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Abstract: Biological therapy, with its multifaceted applications, has revolutionized the treatment
of tumors, mainly due to its ability to exclusively target cancer cells and reduce the adverse effects
on normal tissues. This review focuses on the therapies targeting the CXCR4 and CD47 receptors.
We surveyed the results of early clinical trials testing compounds classified as nonpeptides, small
peptides, CXCR4 antagonists or specific antibodies whose activity reduces or completely blocks the
intracellular signaling pathways and cell proliferation. We then examined antibodies and fusion
proteins against CD47, the receptor that acts as a “do not eat me” signal to phagocytes escaping
immune surveillance. Despite these molecules being tested in early clinical trials, some drawbacks
are emerging that impair their use in practice. Finally, we examined the ImmunoGenic Surrender
mechanism that involves crosstalk and co-internalization of CXCR4 and CD47 upon engagement
of CXCR4 by ligands or other molecules. The favorable effect of such compounds is dual as CD47
surface reduction impact on the immune response adds to the block of CXCR4 proliferative potential.
These results suggest that a combination of different therapeutic approaches has more beneficial
effects on patients’ survival and may pave the way for new accomplishments in personalized
anticancer therapy.

Keywords: CXCR4; CD47; CXCL12; tumor cell proliferation; immune escape; antagonists; anticancer
therapy; immunogenic surrender

1. Introduction

One of the most challenging tasks in cancer biology is the search for new and more
effective treatments. The introduction of biological molecules, the so-called biological
therapy, has been a breakthrough in the treatment of many cancers with respect to classical
chemotherapy as it slows down tumor growth, prevents metastasis formation and spread-
ing, and reduces, in many cases, the amount and intensity of the adverse side effects. The
spectrum of this innovative approach is expanding every day due to new achievements
which improve the design and the number of the molecules, their efficacy and specificity of
action, as well as the chance to be used in combination with other compounds [1].

Biological cancer therapy perfectly fits into the emerging concept of precision medicine
and personalized cancer medicine. Accordingly, treatments should be tailored to each single
patient based on (1) Accurate collection of clinical data; (2) Acquisition of imaging and
laboratory data; (3) Results obtained by next-generation sequencing (NGS) technologies
capable of detecting new, rare mutations or gene copy number variations in cancer cells as
well as epigenetic modifications. Biological cancer therapy specifically involves treatments
with natural or synthetic molecules which can attack tumor cells directly or indirectly by
supporting and improving the immune system to fight cancer. These include monoclonal
antibodies, adoptive cell transfer, gene therapy, treatment with cytokines, cancer vaccines,
oncolytic viruses, immunoconjugates and the use of targeted therapy. In such a therapeutic
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approach, molecules that are directed towards genetic aberrations in oncogenes and tumor
suppressor genes are essential [2].

CXCR4 and CD47 are two surface receptors whose role in tumorigenesis is well-known.
Against these receptors, numerous types of molecules with distinct chemical structures
have been used as inhibitors or antagonists; their number is increasing, and they are
systematically scrutinized and susceptible to further development.

CXCR4 is a G-protein coupled receptor (GPCR) expressed ubiquitously during em-
bryogenesis and involved in important developmental processes. CXCR4 affects tumor
growth; its overexpression is a driver of a large number of human malignancies and a
marker of poor prognosis, especially in patients with breast, prostate, colorectal and lung
cancer [3]. C-X-C motif chemokine 12 (CXCL12, also known as stromal cell-derived factor 1,
SDF-1) is the chemokine ligand for CXCR4. The specific interaction activates intracellular
signaling pathways that stimulate cell proliferation and support a feed-forward regulation
loop that further enhances tumor progression [4].

CD47 also is a membrane receptor expressed in all normal cells [5,6]. The main ligand
to CD47 is Signal-Regulatory Protein α (SIRPα), expressed on the surface of immune
cells. This cross-interaction activates a downstream cascade leading to the inhibition of
macrophage phagocytosis [7–9]. CD47, in fact, marks the cells as “self” and with a “do not
eat me” signal, so that cells overexpressing CD47 are no longer phagocytosed; unfortunately,
a variety of malignant cells overexpress CD47 escaping immune recognition and removal
by phagocytosis [7].

Starting from these premises, in the last years, both CXCR4 and CD47 have been selec-
tively targeted with different classes of molecules acting either as antagonists or inhibitors
to block their intracellular signaling and proliferation or improve cellular recognition and
immune response, respectively.

This article will review and discuss some aspects of diverse CXCR4 and CD47 antag-
onists. Some of them have already been tested in early stages clinical trials, while some
others can expectedly be used in single or combined treatments on the basis of our better
understanding of cancer biology. For all, the expectation is to be used in more efficient
treatments with beneficial effects on cancer patients’ survival.

2. The CXCR4 Receptor

CXCR4 or C-X-C chemokine receptor type 4, also known as CD184, is a member of
the seven-transmembrane, G-protein coupled receptor (GPCR) family, the largest class of
cell surface receptors [3]. Human CXCR4 is a 352 amino acids long protein, shares 89%
homology with the murine counterpart (359 amino acids), is ubiquitously expressed in
both embryonic and adult tissues and regulates essential physiological processes, including
embryogenesis, tissue repair, and hematopoiesis [10]. CXCR4 knockout mice display em-
bryonic lethality due to widespread defects, altered vascularization of the gastrointestinal
tract, generation of B lymphocytes and myeloid cells, formation of the cerebellum and
heart defects [11]. CXCR4 conditional knockout mice disclose an even larger involvement
during development in myogenesis, innervation of limbs and formation of renal vascu-
lature [12,13]. In adult life, high expression of CXCR4 occurs in bone marrow (BM) and
cells of the immune system, with lower levels in most other tissues and organs. Specifically,
in differentiated immune cells, CXCR4 expression controls the homeostatic trafficking for
immune surveillance and host defense. Of note, CXCR4 acts as a co-receptor for some
strains of human immunodeficiency virus and, thus, is involved in HIV infection together
with CCR5, both expressed on the T cells’ surface. Specifically, in the early stages of in-
fection, the virus uses CXCR4 for viral entry; subsequently, it takes advantage of CXR4 to
promote Acquired Immune Deficiency Syndrome (AIDS) progression [14]. Due to all these
activities, it contributes to the pathogenesis of multiple diseases, including autoimmunity,
atherosclerosis, and neurodegeneration [15–17].

CXCR4 plays relevant roles also in the tumorigenic process by directly acting at
multiple steps; it is, in fact, overexpressed in many tumor cells affecting growth and
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invasion, suggesting that CXCR4 is a driver of human malignancies and a marker of poor
prognosis [18]. More recently, it has been shown that CXCR4 is also upregulated in cancer
stem cells (CSCs), or tumor-initiating cells, a population of malignant cells within a tumor
able to self-renew and differentiate to produce the heterogeneous lineages of cancer cells
that constitute the tumor [19]. Activation of the signaling pathways downstream to CXCR4
stimulates CSCs proliferation leading to an increase in their total number and activation of
functions, including self-renewal, local invasion and dissemination to distant organs and
tissues ([3] and references therein]). This latter property has been specifically related to
CSCs as they are the only subpopulation bearing stem cell properties and thus capable of
generating metastases. In pancreatic cancers, these events have been shown to be mediated
by a specific subpopulation of CSCs characterized by CD133 expression, a stemness marker,
and CXCR4 overexpression with respect to parenchymal tumor cells; they are localized
at the invasive front of the mass, suggesting a role in tumor dissemination due to the
expression of CXCR4 and the responsiveness to the specific ligand CXCL12 produced by
other cells present in the microenvironment. Similar events have also been reported in
colorectal cancer (CRC) [20]. In the case of breast cancer (BC), the most frequent sites of
metastasis are the lung, brain and bone because they are enriched in CXCL12-expressing
fibroblasts. Binding to CXCR4 turns these cells into carcinoma-associated fibroblasts
(CAFs), which start to secrete CXCL12, which, in turn, acts on CSCs and tumor cells, further
enhancing proliferation and/or the metastatic potential towards novel sites [21,22]. Thus,
these signals are driven in part by the chemokines emitted from cancer cells, generating a
feed-forward loop that directly enhances the survival and invasion of malignant cells [23].
These events also highlight the tight interconnections between cancer and stromal cells
to generate the so-called tumor microenvironment (TME), which ultimately establishes
tumor progression via direct and indirect effects [24]. Moreover, hypoxia, a condition that
occurs in both primary and metastatic tumors, drives transcription of CXCL12 and CXCR4
to further stimulate growth and metastasis via promoting the angiogenetic potential of
molecules such as vascular endothelial growth factor (VEGF) [25–27]. Finally, expression
and signaling of the CXCR4/CXCL12 axis in both immunosuppressive and effector immune
cells regulate the balance of pro- and antitumor leukocytes recruited to a tumor [28]. CSCs
have also been implicated in the acquisition of resistance to standard chemotherapeutic
drugs and radiation, through various mechanisms that allow them to survive and make
them the leading cause of treatment failure and recurrent cancers [20,29].

Overall, the findings reported here highlight the multiple functions of CXCR4 in tumor
environments and support the association of CXCR4 overexpression with poor clinical data
and a dismal prognosis in a variety of malignancies. Importantly, these data strongly support
the possibility of targeting CXCR4 on CSCs and tumor cells not only to reduce the tumor
mass but also to impair tumor regeneration and possibly resistance to therapy, improving the
success of cancer therapy by using both challenging and opportunistic strategies.

3. Binding of CXCL12 to CXCR4

The interaction of CXCR4 with its ligand CXCL12 is followed by phosphorylation at
multiple sites of its intracellular C-terminal domain that leads to the dissociation of the Gβγ

and Gα subunits and activation of the RAS-MAPK, PI3K-AKT-mTOR, Jak2/3-STAT2/4,
phospholipase C, NF-κB and JNK/p38 signaling [30]. These pathways lead to intracellular
calcium mobilization and cell proliferation, migration, and survival; interestingly, cell
proliferation and migration are mutually exclusive processes; yet, in this case, they are
activated by the same signaling. Interaction of CXCL12 with CXCR4 also induces the
recruitment of β-arrestins, which in turn signal via the MAPK p38 [30,31] and leads to
clathrin-dependent internalization of the receptor-ligand complex [32] (Figure 1).
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Figure 1. Schematic representation of the CXCR4 downstream signaling pathways activated by
CXCL12 binding. The figure was created with BioRender.com (accessed on 7 October 2022).

CXCR4 forms homodimers that are confined within lipid rafts [33]; ligand binding
increases CXCR4 oligomers that internalize more efficiently than monomers and regulate
intracellular signaling and subsequent desensitization [34–36]. CXCR4 forms higher-order
homo-oligomers and heterodimers with other receptors providing a further layer of reg-
ulation of its dynamics and signaling. CXCR4 can, in fact, heterodimerize with CCR2,
negatively affecting the binding of ligands and antagonists on itself and the interacting
receptor [37,38]. CXCR4 also associates with CCR5 to recruit monocytes, memory T helper
cells and eosinophils. CCR5 is, in fact, the receptor for CCL5/RANTES, a chemokine
produced by T cells, macrophages and activated platelets.

On the surface of T cells, CXCR4 can form heterodimers also with CCR7 and binding
of CCR7 ligands enhances CCR7 homo- and CXCR4/CCR7 heterodimerization, without
affecting CCR7 expression levels [39]. On the same T lymphocytes, CXCR4 can heterodimer-
ize with the T cell receptor (the TCR/CD3 complex) upon specific activation, stimulating
the reciprocal intracellular signaling, ultimately affecting new T cell epitope formation and
recognition as well as cytokine secretion and chemotaxis [40,41]. CXCR4 downregulation in
T cells is associated with alteration of the structure of the immunological synapse, reducing
T cell/Antigen Presenting Cells contacts [42,43]. Interestingly, CXCR4 can also form het-
erodimers with the B Cell Receptor (BCR) in B cells. Of the two BCRs expressed in mature
B cells, CXCR4 interacts only with the one binding IgD and activates the downstream
pathway in response to CXCL12 [44].

The plasticity of CXCR4 in forming homo- and/or heterodimers is particularly evident
in tumor microenvironments where cells are exposed to multiple ligands and inhibitors,

BioRender.com
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enhancing intracellular signaling. This suggests that targeting multiple receptors and signaling
pathways with a single drug may pave the way for more successful therapeutic approaches.

4. The CXCR7 Receptor

CXCL12 can bind another receptor, CXCR7 (C-X-C motif receptor 7), that belongs to
the atypical chemokine family and is renamed ACKR3 (Atypical Chemokine Receptor 3).
Although CXCL12 shows a 10-fold higher affinity for CXCR7 than CXCR4, the binding
of CXCL12 to CXCR4 is kinetically favored because both association and dissociation
rates of CXCL12 with CXCR7 are slower than CXCR4 [45]. CXCR7 is highly implicated in
embryonic heart formation and development, as demonstrated in Cxcr7 knockout mice
(Cxcr7−/−), which die at birth due to abnormal heart valve development [46]. In the adult,
CXCR7/ACKR3 is expressed in mesenchymal stromal cells, central nervous system cells
(astrocytes, glial and neuronal cells), vascular smooth muscle cells and, among the immune
cells, in not mature B cells, natural killer (NK) cells, basophils, dendritic cells (DCs) and
CD4 but not CD8 T cells [47]. The phenotypic differences described for Cxcr4−/− and
Cxcr7−/− mice [48], along with recent studies in zebrafish [49], support the hypothesis that
CXCR7 and CXCR4 have specific and distinct biological roles. CXCR7 acts as a “scavenger”
or “decoy” for extracellular CXCL12 and CXCL11, promoting constant internalization
and recycling of the receptor and establishing a CXCL12 gradient. This is consistent with
the role of CXCR7 in controlling chemokine concentrations in the extracellular space and
limiting signaling via other receptors [50,51].

The binding of CXCL12 to CXCR7 activates the intracellular signaling by itself through
the β-arrestins pathway [50]. The binding also induces phosphorylation of the receptor that
protects it against degradation, preserving the CXCR7 scavenger function [52]. In contrast
to CXCR4, CXCR7 internalization occurs even in the absence of ligand binding and does
not lead to receptor degradation [46]. CXCR7 can form heterodimers with CXCR4 but also
with other chemokine receptors such as CCR2, CCR7, CCR5, and CXCR3, modulating the
CXCR4-activated calcium signaling [53–55].

5. CXCR4 Antagonists

The activity of the CXCR4 receptor can be blocked or hindered by a series of molecules
acting as antagonists or inhibitors that can be grouped in three classes [56]:

(1) nonpeptide CXCR4 antagonists;
(2) small-peptide CXCR4 antagonists;
(3) antibodies to CXCR4.

5.1. Nonpeptide CXCR4 Antagonists

The group of nonpeptide CXCR4 antagonists includes molecules such as AMD3100,
AMD070 and KRH-1636.

AMD3100 is a bicyclam compound in which two cyclam rings are linked through an
aromatic bridge; it acts as a specific CXCR4 antagonist inhibiting CXCL12-induced chemotaxis
and GTP-binding and does not cross-react with other chemokine receptors [57,58]. AMD3100,
as well as other molecules of this group, was first used for the treatment of HIV infection. For
these reasons, great efforts have been made aiming at identifying molecules able to block this
interaction. During Phase I/II clinical trials, HIV patients and volunteers exhibited leukocytosis
due to the mobilization of diverse hematopoietic cells from the BM. For this reason and the
relatively limited effect on the viral load, AMD3100 was discontinued for HIV treatment. Yet, it
continued to be studied as a mobilizing agent of hematopoietic stem cells (HSCs) [59–61], so in
2008 the US Food and Drug Administration (FDA) approved AMD3100 as Plerixafor for the
treatment of patients with hematological diseases. Since then, numerous clinical trials have been
carried out either as monotherapy or in combination with other drugs, especially for untreated
or relapsed/refractory acute myeloid leukemia (r/r AML) (NCT01455025); non-Hodgkin’s
lymphoma and multiple myeloma (MM) (NCT00322842, using AMD3100 + granulocyte colony-
stimulating factor (G-CSF)) [62]; r/r MM (NCT00903968, using AMD3100 + Bortezomib) [63].
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The published data from these Phase 1/2 clinical trials suggest that AMD3100 is
more efficient than monotherapy when administered in combination with chemotherapy,
with an acceptable safety profile and ability to mobilize leukemic cells into the peripheral
circulation, leading to encouraging remission rates [64].

AMD3100 has also been tested in two Phase 1 clinical trials (NCT02179970) for solid
tumors such as colorectal, advanced pancreatic and ovarian cancer, aiming at better un-
derstanding the changes in the composition of immune cells in the TME. The results
on the pharmacokinetics and safety profile suggested a recommended infusion rate for
further studies but also led to the design of a Phase 2 trial combining AMD3100 with
an immune-checkpoint inhibitor (ICI) in pancreatic cancer patients (NCT04177810, in
progress). Furthermore, in combination with bevacizumab, an anti-VEGF monoclonal
antibody, AMD3100 was tested in a Phase 1 study in patients with recurrent high-grade
glioma (NCT01339039) showing that the combination was well tolerated, with a series
of markers consistent with VEGF and CXCR4 inhibition [65]. In association with other
chemotherapeutics, AMD3100 was also administered to patients with newly diagnosed
high-grade glioma (NCT01977677); however, the patients’ cohort was too small to draw
statistically significant conclusions, so the study was extended to more patients [66] and
also to a Phase 2 study (NCT03746080) with the addition of whole brain irradiation.

AMD070 (mavorixafor, X4P-001) is an orally available small molecule CXCR4 an-
tagonist able to form a hydrogen bond between its benzimidazole group and the Tyr45
residue of CXCR4 [67]. Pre-clinical studies have demonstrated the efficacy and safety of
AMD070, and its 50% inhibition concentration was similar to AMD3100 in MT-4 cells.
Administration of AMD070 to healthy volunteers was associated with the appearance of
mild, reversible and not dose-dependent side effects such as headache, vague neurologic
symptoms and gastrointestinal problems [68]. AMD070 was administered to patients
with advanced melanoma as monotherapy and in combination with pembrolizumab, an
anti-PD-1 (Programmed Death-1) antibody (NCT02823405). When used as a single agent,
AMD070 showed a modulation of the immune cell profile in the TME and an increase of
CD8+ T cell infiltration. AMD070 was also tested in 2 clinical studies of clear-cell renal
cell carcinoma (RCC). In a Phase I study (NCT02667886), in combination with axitinib,
a VEGF receptor inhibitor, it was well tolerated and showed evidence of clinical activ-
ity; in another study, AMD070, in combination with nivolumab, an anti-PD-1 antibody,
showed potential antitumor activity with a better response and a manageable safety profile
(NCT02923531) [69].

KRH-1636 is an orally available nonpeptide CXCR4 antagonist and, due to the fact that
it is absorbed from the duodenum into the bloodstream, can be useful also for the treatment
of HIV infection [70]. In fact, it displays a potent antiviral activity both in vitro and in vivo
and inhibition of HIV-1 replication in MT-4 cells and in PBL-SCID mice. KRH-1636, as
AMD3100, does not induce CXCR4 internalization. This compound and its derivatives
contain the structural motif Arg-Arg-2-Nal, which is also shared by some peptides CXCR4
antagonists [71]. Because of its more favorable pharmacokinetic properties than similar
small peptides, KRH-1636 was further developed to produce a Phase 1 candidate, KRH-
3955, that, however, did not enter clinical trials [72].

5.2. Small-Peptide CXCR4 Antagonists

Specific small-peptides acting as CXCR4 antagonists were identified following the
screening of peptides that naturally occur after HIV infection. Starting from natural pep-
tides, the synthesis of hundreds of chemically modified compounds was carried out, bring-
ing to T22 [73], T134 [74] and T140 [75]. The peptide T22 (|Tyr5,12, Lys7|-polyphemusin
II) is polyphemusin-derived and shows strong inhibitory effects against CXCR4; it was one
of the first modified peptides with a potent HIV response and the 50% inhibitory concen-
tration useful to fight AIDS, similar to AZT (3′-azido-3′-deoxythymidine), initially used for
the treatment of the human disease [76]. Interestingly, T22 also shows the antimicrobial
activity as it can reduce bacterial growth in liquid culture and is less toxic than typical
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antimicrobial agents such as GWH1 in NIH3T3, HeLa and MRC-5 cells. This finding is
important not only because microbial infections can occur after tumor diffusion, but also
because they can contribute to tumor formation. T22 can then exert a dual role as a CXCR4
antagonist targeting the downstream pathways in tumors overexpressing this receptor and
as an antimicrobial agent [77].

T140 is a shorter form of T22 (14-mer with respect to 18-mer peptide) with a strong
anti-HIV effect but low biostability. For this reason, to improve T140 effectiveness, chemical
derivatives were produced, such as 4F-benzoyl-TN14003 and 4F-benzoyl-TE14011 that have
a p-Fluorobenzoyl group at the N-terminus. Beyond anti-HIV activity, the T140-derivates
reduce the migration in vitro and the ability to form metastasis in vivo of numerous cell
lines derived from solid tumors, MM or diverse types of leukemias [78]. 4F-benzoyl-
TN14003 induces mobilization of HSCs and many different progenitors from the BM
within a few hours post-treatment in a dose-dependent manner [79]. TN14003 had no
effect on mobilizing NK cells and was found to efficiently synergize with G-CSF in its
ability to mobilize white blood cells and progenitors. TN14003 was significantly more
potent in mobilizing HSCs and progenitors into the blood than AMD3100, with or without
G-CSF [79].

The synthetic peptide BL-8040, also known as motixafortide, is a high-affinity CXCR4-
antagonist. In human AML and MM mouse xenografts, BL-8040, used as monotherapy,
displayed prolonged occupancy and sustained inhibition of the receptor, resulting in the
induction of apoptosis of AML cells and mobilization of progenitor cells. When combined
with cytarabine in a Phase IIa clinical trial of patients with r/r AML (NCT01838395), this
peptide induced a 38% complete response and significantly improved patients’ overall
survival compared to the antineoplastic anti-metabolite cytarabine alone [80]. In another
clinical trial (NCT03154827, study terminated due to lack of enrollment), the safety and
efficacy of motixafortide were tested in combination with atezolizumab, a programmed
death-ligand 1 (PD-L1) inhibitor, in the maintenance treatment of AML patients aged
60 years or older (BATTLE Study). In a Phase III clinical trial for MM (NCT03246529, GEN-
ESIS), it was reported that patients who received BL-8040 + G-CSF produced more blood
cells than those treated with placebo + G-CSF [81]. As far as solid tumors, in clinical trials
for pancreatic cancer, BL-8040 was administered in combination with pembrolizumab or
with pembrolizumab and chemotherapy in chemo-resistant (NCT02826486 COMBAT) [82]
or metastatic pancreatic cancer patients (NCT02907099) [83]. In both cases, overall survival
was significantly increased, demonstrating that targeting CXCR4 and PD-1 at the same
time is a promising antitumor therapy.

The synthetic cyclopeptide CXCR4 inhibitors, POL6326 (balixafortide), efficiently
mobilized engrafted leukemia cells from their protective stromal microenvironment into the
circulation in a murine leukemia model; it also displayed a strong synergy in combination
with G-CSF, significantly reducing leukemia burden and prolonging animals’ survival [84].
In a Phase 2a study (NCT01105403) of MM patients, POL6326 was shown to be safe and well
tolerated with an efficient mobilization of HSCs [85]. With regard to solid tumors, POL6326
has been tested in combination with eribulin, an inhibitor of microtubule dynamics, in
a Phase 1 trial (NCT01837095) of patients with relapsed triple negative and hormone-
refractory ER-positive metastatic BC [86]. The anti-cancer response was sufficiently good,
better than eribulin monotherapy, and safe with only minor adverse effects, suggesting
that the combination of these two molecules represents a new therapeutic approach for
metastatic BC [86]. More recently, and based on the positive results obtained, POL6326 has
been proposed as the first CXCR4 antagonist to enter a Phase 3 clinical trial for BC [72].

LY2510924 is a potent and selective CXCR4 antagonist with a cyclic peptide structure
able to block the pathways activated by CXCL12 as cell migration, CXCL12-induced GTP
binding and downstream signaling. LY2510924 is stable in in vivo experiments and inhibits
tumor growth in human xenograft models developed with RCC, non-Hodgkin lymphoma,
lung, and colon cancer cells that express functional CXCR4 [87]. In preclinical models of
AML, LY2510924 durably blocked CXCR4 and inhibited CXCL12–induced chemotaxis and
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pro-survival signals of AML cells more effectively than plerixafor. The antileukemia effect
was also demonstrated in mouse models of AML as monotherapy and in combination with
chemotherapy [88]. LY2510924 is also being studied in a Phase 1b trial (NCT02652871)
combined with anthracycline idarubicin and cytarabine in 36 adult patients with r/r
AML [89].

In early clinical tests, LY2510924, however, did not show efficacy in solid tumors [72].
Positive results were instead obtained in a Phase 1a study (NCT02737072) in which patients
with refractory solid tumors were treated with LY2510924 in combination with durvalumab,
a monoclonal human antibody against PD-L1; it was demonstrated that LY2510924 is safe
and the combination therapy gave results similar to monotherapy suggesting a role of
CXCR4 inhibition in recruiting blood cells, specifically T cells, to the TME [90].

A new class of cyclic peptides, CXCR4 antagonists, was recently developed using a
ligand-based approach. Briefly, a three-residue segment was identified at the N-terminus
of CXCL12, similar but in inverse order, to an inhibitory chemokine secreted by a herpes
virus. This motif was the core of a cyclic peptide library tested in vitro for its ability to block
CXCR4 function. Among the 19 peptides assessed, three (Peptide R, I and S) limited lung
metastasis formation in vivo in syngeneic mice injected with melanoma or osteosarcoma
cells; they also inhibited primary tumor growth in xenografts of human renal cancer cells.
All three peptides were able to mobilize hematopoietic precursors in a CXCR4-dependent
manner, similar and more durable than AMD3100 [91]. Peptide R showed the strongest
effects, especially in impairing lung metastases [92]. Mice injected with human colon cancer
cells administered with 5-Fluoroacil or Oxaliplatin, in the presence of Peptide R, displayed
a relative 4-fold smaller tumor volume than chemotherapeutics alone [93].

5.3. Antibodies to CXCR4

Specific antibodies against CXCR4 were produced with the aim of blocking the
CXCL12/CXCR4 axis signaling. Due to the conformational heterogeneity of the receptor,
as reported above, it is not easy to produce monoclonal antibodies [94]. The most used
monoclonal antibody is 12G5 which shows antiviral activity [95,96], inhibits proliferation
and adhesion of HL-60 cells [97], and reduces tumor growth and micro-metastasis in human
osteosarcoma xenograft mice [98].

The fully humanized antibody LY2624587 was tested in a Phase 1 study in patients
with advanced or metastatic cancers (NCT01139788). The trial was completed with no
results published to date.

Ulocuplumab (MDX-1338) is a fully human anti-CXCR4 antibody that binds to the
ECL2 sequence of CXCR4 with antagonistic activity to the receptor; it also showed promis-
ing antitumor activity and pro-apoptotic potential in the treatment as monotherapy of
chronic lymphocytic leukemia cells in vitro characterized by high expression of CXCR4 [99].
In a Phase I trial (NCT03225716), patients affected by Waldenström macroglobulinemia,
a disease characterized by a mutation in MYD88 and CXCR4, were administered with
ulocuplumab and ibrutinib, an inhibitor of Bruton’s tyrosine kinase, and showed a 2-year
progression-free survival in 90% of cohort’s members [100]. Furthermore, in a Phase 1b clin-
ical trial for r/r MM (NCT01359657), ulocuplumab was administered in combination with
lenalidomide and dexamethasone, or bortezomib and dexamethasone. Benefits after the
administration were also observed in patients previously treated with immunomodulatory
agents, suggesting the importance of targeting the CXCR4 axis in MM [101].

A Phase 1 dose escalation/expansion trial (NCT01120457) in patients with r/r AML
or selected B-cell cancers determined the maximum tolerated dose of ulocuplumab and
assessed the safety and tolerability of the antibody in combination with chemotherapy
MEC (mitoxantrone, etoposide, cytarabine). Ulocuplumab was given in escalation during
monotherapy or in combination with MEC in the first cycle. In the expansion phase, patients
received ulocuplumab and MEC with overall Complete Remission with Incomplete Count
Recovery (CR/Cri) at 51%, far more favorable than the response rate for MEC alone
(24–28%) [102]. Ulocuplumab was also combined with nivolumab in a Phase 1/2 study
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in advanced or metastatic pancreatic and SCLC (NCT02472977); however, the study was
terminated early because of lack of efficacy [72].

PF-06747143, a humanized anti-CXCR4 immunoglobulin G1 (IgG1) antibody, is used
to fight hematological malignancies and also inhibit downstream pathways activated by
the CXCL12/CXCR4 axis. This molecule promotes the mobilization of blood cells and
induces tumor cell death thanks to its Fc constant region-mediated effector function. Finally,
PF-06747143, either as a single agent or in combination with standard chemotherapy, was
tested in a Phase 1 clinical trial of AML (NCT02954653 terminated due to a change in
sponsor prioritization) [103].

The CXCR4 antagonists employed in the clinical trials surveyed here are summarized
in Table 1.

Table 1. List of the CXCR4 antagonists analyzed in this study.

Class Name Clinical Trial Tumor References

Nonpeptide

AMD3100, plerixafor

NCT01455025
completed r/r AML -

NCT00322842
completed

non-Hodgkin’s
lymphoma, MM [62]

NCT00903968
completed r/r MM [63]

NCT02179970
completed pancreatic, ovarian, CRC -

NCT04177810
in progress pancreatic -

NCT01339039
terminated high-grade glioma [65]

NCT01977677
completed high-grade glioma [66]

NCT03746080
recruiting glioblastoma -

AMD070, mavorixafor,
X4P-001

NCT02823405
completed advanced melanoma -

NCT02667886
active, not recruiting RCC -

NCT02923531
completed RCC [69]

Small-peptide

BL-8040, motixafortide

NCT01838395
completed r/r AML [80]

NCT03154827
terminated AML -

NCT03246529
active, not recruiting MM [81]

NCT02826486
active, not recruiting

metastatic pancreatic
adenocarcinoma [82]

NCT02907099
active, not recruiting metastatic pancreatic [83]

POL6326, balixafortide NCT01837095
completed metastatic BC [86]

LY2510924

NCT02652871
completed r/r AML [89]

NCT02737072
terminated solid tumor [90]
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Table 1. Cont.

Class Name Clinical Trial Tumor References

Antibody

LY2624587 NCT01139788
completed

advanced or metastatic
cancer -

MDX-1338, ulocuplumab

NCT03225716
active, not recruiting

Waldenström
macroglobulinemia [100]

NCT01359657
completed MM [101]

NCT01120457
completed

acute myelogeneus
leukemia,
B-cell cancers

-

NCT02472977
terminated solid tumor -

PF-06747143 NCT02954653
terminated AML [103]

6. The CD47 Receptor

CD47, Cluster of Differentiation 47, is a transmembrane receptor belonging to the
immunoglobulin (Ig) superfamily, it is ubiquitously expressed on all normal cells but over-
expressed on hematological and solid malignant cells [104–107]; it is a highly glycosylated
protein consisting of an extracellular N-terminal IgV-like domain, five highly hydrophobic
membrane-spanning segments and a short hydrophilic cytosolic C-terminus. The IgV-like
domain contains two disulphide bonds, and an additional bridge is formed between the
extracellular and one of the transmembrane regions. CD47 is also called Integrin Associated
Protein (IAP) as it was discovered as a plasma membrane molecule that copurifies with
the integrin αvβ3; in fact, via its IgV-like domain, it interacts in cis with multiple integrins,
including αIIbβ3 and α2β1, present in the same membrane [108].

The main ligand for CD47 is Signal-Regulating Protein α (SIRPα) expressed on the
surface of monocytes, macrophages, neutrophils and DCs [5,6,109]. SIRPα, also known
as CD172a or SHPS-1, is a glycoprotein of the Ig superfamily containing an extracellu-
lar domain and intracellular immunoreceptor tyrosine-based inhibition motifs (ITIMs).
The interaction of CD47 with SIRPα (and γ) occurs in trans, i.e., between two different
cells, mediates cell-cell adhesion and is highly species-specific [5]. The structure of the
CD47/SIRPα complex has been solved by high-resolution crystallography and shows that
the two molecules form a 1:1 stoichiometric complex. The SIRPα ligand binding domain is
tightly interdigitated with CD47 so that their interactions are mainly mediated by loops at
the intracellular side. The CD47/SIRPα binding induces phosphorylation of the intracel-
lular ITIMs, triggering a downstream cascade that leads to disruption of the cytoskeleton
and, ultimately, to inhibition of macrophage phagocytosis [7,9] (Figure 2).

CD47 also interacts with thrombospondins (TSPs), a family of five glycoproteins able
to regulate cell migration; this specific binding abrogates VEGFR2 signaling, affecting
proliferation, differentiation and inflammation [110]. Interactions with both integrins and
thrombospondins activate Gi protein signal transduction. Besides specific integrins, CD47
directly associates with the Fas receptor in T cells, promoting Fas-mediated apoptosis.
CD47 does not appear to interact with other cytoplasmic proteins; rather, it allows its
downstream signaling through lateral interactions with other receptors, such as CD14, in
human resting but not LPS-stimulated monocytes [111].
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Importantly, the CD47/SIRPα interaction tags cells as “self” and with a “do not eat
me” signal; this means that, in normal conditions, cells expressing low CD47 levels are
phagocytosed, a pivotal step in the maintenance of tissue integrity and homeostasis. Un-
fortunately, CD47 is overexpressed on the surface of a variety of malignant cells, and its
binding to SIRPα on macrophages suppresses their phagocytic activities. For this rea-
son, the complex is also called “macrophage immune checkpoint”; its disruption, thus,
stimulatesmacrophages-mediated phagocytosis of tumor cells and can be employed as a
tool for producing next-generation immunoregulatory drugs [112]. To this goal, monoclonal
antibodies and chimeric proteins have been designed and tested to block the CD47/ SIRPα
interaction for efficient phagocytosis resulting in tumor rejection and development of anti-
tumor immunity [113]. Specific CD47/SIRPα targeting antibodies have shown attractive
results against various cancers including AML [114], anaplastic thyroid carcinoma [115],
lymphoma [107], BC [116].

In particular, magrolimab (Hu5F9-G4, ONO-7913) is a humanized monoclonal an-
tibody that binds CD47 at low nanomolar affinity and is built on an IgG4 scaffold to
minimize Fc-mediated effector toxicity for non-tumor cells expressing CD47 [117]. In
immunodeficient mice models, magrolimab shows strong monotherapy activity against
human hematological malignancies [118]. Many clinical trials are currently undergoing to
evaluate its efficacy in several tumor types.

In a Phase 1b trial of AML patients (NCT03248479), magrolimab was used in combi-
nation with azacitidine [119]; it was also employed in Phase 1 of advanced solid tumors
(NCT02216409) [120]. Patients affected by myelodysplastic syndromes were treated with
magrolimab and azacitidine (NCT03248479). The combination therapy was well tolerated,
with promising efficacy. This trial was followed by NCT04313881, which is in progress [121].

Lemzoparlimab (TJC4) is also a humanized monoclonal antibody and, as magrolimab,
contains an IgG4 scaffold and binds specific CD47 epitopes. Glycosylation near the binding
epitopes on red blood cells (RBCs), “shields” them from antibody binding. Lemzoparlimab,
in fact, had minimal and transient effects on RBCs in primates. However, despite this
mechanism of binding, anemia was observed in 30% of patients treated with this antibody.

BioRender.com
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In a Phase I study, TJC4 was used for r/r advanced solid tumors and lymphoma as a single
agent or in association with pembrolizumab or rituximab (NCT03934814) [122].

AO-176 is an anti-CD47 antibody based on an IgG2 Fc domain that binds selectively to
CD47 on tumor cells but not on other cells. AO-176 does not activate antibody-dependent
cellular cytotoxicity but does have a direct cell-killing effect; it has minimal effect on
hematologic parameters in primates with no anemia. However, data from Phase I/II trials
of AO-176 (NCT03834948, NCT0445701) in multiple solid tumors showed that it induces
phagocytosis of tumor cells, while preserving T cells and causes thrombocytopenia in 33%
and anemia in 22% of the cases [123,124].

SRF231 is an anti-CD47 fully human IgG4 monoclonal antibody that binds CD47 on the
surface of RBCs but does not cause phagocytosis [125]; it has been proposed in Phase 1 pre-
clinical model of both advanced solid and hematologic malignancies. (NCT03512340) [126].

B6H12.2 is a commercially available anti-CD47 monoclonal antibody that efficiently
blocks the interaction between CD47 and SIRPα in Laryngeal Squamous Cell Carcinoma
(LSCC) in vitro. This neoplasm is characterized by overexpression of CD47, and it has
been found that the use of B6H12.2, or other monoclonal antibodies, either promotes CD47
decrease or the stimulation of phagocytosis by macrophages, highlighting the importance
of this receptor in the maintenance of this neoplasm [127].

CC-90002, also known as INBRX 103, is a humanized monoclonal antibody based on
an IgG4 scaffold. In the clinical trial of patients with r/r AML or high-risk myelodysplastic
syndromes (NCT02641002), treatment with CC-90002 monotherapy produced the expected
anemia in 32% of patients; thrombocytopenia also occurred in 39% of patients, suggesting
an unknown mechanism, independent of antibody-dependent cellular cytotoxicity and
complement-dependent cytotoxicity activation [128].

Among fusion proteins, ALX148 (evorpacept) has been engineered to contain two
CD47 binding domains of SIRPα linked to an inactive Fc region of a human immunoglob-
ulin. ALX148 is being evaluated alone as monotherapy or in combination with other
anticancer antibodies or with ICIs in both solid non-small cell lung carcinoma (NSCLC),
head/neck squamous cell carcinoma (HNSCC), gastric/esophageal junction carcinoma and
hematologic malignancies [129]. In a Phase I trial of patients with lymphoma or advanced
or metastatic solid tumors with no available standard therapy (NCT03013218, ASPEN-01),
ALX148 was well tolerated and able to contrast tumor growth when administered in com-
bination with pembrolizumab for HNSCC and NSCLC, or trastuzumab for HER2-positive
gastric or gastroesophageal junction cancers [130].

Trillium (TTI-621) is a fusion protein containing the N-terminal V-domain of human
SIRPα and the IgG1 Fc domain. This “decoy receptor” can bind CD47 on tumor cells,
and can activate phagocytosis and Fc effector functions for maximum efficacy. TTI-621
binds CD47 on a variety of hematologic cells and causes anemia in primates but exhibits
minimal binding to human RBCs, presumably because it binds to CD47 in clusters in the cell
membrane but not when it is distributed and associated with a cytoskeletal protein, spectrin,
in human RBCs [131]. Trillium was tested in Phase 1 clinical trial of r/r hematologic
malignancies (NCT02663518), either as a single agent or in combination with rituximab or
nivolumab, and emerged that was well tolerated with good efficacy [132]. Only recently,
Trillium has been tested in combination with doxorubicin in patients with unresectable or
metastatic leiomyosarcoma (NCT04996004).

Table 2 shows the anti-CD47 antibodies and fusion proteins employed in the clinical
trials surveyed here.
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Table 2. List of the CD47 inhibitors analyzed in this study.

Name Clinical Trial Tumor References

Hu5F9-G4, ONO-7913,
magrolimab

NCT03248479
active, not recruiting hematologic, AML [119]

NCT02216409
completed solid tumor [120]

NCT04313881
recruiting myelodysplastic Syndromes [121]

TJC4, lemzoparlimab NCT03934814
active, not recruiting

advanced r/r solid tumor and
lymphoma [122]

AO-176 NCT03834948
active, not recruiting multiple solid [123,124]

SRF231 NCT03512340
completed

advanced solid tumor and
hematologic [126]

CC-90002, INBRX 103 NCT02641002
terminated myelodysplastic and r/r AML [128]

ALX148, evorpacept NCT03013218
active, not recruiting solid tumor and lymphoma [130]

TTI-621, trillium

NCT04996004
recruiting leiomyosarcoma -

NCT02663518
active, not recruiting

hematologic malignancies and
solid tumor [132]

7. CXCR4 and CD47 Interactions

All the data presented so far underscore the role that CXCR4 and CD47 play in
tumor promotion. We recently disclosed an unexpected counterbalancing activity of the
CXCL12/CXCR4 axis, i.e., promotion of cell phagocytosis by macrophages through lateral
interaction with CD47. Indeed, CXCR4 and CD47 already physically interact in specialized
membrane regions and the binding of BoxA, a fragment of HMGB1 corresponding to the
first domain of the protein, triggers co-internalization of the complex, leading to reduced
exposure on the cell surface. We have shown that BoxA also stimulates the emission of
HMGB1 and ATP along with membrane exposure of Calreticulin, the so-called Damage
Associated Molecular Patterns (DAMPs) [133,134]. Extracellular HMGB1 interacts with
the Toll-Like Receptor 4 (TLR4) on the surface of adjacent immature DCs, promoting their
maturation and release of chemokines and cytokines in the neighboring microenvironment
along with CXCL12 that, in turn, triggers the release of more DAMPs [135]. Ecto-calreticulin
interacts with CD91 on the surface of macrophages and DCs, acting as an “eat me” signal
that favors the identification and ingestion of tumor cells by phagocytes. All these events
reduce surface exposure of the “do not eat me” signal CD47 after stimulation by BoxA,
make tumor cells more visible to macrophages and elicit a robust phagocytosis [133].

Interestingly, also the administration of CXCL12 to co-culture of mesothelioma cells
with BM-isolated macrophages, leads to enhanced ingestion of tumor cells. This is not
unexpected as HMGB1, from which BoxA is derived, has many cross-functions with
CXCL12, which can form heterodimers and interact with CXCR4. The striking difference
is that CXCL12 acts as a tumor promoter, while BoxA promotes tumor cell phagocytosis
and tumor rejection, protecting mice from a rechallenge due to a robust immunological
memory [133]. It is conceivable that phagocytosis of tumor cells is not sufficient to reduce
the tumor mass and that antitumor effector T cell clones should be generated to recognize
tumor-associated antigens and kill more tumor cells [133,134]. At the moment, it is not
known whether additional and/or diverse signals conveyed by the microenvironment
are required to distinguish between healthy and tumor cells [134]. We designated this
process as “ImmunoGenic Surrender” (IGS), whereby engagement of CXCR4 induces co-
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internalization and surface depletion of CD47 in tumor cells, followed by phagocytosis by
macrophages (Figure 3).
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This ensures the production of new tumor antigens and tumor-specific T cell clones,
which cause tumor rejection and protect from subsequent challenges for a long-lasting
immune memory. IGS can be then envisaged as a survey process that exposes tumor tissues
to immunosurveillance: in a small percentage of cases, this event leads to tumor rejection
and antitumor immunity; in a large percentage, instead, the tumor-promoting activity of
the CXCL12/CXCR4 axis prevails. Importantly, treatment with exogenous BoxA enhances
IGS and leads to tumor rejection in a considerable fraction of mice. This underlines that
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other exogenous CXCR4 ligands, like BoxA, might be designed and employed as promising
antitumor compounds in combination with anti-CD47 antibodies, as described above. The
former, in fact, would provide “eat me” signals on tumor cells, while targeting CD47 would
remove “do not eat me” signals with an IGS enhancement [133].

8. Conclusions and Perspectives

Despite the progress made, cancer is still considered a disease with an uncertain
prognosis, and novel treatments are eagerly awaited. Biological therapy, with all its
multifaceted applications and recent achievements, has provided a wealth of data on the
efficacy of novel molecules that can expectedly be used in clinical practice with beneficial
effects at the bedside. In this paper, we reviewed the current knowledge on selected
molecules as nonpeptides, small-peptides and antibodies acting as antagonists to the
CXCR4 receptor and antibodies and chimeric proteins directed against CD47, two well-
established mediators of tumorigenic signals. Yet, the intracellular signaling activated
by CXCR4 ligand binding has not been fully elucidated; moreover, lateral interactions
with other pathways are still undefined, widening the scenario in which CXCR4-inhibiting
compounds could act. We focused only on those compounds which have already shown
therapeutic effects and on those displaying promising and favorable results in early-stage
clinical trials.

These latter tests, especially those conducted in leukemias or blood diseases, have
provided encouraging results and support the rationale for introducing CXCR4 inhibitors
in clinical practice. On the other hand, the drawback of some pilot studies relative to other
compounds of this class forced the search for novel drugs to be eventually tested. There is
still a significant need for better treatment approaches with newly disclosed and/or synthe-
sized compounds for the high proportion of patients whose disease relapses or is refractory
to. Future clinical trials should also explore combinations of small molecules and/or
CXCR4 inhibitors with other targeted therapies and schedules to optimize efficacy/safety
benefits. Together, these preclinical and clinical studies strongly support CXCR4 inhibition
as a promising antitumor therapeutic approach.

CD47 is overexpressed in cancer, and for this reason, it is the target of selected therapies.
A series of diverse humanized monoclonal antibodies, as well as fusion proteins, have been
synthesized and tested both in vitro and in numerous preclinical and clinical trials. The
aim is to make tumor cells more visible to phagocytes for removal and to elicit a robust
adaptive immune response by blocking the interaction with its ligand SIRPα.

The occurrence of hematological abnormalities such as anemia or thrombocytopenia,
both in primates and humans, is a relevant drawback of these single treatments, dampening,
in part, the enthusiasm for their use in the clinical practice. Attempts have, thus, been
made to combine the anti-CD47 antibodies with other drugs to reduce the dosages and the
undesired adverse effects, especially those on RBCs. Moreover, these associations attack
the neoplasm from multiple points as the drugs influence diverse pathways with more
significant results. These combinations should also be tested in future clinical trials with
different therapeutic schedules to optimize efficacy/safety benefits. The association of se-
lected anti-CD47 antibodies with immunotherapy is emerging as an important therapeutic
approach, and encouraging results are obtained in early-stage clinical trials. Finally, the
combination of treatments that block CXCR4 signaling and reduce CD47 cell exposure, in
line with the newly discovered immunogenic surrender process, have been put forward
in vitro and in animal models.

In conclusion, CXCR4 and CD47 can be targeted by specific molecules with beneficial
effects on cancer patients’ survival. The design of novel and more efficacious molecules,
the combination with other compounds directed to different receptors or cellular targets,
may pave the way for a more successful personalized cancer therapy.
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