statistically significant. Data
were analyzed by SPSS 22.0 software.

RESULTS

Selection of Frequently Methylated
Genes in Human Thyroid Cancer
To explore epigenetic heterogeneity in thyroid cancer, 24 genes,
which were found frequently methylated in other cancers, were
selected as discovery group to detect 46 cases of thyroid cancer.
As shown in Table 1 and Figure 1, the methylation rate is
0% (0/46)–56.52% (26/46). Five genes (AP2, CDH1, DACT2,
HIN1, and RASSF1A) are methylated more than 30% in thyroid
cancer. These five genes panel is selected as validation group for
methylation heterogeneity analysis.

TABLE 1 | Methylation status of 24 genes in discovery group.

Gene Thyroid cancer (n = 46)

MGMT 0% (0/46)

TIMP3 0% (0/46)

DAPK 2.17% (1/46)

MLH1 2.17% (1/46)

TMEM176A 23.91% (11/46)

DIRAS1 28.26% (13/46)

sFRP1 28.26% (13/46)

sFRP2 10.87% (5/46)

HIN1 32.61% (15/46)

AP2 34.78% (16/46)

ER 4.35% (2/46)

DACT2 45.65% (21/46)

CDH1 47.82% (22/46)

RASSF1A 56.52% (26/46)

SOX17 8.70% (4/46)

GATA4 8.70% (4/46)

BCL6B 28.26% (13/46)

GPX3 17.39% (8/46)

CRBP-1 0% (0/46)

p16 2.17% (1/46)

RUNX3 2.17% (1/46)

RARβ 4.35% (2/46)

CDX2 6.52% (3/46)

WIF1 10.87% (5/46)

Intratumor Epigenetic Heterogeneity in
Thyroid Cancer
To evaluate the intratumor epigenetic heterogeneity in thyroid
cancer, three different tumor samples are obtain from isolated
locations in the same patient. Totally 405 cancer samples are
gained from 135 patients. The methylation status of AP2, CDH1,
DACT2, HIN1, and RASSF1A genes is examined by MSP.

The association of promoter region methylation and clinical
factors is analyzed by Chi-square tests, including gender, age,
tumor size, tumor location, TNM stage, lymph node metastasis,
and extra-thyroidal extension. As shown in Table 2, AP2
methylation is associated with gender (P < 0.05), while no
association were found between AP2 methylation and age, tumor
size, tumor location, TNM stage, lymph node metastasis, and
extra-thyroidal extension (all P > 0.05). No association are found
between CDH1 methylation and gender, age, tumor size, tumor
location, TNM stage, lymph node metastasis, and extra-thyroidal
extension (all P > 0.05). DACT2 methylation is associated with
age, gender and tumor size (all P < 0.05), while no association
is found between DACT2 methylation and tumor location, TNM
stage, lymph node metastasis, and extra-thyroidal extension (all
P > 0.05). HIN1 methylation is associated with tumor size
(P < 0.05) and extra-thyroidal extension (P < 0.01), while no
association is found between HIN1 methylation and age, tumor
location, TNM stage, and lymph node metastasis (all P > 0.05).
RASSF1A methylation is associated with lymph node metastasis
(P < 0.01), while no association is found between RASSF1A
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FIGURE 1 | Representative methylation results of AP2, HIN1, DACT2, RASSF1A, and CDH1 in thyroid cancer (discovery group). IVD, in vitro-methylated DNA
(methylation control); NL, normal lymphocyte DNA (unmethylation control); H2O, double distilled water; U, unmethylation; M, methylation; PTC, papillary thyroid
cancer.

methylation and age, tumor size, tumor location, TNM stage, and
extra-thyroidal extension (all P > 0.05).

Unmethylation or methylation in all three samples from the
same individual is regarded as homogeneity, while unmethylation
or methylation in one or two samples from the same individual is
regarded as methylation heterogeneity. As shown in Figures 2, 3,
methylation heterogeneity is found in 25.93% (35/135), 37.78%
(51/135), 44.44% (60/135), 44.44% (60/135), and 41.48% (56/135)
of cases for RASSF1A, CDH1, AP2, HIN1, and DACT2 genes. The
results suggest that methylation heterogeneity is a common event
in human thyroid cancer.

The association of methylation heterogeneity and clinical
factors is further analyzed. As shown in Table 3, AP2 methylation
heterogeneity is associated with tumor size (P < 0.01), no
association are found between AP2 methylation heterogeneity
and gender, age, tumor location, TNM stage, lymph node
metastasis and extra-thyroidal extension (all P > 0.05). CDH1
methylation heterogeneity is associated with lymph node
metastasis (P < 0.05), no association are found between CDH1
methylation heterogeneity and gender, age, tumor size, tumor
location, TNM stage and extra-thyroidal extension (all P > 0.05).
DACT2 methylation heterogeneity is associated with tumor
size (P < 0.01), no association are found between DACT2
methylation heterogeneity and gender, age, tumor location, TNM
stage, lymph node metastasis and extra-thyroidal extension (all
P > 0.05). HIN1 methylation heterogeneity is associated with
tumor size and extra-thyroidal extension (all P < 0.01), no
association are found between HIN1 methylation heterogeneity

and gender, age, tumor location, TNM stage and lymph node
metastasis (all P > 0.05). No association are found between
RASSF1A methylation heterogeneity and gender, age, tumor size,
tumor location, TNM stage, lymph node metastasis and extra-
thyroidal extension (all P > 0.05). Above results demonstrate
that methylation heterogeneity of three genes (AP2, DACT2, and
HIN1) is associated with tumor size.

The association of DNA methylation heterogeneity and
lymph node metastasis or extra-thyroidal extension is further
analyzed by logistic regression model. Univariate logistic analysis
indicated that CDH1 methylation heterogeneity, age and tumor
size are associated with lymph node metastasis, independently
(P = 0.026, P = 0.000, P = 0.040, Table 4). HIN1 heterogeneous
methylation, tumor size and tumor location are associated with
extra-thyroidal extension, independently (P = 0.006, P = 0.004,
P = 0.025, Table 5). Interesting, the multivariable analysis
suggested that the risk of lymph node metastasis is 2.5 times
in CDH1 heterogeneous methylation group compare to CDH1
homogeneous methylation group (OR = 2.512, 95% CI 1.135,
5.557, P = 0.023, Table 4). The risk of extra-thyroidal extension
is almost 3 times in HIN1 heterogeneous methylation group than
in HIN1 homogeneous methylation group (OR = 2.607, 95%
CI 1.138, 5.971, P = 0.023, Table 5). The results indicate that
with the growing of tumor size, the phenotype of tumor cell
becomes diversity. Epigenetic herterogeneity may reflect different
phenotypes of population of tumor cells and increased the risk
of tumor metastasis significantly. Epigenetic herterogeneity may
provide more information for tumor therapeutic strategies.
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TABLE 2 | The association of gene methylation and clinical factors in validation group.

AP2 CDH1 DACT2 HIN1 RASSF1A

No.
n = 135

M
n = 94

U
n = 41

p M
n = 75

U
n = 60

p M
n = 96

U
n = 39

p M
n = 100

U
n = 35

p M
n = 114

U
n = 21

p

Age (year)

<55 114 77
(67.5%)

37
(32.5%)

0.219 63
(55.3%)

51
(44.7%)

0.873 77
(67.5%)

37
(32.5%)

0.033* 83
(72.8%)

31
(27.2%)

0.434 95
(83.3%)

19
(16.7%)

0.615

≥55 21 17
(81.0%)

4
(19.0%)

12
(57.1%)

9
(42.9%)

19
(90.5%)

2
(9.5%)

17
(81.0%)

4
(19.0%)

19
(90.5%)

2
(9.5%)

Gender

Male 31 17
(54.8%)

14
(45.2%)

0.041* 16
(51.6%)

15
(48.4%)

0.615 17
(54.8%)

14
(45.2%)

0.023* 22
(71.0%)

9
(29.0%)

0.653 29
(93.5%)

2
(6.5%)

0.196

Female 104 77
(74.0%)

27
(26.0%)

59
(56.7%)

45
(43.3%)

79
(76.0%)

25
(24.0%)

78
(75.0%)

26
(25.0%)

85
(81.7%)

19
(18.3%)

Tumor size (cm)

≤1 cm 103 75
(72.8%)

28
(27.2%)

0.149 57
(55.3%)

46
(44.7%)

0.928 78
(75.7%)

25
(24.3%)

0.034* 81
(78.6%)

22
(21.4%)

0.030* 86
(83.5%)

17
(16.5%)

0.585

>1 cm 32 19
(59.4%)

13
(40.6%)

18
(56.25%)

14
(43.75%)

18
(56.25%)

14
(43.75%)

19
(59.4%)

13
(40.6%)

28
(87.5%)

4
(12.5%)

Tumor location

Left lobe 68 46
(67.6%)

22
(32.4%)

0.614 38
(55.9%)

30
(44.1%)

0.939 49
(72.1%)

19
(27.9%)

0.807 53
(77.9%)

15
(22.1%)

0.302 56
(82.4%)

12
(17.6%)

0.499

Right lobe 67 48
(71.6%)

19
(28.4%)

37
(55.2%)

30
(44.8%)

47
(70.1%)

20
(29.9%)

47
(70.1%)

20
(29.9%)

58
(86.6%)

9
(13.4%)

TNM stage

I 130 90
(69.2%)

40
(30.8%)

0.985 72
(55.4%)

58
(44.6%)

1.000 91
(70.0%)

39
(30.0%)

0.342 97
(74.6%)

33
(25.4%)

0.832 110
(84.6%)

20
(15.4%)

0.577

II + III 5 4
(80.0%)

1
(20.0%)

3
(60.0%)

2
(40.0%)

5
(100.0%)

0
(0.0%)

3
(60.0%)

2
(40.0%)

4
(80.0%)

1
(20.0%)

LNM

N0 76 56
(73.7%)

20
(26.3%)

0.245 45
(59.2%)

31
(40.8%)

0.332 57
(75.0%)

19
(25.0%)

0.258 57
(75.0%)

19
(25.0%)

0.781 70
(92.1%)

6
(7.9%)

0.005**

N1 59 38
(64.4%)

21
(35.6%)

30
(50.8%)

29
(49.2%)

39
(66.1%)

20
(33.9%)

43
(72.9%)

16
(27.1%)

44
(74.6%)

15
(25.4%)

Extrathyroidal extension

Negative 91 64
(70.3%)

27
(29.7%)

0.799 51
(56.0%)

40
(44.0%)

0.870 67
(73.6%)

24
(26.4%)

0.354 74
(81.3%)

17
(18.7%)

0.006** 78
(85.7%)

13
(14.3%)

0.558

Positive 44 30
(68.2%)

14
(31.8%)

24
(54.5%)

20
(45.5%)

29
(65.9%)

15
(34.1%)

26
(59.1%)

18
(40.9%)

36
(81.8%)

8
(18.2%)

M, methylation; U, unmethylation; LNM, lymph node metastasis; Chi-square test and Fisher exact test, *p < 0.05, **p < 0.01.

Frontiers
in

G
enetics

|w
w

w
.frontiersin.org

5
S

eptem
ber

2021
|Volum

e
12

|A
rticle

714071

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-714071 September 1, 2021 Time: 10:53 # 6

Zhu et al. Epigenetic Heterogeneity in Thyroid Cancer

FIGURE 2 | Methylation pattern of 3 different samples for each patient. M, methylation; U, unmethylation; Colum (A–C) are 3 different samples for each case; PTC,
papillary thyroid cancer.
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FIGURE 3 | Representative methylation heterogeneity results for each of five genes. IVD, in vitro-methylated DNA (methylation control); NL, normal lymphocyte DNA
(unmethylation control); H2O, double distilled water; U, unmethylation; M, methylation; PTC, papillary thyroid cancer.

DISCUSSION

Genomic heterogeneity has been well studied in various cancers
(Burrell et al., 2013; Hiley et al., 2016; Maura et al., 2021;
Nicholson and Fine, 2021; Wand and Lambert, 2021). However,
there are a very few reports about epigenetic heterogeneity in
human cancers. Our previous study found that “a field defect
of epigenetic changes” was presented in bronchial margins of
surgical resected lung cancer samples (Guo et al., 2004). By
detecting the methylation status of five genes (RASSF1A, p16,
DAPK, MGMT, and Rb) in 34 tumors (including 15 melanoma
primaries, 19 metastases), heterogeneous methylation was found
in 70% of the cases (Rastetter et al., 2007). Among 9 MSI-positive
primary endometrial cancers lack of MLH1 expression, which
was evaluated by immunohistochemistry, Varley et al. (2009)
found that 8 cases were methylated in the promoter region. In the
8 cases of methylated patients, four cases were heterogeneously
methylated and four tumors were homogeneously methylated.
In the discovery group, we select 24 genes, which were well
characterized and frequently methylated in various cancers. Five
genes are found frequently methylated (> 30%) in 46 cases of
human thyroid cancer. In the validation group, total of 405
samples are included (135 cases of patients and 3 samples
from different location of each tumor). Among these five genes,
DACT2methylation is associated with gender, age, and tumor size
(all P < 0.05), HIN1 methylation is associated with tumor size
(P < 0.05) and extra-thyroidal extension (P < 0.01), RASSF1A
methylation is associated with lymph node metastasis (P < 0.01).
The results suggest that methylation of DACT2, HIN1, and
RASSF1A increases the malignance of thyroid cancer. Further
analysis find that methylation heterogeneity of AP2, DACT2,

and HIN1 are associated with tumor size. The results suggest
that epigenetic heterogeneity is increasing with tumor growth. It
indicates that the phenotype of cancer cells is varied in different
tumor stages. Thus, the therapeutic strategies need according
to the phenotypes of cancer cells, which are determined by
epigenetic changes. The multivariable analysis suggested that
CDH1 methylation heterogeneity is associated with lymph node
metastasis andHIN1methylation heterogeneity is associated with
extra-thyroidal extension. The results suggest that CDH1 and
HIN1 methylation heterogeneity may increase tumor metastasis.
Methylation heterogeneity of these two genes may serve as
prognostic marker for thyroid cancer.

The conventional clinical therapeutics is the “one-size-fits-
all-approach.” However, the ultimate aim of precision medicine
is to enable clinicians to accurately and efficiently identify the
most effective preventative or therapeutic intervention for a
specific patient. Epigenetic switches play important roles in
carcinogenesis and tumor progression, and epigenetic switches
are reversible (Guo et al., 2019). In this study, we focus mainly
on the epigenetic heterogeneity of transcriptional regulators,
which were found involved in different cancer-related signaling
pathways. Epigenetic heterogeneity is found in four (CDH1, AP2,
HIN1, and DACT2) of the five detected genes in thyroid cancer.
The results suggest that epigenetic heterogeneity is a universal
mechanism of cancer development. It is notable that epigenetic
heterogeneity is associated with tumor size or tumor metastasis.
For the first time, we find that epigenetic heterogeneity is
related to cancer development. Based on “BRCAness” principle,
our recent study found that methylation of NRN1 was a
novel synthetic lethal marker for PI3K-Akt-mTOR and ATR
inhibitors in human esophageal cancer (McLornan et al., 2014;
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TABLE 3 | The association of methylation heterogeneity and clinical factors.

AP2 CDH1 DACT2 HIN1 RASSF1A

No.
n = 135

HE
n = 60

HO
n = 75

p HE
n = 51

HO
n = 84

p HE
n = 56

HO
n = 79

p HE
n = 60

HO
n = 75

p HE
n = 35

HO
n = 100

p

Age (year)

<55 114 50 64 0.750 43 71 0.974 44 70 0.113 51 63 0.873 31 83 0.434

≥55 21 10 11 8 13 12 9 9 12 4 17

Gender

Male 31 13 18 0.749 14 17 0.334 13 18 0.953 13 18 0.749 10 21 0.359

Female 104 47 57 37 67 43 61 47 57 25 79

Tumor size (cm)

≤1 cm 103 53 50 0.003** 40 63 0.649 50 53 0.003** 53 50 0.003** 28 75 0.549

>1 cm 32 7 25 11 21 6 26 7 25 7 25

Tumor location

Left lobe 68 28 40 0.441 26 42 0.912 29 39 0.782 29 39 0.672 15 53 0.302

Right lobe 67 32 35 25 42 27 40 31 36 20 47

TNM stage

I 130 58 72 1.000 50 80 0.651 54 76 1.000 59 71 0.508 33 97 0.604

II + III 5 2 3 1 4 2 3 1 4 2 3

Lymph node metastasis

N0 76 32 44 0.535 35 41 0.024* 35 41 0.221 31 45 0.332 20 56 0.907

N1 59 28 31 16 43 21 38 29 30 15 44

Extrathyroidal extension

Negative 91 41 50 0.837 35 56 0.814 41 50 0.226 48 43 0.005** 25 66 0.555

Positive 44 19 25 16 28 15 29 12 32 10 34

HE, heterogeneity; HO, homogeneity;Chi square test, *p < 0.05, **p < 0.01.
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TABLE 4 | Logistic regression model for lymph node metastasis.

Variable Univariate analysis Multivariate analysis

OR (95% CI) p OR (95% CI) p

AP2 (HE vs. HO) 0.805 (0.406, 1.596) 0.535

CDH1 (HE vs. HO) 2.294 (1.106, 4.761) 0.026* 2.512 (1.135, 5.557) 0.023*

DACT2 (HE vs. HO) 1.545 (0.768, 3.105) 0.222

HIN1 (HE vs. HO) 0.713 (0.359, 1.414) 0.333

RASSF1A (HE vs. HO) 1.048 (0.482, 2.279) 0.907

Age (24–79 years) 0.933 (0.898, 0.969) < 0.001*** 0.927 (0.891, 0.965) < 0.001***

Gender (female vs. male) 1.080 (0.482, 2.419) 0.852

Tumor size (0.2–3 cm) 2.190 (1.037, 4.623) 0.040* 2.429 (1.086, 5.436) 0.031*

Tumor location (Right lobe vs. Left lobe) 1.167 (0.591, 2.305) 0.657

TNM Stage (II + III vs. I) 0.183 (0.020, 1.686) 0.134

Extrathyroidal extension (positive vs. negative) 1.273 (0.618, 2.626) 0.513

HE, heterogeneity methylation; HO, homogeneity methylation; *p < 0.05, ***p < 0.001.

TABLE 5 | Logistic regression analysis for extrathyroidal extension.

Variable Univariate analysis Multivariate analysis

OR (95% CI) p OR (95% CI) p

AP2 (HE vs. HO) 1.079 (0.522, 2.229) 0.837

CDH1 (HE vs. HO) 1.094 (0.519, 2.305) 0.814

DACT2 (HE vs. HO) 1.585 (0.751, 3.349) 0.227

HIN1 (HE vs. HO) 2.977 (1.364, 6.498) 0.006** 2.607 (1.138, 5.971) 0.023*

RASSF1A (HE vs. HO) 1.288 (0.555, 2.989) 0.556

Age (24–79 years) 1.012 (0.979, 1.047) 0.477

Gender (female vs. male) 2.031 (0.890, 4.634) 0.092

Tumor size (0.2–3 cm) 3.249 (1.465, 7.206) 0.004** 2.859 (1.224, 6.679) 0.015*

Tumor location (Right lobe vs. Left lobe) 0.429 (0.204, 0.900) 0.025* 0.373 (0.168, 0.828) 0.015*

TNM stage (II + III vs. I) 0.716 (0.115, 4.448) 0.720

Lymph node metastasis (positive vs. negative) 1.273 (0.618, 2.626) 0.513

HE, heterogeneity methylation; HO, homogeneity methylation; *p < 0.05, **p < 0.01.

Lord and Ashworth, 2016, 2017; Du et al., 2021). It is reasonable
to tailor the regimen for each individual of cancer patients by
epigenetic changes or epigenetic heterogeneity.

In conclusion, 5 of 24 genes were found frequently
methylated in human thyroid cancer. Based on the 5 genes
panel analysis, epigenetic heterogeneity is an universal event.
Epigenetic heterogeneity is associated with cancer development
and progression.
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