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Abstract

Existing modeling approaches are divided between a focus on the constitutive (micro) ele-
ments of systems or on higher (macro) organization levels. Micro-level models enable con-
sideration of individual histories and interactions, but can be unstable and subject to
cumulative errors. Macro-level models focus on average population properties, but may
hide relevant heterogeneity at the micro-scale. We present a framework that integrates both
approaches through the use of temporally structured matrices that can take large numbers
of variables into account. Matrices are composed of several bidimensional (timexage)
grids, each representing a state (e.g. physiological, immunological, socio-demographic).
Time and age are primary indices linking grids. These matrices preserve the entire history
of all population strata and enable the use of historical events, parameters and states
dynamically in the modeling process. This framework is applicable across fields, but particu-
larly suitable to simulate the impact of alternative immunization policies. We demonstrate
the framework by examining alternative strategies to accelerate measles elimination in 15
developing countries. The model recaptured long-endorsed policies in measles control,
showing that where a single routine measles-containing vaccine is employed with low cov-
erage, any improvement in coverage is more effective than a second dose. It also identified
an opportunity to save thousands of lives in India at attractively low costs through the imple-
mentation of supplementary immunization campaigns. The flexibility of the approach pre-
sented enables estimating the effectiveness of different immunization policies in highly
complex contexts involving multiple and historical influences from different hierarchical
levels.
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Introduction

Because not all scientific questions are amenable to experimentation and data is often lacking,
attempts to understand the world often rely on simplified models of reality. Modeling has been
indeed an essential part of enquiry in the natural, economic and social sciences. Where the
objective is to understand and simulate the behavior of populations, several methods are avail-
able to present day modelers. On the one hand, micro-level models enable consideration of
individual histories and the ways that individual entities (e.g. persons, disease vectors, cells)
interact. This is the case, for example, of agent-based models, which take a bottom-up approach
by simulating interactions of multiple independent entities to predict phenomena at larger
scales. Examples include studies on population viability [1], animal movement and dispersal
[2] and the containment of pandemics [3]. Agent-based modeling is an ideal tool for studying
emergent properties, as their design allow for complex macro-behavior to emerge through the
interactions of independent agents following a set of pre-defined rules [4]. Within this model-
ing perspective, the dynamics of relationships between the entities of a system are as important
as the isolated characteristics of those entities.

Macro-level models, conversely, focus on average properties of systems and consider aggre-
gates of entities with similar characteristics. Examples include population-based models of dis-
ease transmission [5], cellular differentiation [6] and economic models of optimal resource
allocation [7]. Consider, for example, the concept of state-transitions, namely the probability
of moving from one relevant state (e.g. physiological, economic immunological) to another. A
remarkable application [8] of such modeling framework explained—with a simple nonlinear
dynamic model—the pattern switching of measles infection after the introduction of large-
scale vaccination: prior to vaccination campaigns, measles epidemics were cyclical (biennial),
becoming highly irregular and of smaller magnitude following large scale immunization
efforts.

However, model parsimony and simplicity do not come without costs. Commonly used
macro-level state-transition models subdivide a population into discrete units (or compart-
ments) corresponding to different states and often assume that the probability of moving from
one condition to another does not depend on history (e.g. prior states or time spent in the cur-
rent state). Because this assumption can be unrealistic, these models usually rely on the crea-
tion of states that take average histories into account by incorporating them in their definition
[9]. For example, in epidemiological models of infectious disease, transmission history is taken
into account by dividing a population into immune, susceptible, infected, and recovered or
even more refined levels [10]. Although able to explain some of the observed emergent proper-
ties, this solution might be limited by the need to balance a potentially exceedingly large num-
ber of states with the risk of overlooking the contribution of relevant prior events. For instance,
the immunological profile of a population (macro-level) and probability of infection can be
affected by individual histories (micro-level) in several ways, including age and timing of
immunization, the number of vaccine doses taken, individual risk factors, waning immunity,
and individual social contact patterns.

In summary, there is a clear trade-off between modeling flexibility and parsimony: on the
one hand, modelers might be tempted to rely on the simplest models that can reproduce some
of the emergent properties observed in the real world, but with a very coarse resolution. On the
other, models may become too complex if attempting to address many of the emergent proper-
ties of systems simultaneously, hampering efforts towards model validation.

We present a framework that integrates the relative simplicity of macro-level compartmen-
tal models with the possibility of (1) taking the granular history of all elements of a population
into account at all times and (2) allowing for interactive agent-based behavior. The model is
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conceptually described in the following section, and its full specifications are available in the
Model Formulation section of S1 File.

Multidimensional matrices as memory lanes

Although the framework is potentially useful in other fields, here we use it to analyze the cost-
effectiveness of alternative immunization strategies. We show the proposed framework is (1) flex-
ible enough to incorporate a diverse set of complex immunization strategies available to present
day health authorities, and (2) realistic enough to reproduce aggregated (emergent) impacts of
vaccination strategies within a population. To this end, it merges the explanatory power of
dynamic compartmental models with the richness of detail brought by cohort-based modeling.
The framework can be thought of as a multidimensional matrix that serves as a memory
warehouse of events, parameters, and states associated with a population (a group of discrete
entities) at all times. This matrix is composed by a series of bidimensional grids indexed by
time and age. Each bidimensional timexage grid represents information about one state or
type of event (that is, a compartment). The conceptual framework is illustrated in Fig 1 using

Fig 1. Representation of the dynamics whereby matrices are populated with data in the memory lanes
model. The arrow departs from a cell with information on the proportion of susceptible individuals from a
cohort at any time (e.g. year), and updates the information on immune individuals in the population after
collecting information on any events (e.g. vaccination—mid grid, and infection—rightmost grid) happening at
that time for that age cohort. Every time that a cycle is completed time advances by 1 unit (here 1 year) and
each cohort ages accordingly by 1 unit of time—therefore, age cohorts move diagonally in the matrix. This
process is repeated for all age cohorts and years until the matrix is completely populated. In real
immunization modeling exercises (such as the one applied here for modeling the dynamics of measles), the
number of matrices should be much larger to accommodate information such as waning immunity, herd
immunity, migration, social patterns of contact, spatial distances, etc.

doi:10.1371/journal.pone.0141147.9001
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the basic structure of an epidemiological model of disease transmission, where changes in the
immunological profile of a population are modeled over time. A graphical description is pre-
ferred to visually depict the intuitive nature of the approach, which mimics age-structured sys-
tems of difference equations. Technical notation is left to the Supporting Information (Model
Formulation in S1 File). Grids are represented by time in the horizontal axis and age in the verti-
cal axis. Intersections of age and time positions are referred to as cells, which are populated with
data (model inputs) and the outputs of the modeling process. States represent the third dimen-
sion of this matrix. Here, each cell stores information on the proportion of an age stratum at a
specific state (e.g. vaccinated, infected, susceptible) at each time point. In computational lan-
guage, the matrix is equivalent to a three-dimensional array ‘A’ of the form A gmej[age][state]- FOT
example, if 40% of a population of 1000 children aged 1-4 years were immune to a disease in
2010, A {2010](1-4y0] fimmune] = 40% (or 400).

Having bidimensional grids structured by time and age enables the preservation of the his-
tory of states and events of interest of an entire population as it ages. This stored memory can
be then used recursively as input in subsequent cycles. Because cells are defined by two discrete
time dimensions in every modeling cycle, age cohorts move diagonally, where the horizontal
step represents the passage of time and the vertical step represents the corresponding aging.
Depending on the rules determining state-transitions at the end of each cycle, a proportion of
entities can either move diagonally from position (time, age) to position (time+1, age+1) within
the same state or into another state if a state-transition occurs.

Rules defining state-transition probabilities are based not only on past history (e.g. time
since last vaccination) but also on interactive, dynamic population parameters. For instance,
infectious disease transmission can be halted depending on the proportion of immunes in a
population, a phenomenon known as herd immunity °. Under this framework, information on
the proportion of immunes (determined from factors including vaccine efficacy, number of
vaccine doses, and previous infection history) is available at all times for all age strata at the
appropriate matrix positions, enabling the estimation of the extent to which herd immunity
will affect age-specific infection probabilities. Similarly, the probability of infection incorpo-
rates socio-behavioral information such as age-specific patterns of contact (which can be stored
in a separate agexage bidimensional grid). Disease infectivity can thus be calculated dynami-
cally depending on historical social networking patterns.

We also considered historic information for specific periods or age groups in a customized
manner. For instance, use of an input grid with vaccine numbers administered for each age
group at each year enables considering years when immunization campaigns targeted a broader
age range, when vaccines were not administered or age-specific coverage levels (mid grid, Fig
1). Additionally, events and state-transition probabilities can be either deterministic (the same
initial conditions always produce the same outcomes) or stochastic (random factors are
included and outcomes have different probabilities). For example, difference equations can be
used to calculate the proportion of infected individuals based on population structure (e.g. age-
specific contact rates) and disease properties (e.g. incubation period, infectivity). Models may
also include stochastic simulations such as the likelihood that an infected person recovers or
that a susceptible person meets an infected individual. A single model may even include both
deterministic and stochastic elements, each employed for specific events. It is worth noting
that it is possible to represent the modeling output as a complex system of Partial Differential
Equations (PDE). Conversely, Agent Based Models (ABM) can also represent any system of
PDE. The framework we describe here connects the best of these two worlds (PDE and ABM)
by allowing researchers to preserve the entire history of all population strata and enable the use
of historical events, parameters and states dynamically in the modeling process.
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This framework is applicable in areas as diverse as the medical, social, economic, and biolog-
ical sciences, but to demonstrate its workings we apply it to examine the cost-effectiveness of
alternative immunization policies against measles in developing countries. Measles remains the
leading cause of vaccine preventable childhood mortality in many countries [11] and the risk
of resurgence of measles in Africa is particularly high, reinforcing the importance of timely and
effective immunization policies. Additionally, measles dynamics has been exhaustively mod-
eled [12-16], allowing validation of modeling outcomes.

Modeling immunization strategies to fight measles in the developing
world

Measles is highly transmissible with approximately 90% of susceptible people coming into
close contact with an infected person becoming infected. Even in highly vaccinated popula-
tions, episodic outbreaks can still occur due to the immigration of infected individuals, social
clustering of susceptible people, waning immunity, and high birth rates [17-18]. Very high
population immunity levels must therefore be constantly maintained at national and sub-
national levels to sustain measles elimination in the long term. To help achieve this goal, the
World Health Organization (WHO) recommends that countries provide all children with a
second opportunity for measles immunization either through a second routine dose of mea-
sles-containing vaccine or periodic large-scale supplementary immunization activities (SIAs)
targeting a wide age range.

We modeled alternative immunization strategies aimed at accelerating measles elimination
in 15 countries in Asia, Africa, and Latin America. Specifically, we investigated the conse-
quences of increasing coverage of a single routine vaccine dose compared to the added value of
introducing a second routine dose in the presence or absence of SIAs. We also examined the
effectiveness of SIAs in countries that already employ two routine doses at various levels of cov-
erage. The choice of countries and design of immunization scenarios (Fig 2) were conducted by
the WHO Strategic Advisory Group of Experts (SAGE).

The ability to preserve and track the history of a population through the use of temporally
structured matrices can be particularly useful where it is unfeasible to create exceedingly large
state spaces or reduce the complexity of a system to a limited set of analytical equations. Each
timexage grid represented one state (such as susceptible, vaccinated, infected, immune, and
dead). Because the temporal resolution of data available for most low income countries is
annual, time was represented in annual steps from 1980 to 2050. Age was structured by month
for infants <1 year and by year for older ages. Country-specific immunization information
from 1980 to 2008 comprised historic records of vaccine coverage by age and year and, from
2009-2050, represented the alternative hypothetical immunization scenarios shown in Fig 2.
Country-specific demographics (population estimates, birth rates, changing mortality, and life-
expectancy by age and year) were also available for 1980 to 2008 and represented country-spe-
cific projections for the remaining years up to 2050. Previously established epidemiological and
cost parameters (socioeconomic status, historical vaccine coverage, age-speciﬁc vaccine effi-
cacy, case-fatality ratios, and vaccine costs; Model Formulation in S1 File) were used to deter-
mine the probability of state-transitions and the cost-effectiveness of each immunization
strategy.

Each cycle started by determining the proportion of susceptible and immune individuals at
each age (Fig 3) based on their corresponding proportions at the end of the previous cycle and
the effect of maternal immunity on new (incoming) birth cohorts. Given the high population
turnover in the countries studied and long period modeled, model outcomes were not affected
by assumptions on existing proportions of susceptible and immune individuals in the first
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Fig 2. Measles immunization scenarios (Status quo, S2, S3, S4) simulated up to 2050. Vertical bars are
proportional to coverage levels. First (MCV1) and second (MCV2) routine doses and supplementary
immunization campaigns (SIAs) are represented in green, blue, and grey, respectively. Scenarios were
selected by the WHO Strategic Advisory Group of Experts (SAGE). Dependence between MCV1 and MCV2
indicates the % of unvaccinated individuals targeted to receive MCV2. Indian States: Status quo: MCV1 dose
at 9 months at current coverage (46%, 90%, 74%, 86%, and 95% in Bihar, Karnataka, Maharashtra, Orissa,
and Tamil Nadu, respectively); S2: MCV1 coverage improved to 90% over 5 years; S3: status quo plus
inclusion of MCV2 at 18 months, improving from 50% to 97% of MCV1 over 5 years (dependence between
doses = 25%); S4: inclusion of SIAs from 2009 onwards targeted at ages 9 months to 5 years with 90%
coverage. Africa and Cambodia: Status quo: MCV1 (coverages of 73%, 73%, 51%, 85%, 95%, and 79% in
Cameroon, Democratic Republic of Congo, Equatorial Guinea, Ghana, Rwanda, and Cambodia,
respectively) and SIAs every 2—4 years (target age: 9 months to 5 years, 90% coverage); S2: status quo and
MCV2 at 18 months with coverage improving from 50% to 100% of MCV 1 over 5 years (dependence
between doses = 25%); S3: status quo and routine MCV2 to 7 year olds, MCV2 coverage improving from
50% to 100% of MCV1 over 5 years (dependence between doses = 25%). Latin America: Status quo: MCV1
(at 15 months) MCV2 (to 7, 4, 4, and 6 year olds in Costa Rica, El Salvador, Paraguay, and Mexico,
respectively) at existing coverage (MCV1 and MCV2 coverage in Costa Rica, El Salvador, Paraguay, and
Mexico, respectively: 89% and 94% of MCV1; 98% and 94% of MCV1; 88% and 66% of MCV1; 96% and
58% of MCV1) and SlAs implemented every 4 years (target age: 9 months to 5 years, 85% coverage in Costa
Rica and 92% in remaining countries); S2: status quo and 100% dependence between MCV1 and MCV2; S3:
status quo and elimination of SIAs; S4: status quo elimination of SIAs and 100% dependence between MCV1
and MCV2.

doi:10.1371/journal.pone.0141147.9002

cycle (Model Formulation in S1 File). Next, vaccine coverage determined age-specific propor-
tions of individuals vaccinated. Vaccine efficacy was then used to calculate the proportion of
the vaccinated population that became immune. Individuals still susceptible could be infected
depending on their age, country-specific measles parameters, social contact rates, and the pro-
portion of susceptible individuals in the population. In the latter case, the likelihood of infec-
tion was determined dynamically, as the immunological profile of the population (proportion
of susceptible individuals in each age group) in the previous cycle was used recursively as an
input that established a dynamic force of infection.

The model also considered social contact patterns and the possible immigration of infected
individuals (a stochastic input parameter that was country-specific), which added to the force
of infection. Finally, age-specific case-fatality rates determined the proportion of infected indi-
viduals who died or became immune. Age-specific proportions of immune and susceptible
individuals at the end of the cycle were then used as initial proportions in the subsequent cycle
(Fig 3). In computational terms, the framework worked by initially looping through all age
groups in the first cycle, filling in blank cells with the proportion of each age group at each state
in that cycle. When computations were complete for the entire period, proportions were trans-
lated into absolute numbers by using age-, year-, and country-specific demographics. Because
demographic information already included realistic data and projections of changes in birth
rates and in unrelated causes of mortality, no further assumptions about these parameters were
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Fig 3. Diagram summarizing the events each age cohort can experience in an annual cycle (it can be
also understood as the outcomes an individual may experience each year). The cycle starts (left) and
ends (right) with the proportions of susceptible and immune individuals. Events (vaccinations, infections,
mortality) during the cycle change the proportions exported for the next cycle and generate intermediate
outcomes of interest (proportions of cases and deaths). Each box represents a matrix of 104 age-groups x 71
years. Probabilities are depicted in the small white boxes: C: Vaccine coverage, E: Vaccine efficiency, F:
Force of infection, D: Case fatality ratios, and W: waning Immunity probability. The large colored boxes are
compartments, and sequences of letters represent sequences of events (e.g. SVSFI blue box: proportion of
susceptible individuals S who were vaccinated—SV-but remained susceptible—SVS—were next infected—
SVSF-and became immune SVSFI). N stands for non-vaccinated.

doi:10.1371/journal.pone.0141147.9003

required. All model assumptions, algorithms, epidemiological, and cost parameter data sources
and manipulations are described in detail in the Supplementary Data.
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Results and Discussion

The cost-effectiveness of the alternative strategies simulated (Fig 2) depended on the properties
of baseline immunization scenarios (Fig 4), chiefly pre-existing vaccine coverage rates. In India

(where a single vaccination opportunity is administered at an early age), effective improve-

ments in population immunity were achieved by all strategies (increasing first vaccine cover-

age, adding a second routine dose, or implementing SIAs). However, implementing SIAs

resulted in the greatest reduction in disease burden at attractively low costs. Because SIAs target
a wide age range, this is an effective strategy where a large proportion of the population is still
susceptible. In the absence of SIAs, raising first dose coverage was the most effective immuniza-

tion strategy in regions with low coverage, whereas adding a second routine dose was more

effective only where coverage is already high. In the African countries and Cambodia, where
birth rates are high, it was more effective to provide a second routine dose at 18 months rather

India
n (Average)
(T: 95%)
K: 90%
@ s2 _ ( . : )
D 83 (O: 86%)
(M: 74%)
(B: 46%)
$120 50% 100 %
Afn'ca
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Fig 4. Cost-effectiveness (panels on the left represent incremental cost-effectiveness ratios (ICERs)

in US$ per DALY averted) and percent change in mortality (panels on right) of alternative

immunization strategy (S2, S3, S4) relative to baseline status quo immunization scenarios (S2/S3/S4
are described in Fig 2). For Latin America, ICERs represent the cost saved per DALY averted and mortality

change as percent increases in mortality. For the other regions, mortality change represents the percent
reduction in mortality. Bars are ordered according to MCV1 coverage.

doi:10.1371/journal.pone.0141147.9004
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than to school-age children. Finally, the elimination of SIAs in Latin America should be consid-
ered only where very high coverage levels can be maintained at national and district levels.

Modeling outputs consistently recaptured long-endorsed policies in measles control, show-
ing that where a single routine measles-containing vaccine is employed with low coverage, any
improvement in vaccine coverage is more effective than adding a second dose (Fig 4). The
model also identified an opportunity to save thousands of lives in India at an attractively low
cost through SIAs-an important finding considering that approximately half of all global mea-
sles deaths are concentrated in this country [19]. These results were robust to sensitivity analy-
ses including a wide range of epidemiological and cost parameters (see S1 File—Parameters,
data sources and manipulation). These conclusions were also insensitive to changes in the
assumptions on the transmission dynamics of measles (Supplementary Data in S1 File) and
should be helpful in informing ongoing policy debates over the use of SIAs [20-23].

Model-based analyses can aid in the development of optimal immunization policies,
enabling simulation and assessment of alternative strategies and identification of key elements
of successful programs. Given the inherent paucity of input data for most low-income coun-
tries, our modeling example was implemented at the expense of epidemiological detail.
Although the consistency in the outcomes is reassuring, further refinement is possible. Because
the temporal resolution of most of the data available is annual, and the purpose of the modeling
effort to compare the overall effectiveness of alternative immunization strategies, the model
did not account for sub-annual aspects of measles dynamics such as seasonality in transmission
[10,24]. Additionally, we assumed that case fatality rates and vaccine costs per child remained
constant as vaccination coverage scaled up. To the extent that these assumptions are violated,
absolute estimates of cost-effectiveness are similarly affected, impairing the ability to compare
the cost-effectiveness of controlling measles as opposed to other diseases.

The modeling application presented here can also expanded to include other relevant fea-
tures such as spatial components. Instead of a single cubic matrix, it may incorporate multiple
cubic matrices (each corresponding to one location). Transitions or movement from one loca-
tion to another can then be modeled as a function of distance or attrition (e.g., flux of people,
connectedness) between locations. For example, one could consider the location of infected
individuals and their typical movement patterns, modeling the probability of infection based
on distance from other locations and corresponding infection prevalence [25].

The framework we propose combines conveniences from different modeling perspectives.
First, it integrates population- and individual-based models in several ways. Grid cells can rep-
resent either population strata or individuals, higher level phenomena that emerge from indi-
vidual behaviors and histories can be incorporated into the modeling process in a dynamic way
and, conversely, population dynamics can be fine-tuned by individual histories and events. The
ability to preserve and track the history of a population through the use of temporally struc-
tured matrices can be particularly useful where it is unfeasible to create exceedingly large state
spaces or reduce the complexity of a system to a limited set of analytical equations. Addition-
ally, the rules governing the outcomes of interactions, state-transitions, and events can be
determined both in a deterministic and stochastic way, as custom algorithms may be used inde-
pendently at different modeling steps, giving the framework a high level of flexibility and wide
scope of application.

Models are an inseparable part of scientific enterprise. We have proposed a discrete-time
discrete state-space modeling structure that enables the integration of high levels of heteroge-
neity and resolution with macro-population modeling in an intuitive manner, through the use
of temporally structured matrices that can consider a (theoretically) unlimited number of vari-
ables. These matrices serve as memory lanes that preserve the history of a population and
enable its recursive use in the modeling process. The relative simplicity of the framework

PLOS ONE | DOI:10.1371/journal.pone.0141147 October 28, 2015 9/11



@’PLOS ‘ ONE

Matrices as Memory Lanes for Epidemiological Modeling

should make it attractive to aid researchers and decision-makers in estimating the effectiveness
of alternative immunization strategies, as well as optimal courses of action in all fields where
modeling is an essential part of enquiry.

Supporting Information

S1 File. Supporting Information. Model formulation, parameters, data sources, manipula-
tions and tables A-K.
(DOCX)
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