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Standard univariate analyses of brain imaging data have revealed a host of structural and functional brain alter-
ations in schizophrenia. However, these analyses typically involve examining each voxel separately and making
inferences at group-level, thus limiting clinical translation of their findings. Taking into account the fact that brain
alterations in schizophrenia expand over a widely distributed network of brain regions, univariate analysis
methodsmay not be themost suited choice for imaging data analysis. To address these limitations, the neuroim-
aging community has turned tomachine learningmethods both because of their ability to examine voxels jointly
and their potential for making inferences at a single-subject level. This article provides a critical overview of the
current and foreseeable applications of machine learning, in identifying imaging-based biomarkers that could be
used for the diagnosis, early detection and treatment response of schizophrenia, and could, thus, be of high clin-
ical relevance. We discuss promising future research directions and themain difficulties facing machine learning
researchers as far as their potential translation into clinical practice is concerned.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Schizophrenia is a highly complex mental disorder characterized by
hallucinations, delusions, cognition deficits and emotional disturbances.
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The diagnosis of schizophrenia primarily relies upon identifying clini-
cal symptoms and the accurate assessment of behavioral signs
through interview with a medical specialist. Considering, however,
the variety of clinical presentations of the disorder among patients,
the symptomatic overlap with other disorders such as Bipolar Disor-
der (Demirci and Calhoun, 2009) and the subjectivity involved in
current psychiatric practice (Lawrie et al., 2011), reliable objective
markers for diagnosing schizophrenia and related conditions are highly
desirable.

Over thepast years, schizophrenia has been intensively studied using
neuroimaging techniques, such as structural and functional magnetic
ved.
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resonance imaging (sMRI and fMRI respectively) in order to identify the
neurobiological processes underlying the disorder, with the ultimate
scope of developing new diagnostic and therapeutic initiatives. There
are nowmany sMRI and fMRI studies in schizophrenia which implicate
a range of structural and functional brain abnormalities (Dauvermann
et al., 2013; Lawrie and Abukmeil, 1998; Olabi et al., 2011; Wright
et al., 2000), some of which are evident even before disease onset and
are predictive of illness (Lawrie et al., 2008; Moorhead et al., 2013).

The majority of structural MRI studies have employed Region of In-
terest (ROI) or Voxel-basedMorphometry (VBM)methods for the anal-
ysis of neuroimaging data, to compare groups of patients and groups of
controls, and reported deficits mainly in the temporal and prefrontal
lobes (Lawrie and Abukmeil, 1998;Meisenzahl et al., 2008), particularly
in the superior temporal gyrus (Honea et al., 2005), themedial temporal
lobe (Honea et al., 2005; Wright et al., 2000), including the amygdala
and hippocampal complex and the parahippocampal gyrus, as well as
enlargement of the lateral ventricles (Shenton et al., 2001). Similar
structural abnormalities have been detected in groups of patients in
the early stages of schizophrenia (Kubicki et al., 2002; Steen et al.,
2006). These are less pronounced compared to the established state,
suggesting active disease processes around the time of onset, although
genetic factors, substance misuse, antipsychotic drug treatment and
other factors may be partly responsible (Meisenzahl et al., 2008; Olabi
et al., 2011). There are, similarly, replicated graymatter density changes
over time in high-risk individuals as they develop schizophrenia, again
particularly in the prefrontal and temporal lobes (Job et al., 2005;
Pantelis et al., 2003). Moreover, functional MRI studies have examined
differences in function and cognitive ability between schizophrenia
and healthy controls, reporting abnormal activation in a network of
brain regions, particularly implicating the prefrontal cortex (Meyer-
Lindenberg, 2010) and connectivity from it to the rest of the brain
(Lawrie et al., 2002).

Despite the fact that the univariate methods used in these analyses
have delivered quite consistent and interesting results, they suffer, how-
ever, from certain limitations. ROI methods are confined to predefined
brain regions and cannot capture distributed patterns of neuroanatom-
ical and neurophysiological abnormality across the brain. VBM and
other approaches to computational morphometry, on the other hand,
require brain averaging and cannot capture individual deviations from
the norm. To this end, the scientific community has turned to machine
learning in an effort to detect the MRI correlates of clinical relevance
and utility. Machine learning methods have already been applied in
the analysis and interpretation of functional and structural MRI data
(LaConte et al., 2005; Lemm et al., 2011; Pereira et al., 2009), in ‘mind
reading’ paradigms (Cox and Savoy, 2002; Haynes and Rees, 2006), in
the classification of cognitive states (Mitchell et al., 2004; Mourão-
Miranda et al., 2005), and in lie detection approaches (Davatzikos
et al., 2005a). More recently, classification algorithms have been applied
to diagnose neurological and psychiatric disorders (Bray et al., 2009;
Klöppel et al., 2011; Orru et al., 2012), such as dementia (Davatzikos
et al., 2011; Klöppel et al., 2008a; Klöppel et al., 2008b), depression (Fu
et al., 2008; Mourão-Miranda et al., 2011) and schizophrenia
(Davatzikos et al., 2005b; Fan et al., 2008b; Koutsouleris et al., 2009;
Koutsouleris et al., 2011). Multivariate pattern recognition techniques
provide the possibility of making inferences about a subject's health sta-
tus at an individual level and, thus, are well suited for clinical decision
making purposes.

In this paper, we highlight the application ofmachine learning in the
analysis of structural and functional MRI data in diagnosing schizophre-
nia, particularly for making an early prediction in people at high-risk of
developing the disorder. We first give a brief overview of machine
learning theory and the common processing steps that almost every
machine learning method shares in their image analysis pipelines.
Then, we discuss the studies that have employed machine learning in
schizophrenia research and finally, we analyze the main practical chal-
lenges and limitations that machine learning methods suffer from, in
the context of their potential integration into routine clinical practice,
before concluding with future research directions.

2. Methods

The standard approach to the analysis of structural and functional
MRI data is based on the General Linear Model (Friston et al., 1995), in
that neuroimaging data are modeled as a linear combination of vari-
ables, potentially confounding parameters and some error. Statistical
tests are then performed on each and every voxel independently in
order to make inferences about effects of interest at a group-level, lim-
iting the practical value of MRI in clinical settings. Multivariate pattern
recognition methods have been used to overcome these limitations,
by examiningmultiple voxels jointly, in order to identify patterns of dif-
ferentiation between the groups andmake inferences at a single-subject
level.

2.1. Overview of machine learning

Machine learning (ML) is a termused to describe a set ofmethods for
detecting patterns in data that would enable reliable future predictions.
There are two major methodological approaches: supervised and
unsupervised machine learning techniques. In supervised learning, the
goal is to find a mapping from the data instances xi to a set of desired
outputs yi,, given a set of labeled input–output pairs D = {xi, yi}, for
i = 1 … N instances. Here, D is the training set, consisting of feature
vectors xi and their corresponding labels drawn from label set yi and N
is the number of the training instances. If yi is a categorical or nominal
variable drawn from a finite set, for instance yi = {1, 2, … C}, then the
problem is known as a classification problem. In its simplest form
where C = 2 (and thus yi = {−1, 1}) this is a binary classification prob-
lem, whereas if C N 2, then there is a multi-class classification problem.
On the other hand, if yi is a real-valued (continuous) variable, the prob-
lem is known as regression. In unsupervised learning, on the other hand,
the goal is to identify an inherent structure in the data in order to classify
given data instances D = {xi} into groups (clustering).

2.2. Classification pipeline

The following steps in the image analysis pipeline are common to
most machine learning methods:

2.2.1. Preparation of the training set
The first step in anML analysis is the creation of the training set. This

procedure involves twomain processes: i) feature extraction and ii) fea-
ture selection. Feature extraction involves the transformation of the
original data set into a form that would be meaningful for the classifier
to process. In the context of neuroimaging, this procedure entails the ex-
traction of feature vectors corresponding to intensity values of voxels
from each subject's scan. Feature selection involves a procedure for
selecting those feature vectors that are better at discriminating between
the classes and thus could facilitate and speed up the classification pro-
cess. Feature selection can be performed either with a dimensionality
reduction technique (such as Principal Component Analysis) or by
constraining the research to specific brain areas for which the research
team possesses prior knowledge about their likely involvement in the
condition under investigation. Feature extraction is an obligatory step
in the classification pipeline, but feature selection approaches are
optional.

2.2.2. Model training and testing
In the model training step of the pipeline, the chosen algorithm has

to learn the relationship between the training set and the labels associ-
ated with it, while trying to optimize the algorithm's parameters in
order to maximally discriminate between the groups. In the testing
phase, the algorithm tries to predict the class label (in the case of



Fig. 1.Representation of a linear, binary SVM classifier. The optimal separating hyperplane
is the one with the largest margin of separation between the two groups and is described
as a function of f(x) = w ∗ x + b,wherew is a weight vector that is normal to the hyper-
plane, b is an offset and b/||w|| is the distance from the hyperplane to the origin. Points in
the dashed lines represent the support vectors. During the training phase, the SVM classi-
fier computes the optimal decision function f(x) and in the testing phase, this decision
boundary is applied to new data instances.
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classification) or the continuous variable (in the case of regression) of
previously unseen data instances. It is very important that the algorithm
generalizes well to new instances. That is, the testing set should not in-
clude instances of the training set to avoid circularity or data overfitting.
Cross-validation techniques are a popular way to ensure this. In k-fold
cross validation, the original data set is split into k non-overlapping
sets and then the algorithm is trained using k − 1 subsets and the
left-out set is used in the testing phase. The procedure is repeated k
times, so that every subgroup is used in the testing phase.

2.2.3. Performance evaluation
The final step is the evaluation of classification performance of the

method. This usually includes measures such as sensitivity, specificity
and accuracy. Sensitivity refers to the proportion of actual positive
cases correctly identified (e.g. the number of schizophrenia patients
identified as in the ill group or class) and is computed by the
TP / (TP + FN), where TP is the number of true positives and FN is the
number of false negatives. Specificity refers to the proportion of the neg-
atives cases correctly classified (e.g. healthy controls correctly identified
as being healthy) and is computed by the amount TN / (TN + FP),
where TN is the number of true negatives and FP is the number of false
positives. Accuracy refers to the overall amount of correct classifications
across the groups and is computed by TP + TN / TP + TN + FN + FP,
or by the amount of (sensitivity + specificity) / 2, if the classes are bal-
anced. Permutation tests are frequently applied aswell, in order to deter-
mine the statistical significance of the classifier's performance. In these
tests, class labels are randomly assigned between the groups in a certain
amount of times, and the cross-validation procedure is repeated. By cal-
culating the number of times that the sensitivity and specificity for the
permuted labels are higher than the real ones, and dividing by the num-
ber of times onehas permuted the labels, one canobtain a p-value for the
classification accuracies.

2.3. Machine learning methods explained

A significant number of ML techniques, which have been applied in
neuroimaging contexts, include Support Vector Machine (SVM), Sup-
port Vector Regression (SVR), Linear Discriminant Analysis (LDA) and
Independent Component Analysis (ICA). Below, we briefly discuss the
methodology behind each method.

SVM is one of the most popular supervised machine learning
methods used in neuroimaging settings, partly because it can deal effec-
tively with high-dimensional data and provide good classification re-
sults. The aim of a SVM classifier is to find a decision surface that
would optimally distinguish between classes and based on that surface
assign new, previously unseen data instances into the groups. In the
training phase, the classifier computes the optimal decision surface
expressed in the form f(x) = w·x + b only by a subset of the original
training set D = bxi, yiN called the support vectors. Support vectors
are data points that lie closest to the optimal separating hyperplane
and hence are the most difficult patterns to classify (see Fig. 1). The op-
timal hyperplane is determined bymaximizing themargin of separation
between the two classes (which is equal to 2/||w|). Equally, the problem
of finding the optimal hyperplane, thus, becomes an optimization prob-
lem where we need to: min ||w|| subject to yi (xi·w + b) −1 ≥ 0. The
constraint part of the quadratic problem ensures that no data points can
lie in the margin.

In the testing phase, the classifier is required to predict the label yi of
new, previously unseendata instances, by evaluating y = sgn(w·x + b).
In casewhere the data are not linearly separable, kernels are introduced
to the machine. Kernels are functions that allow a mapping of the orig-
inal, non-linearly separable data into a new feature space where the
data are linearly separable. Polynomial, Gaussian and radial basis func-
tion (RBF) are some of the most commonly used kernels.

Support Vector for Regression (SVR) follows the same principles as
SVM, but the goal here is to assign a data sample into a continuous
variable rather than a class. SVR aims to find a function that provides
the optimum fit between the data samples and their continuous vari-
ables, while specifying a tolerance margin of reliable generalization.

Discriminant Function Analysis (DA) is primarily used to predict
groupmembership from a set of continuous variables (features). DA in-
volves two steps: i) evaluating the significance of discriminant functions
and of a set of predictors in discriminating the groups and ii) performing
the classification by assigning data instances into the groups of interest.
In the first step, DA computes the discriminant functions which are
given by the equation: D = v1X1 + v2X2 + … viXi + a, where D is
the discriminant function, vi the discriminant coefficient (or weight),
Xi the score of the variable i and a is a constant variable. The maximum
number of discriminant functions is equal to the degrees of freedom
(number of featuresminus 1), or the number of variables in the analysis,
whichever is smaller. In this step, DA automatically determines some
optimal combination of variables so that the first discriminant function
provides the overall discrimination between groups, the second pro-
vides second most and so on. Then, in the second stage classification
can be performed. Subjects are classified into the groups in which they
had the highest classification scores. In Linear Discriminant Analysis
(LDA), the method looks for a linear combination of variables that
would best classify data samples into a predefined number of groups.
LDA can be used for both classification and feature reduction purposes.
In the training stage, LDA computes linear transformations of the fea-
tures that would provide a more accurate discrimination between the
classes yi, given the training set bxi, yiN. A transformation function is
computed so that the ratio of between-class to within-class variances
is maximized (Fisher's LDA). In most cases, there is no transformation
that provides complete separation between the classes, so the goal
is to find the transformation that minimizes the overlap of the
transformed groups (see Fig. 2). Once, the discriminant function is com-
puted and all data instances in the training set are transformed into the
new C − 1 subspace (where C is the original number of features), clas-
sification of newdata instances can be performed (second stage of LDA).
The discriminant function acts as a classification rule to assigning new
data instances into the groups.

Independent Component Analysis (ICA) is a multivariate statistical
method, widely applied in problems of image and signal classification,



Fig. 2. Representation of LDA for a two-class classification problem based on synthetic two-dimensional data representing measurements in feature 1 and feature 2. As observed, classi-
fication ismore accurate if the data are projected onto the X dimension, as opposed to the Y dimensionwhere there is substantial overlap between the classes, as shown in the histograms.
Once the projection of data instances onto the dimension that fulfills Fisher's criteria is specified, new data instances can be classified based on a threshold (for example, if Xi b 4 classify as
class 1, otherwise class 2) or a specified metric (e.g. Euclidean distance from the mean of a class).
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aiming to decompose a complex data set into independent sub-groups.
In brain imaging, ICA is primarily used as a feature extraction and di-
mensionality reduction technique by decomposing a brain scan into a
set of statistically independent components, which correspond to tem-
porally coherent brain networks. ICA makes the assumption that the
originally measured data can be expressed as a linear combination of
some latent variables, called eigen-images, and aims tomap the original
high-dimensional data into a linear subspace based on the eigen-
images. If X is the original data set, X = (x1, x2, … xn)T with n data in-
stances and s is a vector of the latent components S = (s1, s2, … sn)T,
then X can be written as a linear combination of the form: X = AiSi,
where A is a matrix of elements A = (a1, a2, … an). In order to find
the independent components S, one needs to compute the equation
S = WX, where W is the inverse of the matrix A. Of note, independent
components must be non-Gaussian for ICA to be possible. For a thor-
ough review of this ICA approach, one can refer to Hyvärinen and Oja
(2000).

All of the presented machine learning methods have been widely
used in neuroimaging-based studies of schizophrenia, producing vari-
able classification results (see the tables). The choice of the machine
learning method to be used is directly dependent on the nature of the
data set and the classification problem at hand. It is important to note
that each machine learning method has its own intrinsic strengths
and weaknesses. For instance, SVM is a powerful method in detecting
complex and subtle differences between groups due to the fact that
only support vectors affect the determination of the decision function.
SVMs can also work efficiently with complex, non-linear data whereas
LDA can only be applied on groups that can be separated by a linear
combination of features. LDA is the optimal classification model when
the distributions of the data are Gaussian (parametric method), where-
as SVM is a non-parametric classification method and as such, more ef-
ficient in handling data that are not regularly distributed or have an
unknown distribution. SVM might, therefore, be more appropriate in
real-world data sets where the distribution of the data is not always
known. On the other hand, LDA is a more simple and straightforward
method and does not require any tuning of parameters, whereas
SVMs' performance depends on the choice of the kernel and its param-
eters (Burges, 1998). Therefore, SVMs can be slower andhave high com-
putational processing and memory requirements, especially when it
comes to large training data sets. Another limitation of LDA is that it is
upper-bounded, thus constraining the application of the method in
cases where more features are needed, and can only be used for classi-
fication, not regression problems.
3. Machine learning in schizophrenia

In the past few years, an increasing number of studies have
employed machine learning to investigate the neuroanatomical and
neurophysiological correlates of schizophrenia. These studies can be di-
vided into three main categories: (i) studies that examine the diagnos-
tic power of machine learning in distinguishing between healthy
controls (HC) and schizophrenia patients (SCHZ), (ii) studies which ex-
amine the potential of machine learning to make an early diagnosis of
schizophrenia (prediction) by comparing scans at baseline of people
at high risk (either for familial or clinical reasons) ofmaking a transition
to the disorder and (iii) studies which examine the performance of ma-
chine learning in predicting progression of the disease and response to
treatment, usually by examining the baseline scans of first-episode (FE)
patients with a later known clinical outcome or treatment response. An
online search of PUBMEDwas performed in order to detect suitable pa-
pers for inclusion, using the following searchwords: (machine learning
OR pattern recognition) AND (psychosis OR schizophrenia) AND (diag-
nosis OR early diagnosis OR prediction OR transition to schizophrenia
OR disease progression OR treatment response) AND/OR (MRI OR
fMRI). Twenty seven studies met our inclusion criteria – of presenting
original data about an ML application in patients with formally diag-
nosed schizophrenia – and are discussed below.
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3.1. Diagnostic studies of schizophrenia

The first study to apply a sMRI-based classification method was
conducted by Davatzikos et al. (2005b), who tested the performance
of Support Vector Machine (SVM) in classifying 69 schizophrenia
patients (46 men, 23 women) and 79 matched healthy controls (41
men, 38 women), reaching a 81% classification accuracy via leave-
one-out cross-validation. The authors also tested individual men and
women classifiers and observed similar classification results (85% accu-
racy for the male and 82% for the female classifier), possibly implying
good generalizability of the MRI-based diagnostic system. In another
study by the same group, Fan et al. (2007) achieved an impressive
91.8% and an 90.8% accuracy in distinguishing between the same 23
female SCHZ patients and 38 female HC and 46 male SCHZ patients
and 41 male HC respectively. Here, the development of an adaptive re-
gional feature extraction method, that automatically grouped morpho-
logical traits of similar classification power, alongwith a SVM-Recursive
Feature Elimination method, that selected features with the highest
discriminatory power, may possibly account for what still remains one
of the best diagnostic performances observed in chronic schizophrenia
diagnostic studies published to date. The researchers achieved this diag-
nostic performance by using just 39 features for the female and 44
features for the male individual classifiers. This diagnostic result was,
however, obtained from a feature set that might be specific to this sam-
ple group and the result may well not generalize to other data samples.
In the context of examining family members of schizophrenia, only one
study has up-to-date investigated the role of genetic factors in the dis-
order, using MRI-based machine learning (Fan et al., 2008b). Fan et al.
(2008b) observed that unaffected familymembers share similar pheno-
typic patterns to their affected schizophrenia relatives. Although these
initial results are encouraging, longitudinal studies are, however,
Table 1
Studies employing machine learning and structural MRI to distinguish patients with schizophr

Author Sample (N, diagnostic classification) ML

Davatzikos et al. (2005b) HC = 79, SCHZ = 69
DSM-IV

SVM
1.5

Fan et al. (2007) HC1 = 38 (females)
SCH1 = 23 (females)
HC2 = 41 (males)
SCH2 = 46 (males)
DSM-IV

SVM
1.5

Kawasaki et al. (2007) Train set: HC = 30
SCHZ = 30 (males)
Test set: HC = 16 SCHZ = 16 (males)
DSM-IV

DA
1.5

Yoon et al. (2007) HC = 52, SCHZ = 53
DSM-IV

SVM
1.5

Sun et al. (2009) HC = 36, ROS = 36
DSM-IV

SM
1.5

Karageorgiou et al. (2011) HC = 47, ROS = 28
SCID-I for DSM-IV

sMR
3 T

Kasparek et al. (2011) HC = 39, FE = 39
ICD-10

ML
1.5

Greenstein et al. (2012) HC = 99, COS = 98
DSM-IIIR/IV

RF
1.5

Nieuwenhuis et al. (2012) Train set: HC = 111
SCHZ = 128
Test set: HC = 122
SCHZ = 155
DSM-IV

SVM
1.5

Zanetti et al. (2013) HC = 62, FE = 62
DSM-IV

SVM
1.5

Borgwardt et al. (2012) HC = 22, FE = 23
ARMS-T = 16
DSM-IIIR

ens
1.5

Abbreviations: ARMS-T, at-risk mental state with transition to schizophrenia; COS, child-onset sc
Disorder Fourth Edition; DSM-IIIR, Diagnostic and Statistical Manual of Mental Disorder Third Editio
tional Statistical Classification of Disease and Related Health Problems; LDA, linear discriminant an
model; PCA, principal components analysis; RF, random forests; ROS, recent-onset schizophrenia;
logistic regression; SVM, Support Vector Machine; SVR, Support Vector Regression; SVM-RFE, Sup
essential in determining whether this endophenotypic pattern is pres-
ent before disease onset and how it relates (if so) to transition to schizo-
phrenia in unaffected relatives.

Evaluating a classifier on a totally independent cohort is of course
the ideal way of examining the generalizability and robustness of the
classifier (Nieuwenhuis et al., 2012). Unfortunately, the consequent
need for large data setsmakes this endeavor very difficult. In an impres-
sive two-stage study, Kawasaki et al. (2007) observed a 80% classifica-
tion accuracy using a partial least squares model that was trained on
30 male HC and 30 male SCHZ patients and tested on a new, indepen-
dent cohort of 16 male controls and 16 SCHZ patients. In a particularly
large classification study employing an independent test set, diagnostic
accuracywas however only about 70% (Nieuwenhuis et al., 2012),when
testing a SVM classifier developed on 239 participants (128 SCHZ) on a
completely independent sample of 277 subjects (155 SCHZ). The use of
a larger validation set may partly account for the lower diagnostic accu-
racy, if we take into account the possible inclusion of more variable
schizophrenia phenotypes in this larger group.

Several studies have, alternatively, employed fMRI in an attempt to
establish the diagnosis in groups of people with schizophrenia and
controls (Table 2). These studies have included various cognitive
tasks (Costafreda et al., 2011; Yoon et al., 2012) or resting-state fMRI
(Calhoun et al., 2006; Shen et al., 2010; Venkataraman et al., 2012),
in which the subject is simply instructed to remain still during scan-
ning, not to think of anything in particular and not to fall asleep. In
recent fMRI studies, resting-state paradigms are often preferred to
task-related approaches, as they are free from task-related confounds
and easier for patient populations to perform, although they do have
limitations (Morcom and Fletcher, 2007). The diagnostic accuracy of
resting-state fMRI-based classification methods ranged from 75%
(Jafri and Calhoun, 2006; Venkataraman et al., 2012) to 92%
enia from healthy controls.

methods and scanner field strength Classifier's Performance (accuracy %)
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(Costafreda et al., 2011; Shen et al., 2010), suggesting that resting-
state fMRI has the potential to be useful in clinical practice. Results
should be interpreted with caution, however, since the sample sizes
in most cases (Anderson et al., 2010; Shen et al., 2010) are very
small and potentially introduce a bias to the classification (Demirci
and Calhoun, 2009).

Adequate sample size is an important consideration in the robust-
ness and reliability of the proposed classification system. Classification
models based on small sample sizes tend to favor diagnostic perfor-
mance (Anderson et al., 2010; Fan et al., 2007; Kawasaki et al., 2007;
Sun et al., 2009; Yang et al., 2010; Yoon et al., 2007) whereas in studies
evaluating larger samples, which possibly include a wider range of phe-
notypicmanifestations of schizophrenia, classification accuracy tends to
be worse (Greenstein et al., 2012; Nieuwenhuis et al., 2012; Zanetti
et al., 2013). Differences in the image analysis and classification pipe-
lines might, also, partly explain such variation in findings. The intro-
duction of refined feature selection methods can boost classifiers'
performance, as was observed in Fan et al. (2007), compared to a previ-
ous study of the same group (Davatzikos et al., 2005b). The choice of the
machine learningmethod is another crucial factor in the performance of
the diagnostic model aswell. Notably, SVMs tend to provide better clas-
sification results (Pereira et al., 2009) (see Table 1) than other pattern
recognition methods, although, a direct comparison between the ma-
chine learningmethods used in the presented studies and classification
performance cannot be performed due to other differences in the imaging
and clinical characteristics of the samples used.

The clinical characteristics of patients may play a significant role
in the observed fluctuations in accuracy across diagnostic studies
(Greenstein et al., 2012; Zanetti et al., 2013). Machine learning in FE
schizophrenia studies seems to deliver worse diagnostic performance
(Kasparek et al., 2011; Yoon et al., 2012; Zanetti et al., 2013) than
Table 2
Studies employing machine learning methods and functional MRI in diagnosing schizophrenia

Author Sample (N, diagnostic classification, fMRI paradigm)

Jafri and Calhoun (2006) HC = 31, SCHZ = 38
DSM-IV
Resting-state paradigm

Calhoun et al. (2008) HC = 26, SCHZ = 21
DSM-IV
AOD task

Shen et al. (2010) HC = 20, SCHZ = 32
DSM-IV
Resting-state paradigm

Yang et al. (2010) HC = 20, SCHZ = 20
DSM-IV
AOD task

Anderson et al. (2010) HC = 6, SCHZ = 14
DSM-IV
Resting-state paradigm

Castro et al. (2011) HC = 54, SCHZ = 52
DSM-IV
AOD task

Costafreda et al. (2011) HC = 40, SCHZ = 32
DSM-IV
Verbal fluency task

Fan et al. (2011) HC = 31, SCHZ = 31
DSM-IV
Resting-state paradigm

Venkataraman et al. (2012) HC = 18, SCHZ = 18
DSM-IV
Resting-state paradigm

Yoon et al. (2012) HC = 51, FE = 51
DSM-IV
Cognitive control task

Abbreviations: AOD, auditory oddball discrimination; BD, bipolar disorder; DSM-IV, Diagnostic
patients; HC, healthy controls; ICA, independent component analysis; LDA, linear discriminan
N-SCHZ, non-schizophrenia subjects; RF, random forests; SCHZ, schizophrenia patients; SVM, S
studies of established schizophrenia (see Tables 1 and 2), possibly due
to the less pronounced brain alterations in the former group, although
diagnostic accuracies can be as high as 92% (see Table 1). It is known
that the first-episode stage of schizophrenia is characterized by less
marked brain changes than in chronic schizophrenia, and this could
partly account for the accuracy fluctuations observed (see Tables 1, 2).
In addition, comorbid disorders and patient recruitment procedures
may, also, have an effect on the sensitivity of the classifier in detecting
disease-specific patterns. For instance, Zanetti et al. (2013) recruited a
population-based sample of FE patients with comorbid substance use
disorders, using epidemiological methods in order to ensure represen-
tativeness of ‘real-world’ individual cases, and observed just 73.4% accu-
racy in classifying them against HCs. In childhood-onset schizophrenia
(COS), only one study examined the neuroanatomical correlates in 98
COS subjects (all below the age of 13) versus 99 HCs (Greenstein
et al., 2012) and observed moderate diagnostic accuracy (73.7%), possi-
bly due to the young age of their patients and the fact that their uncon-
solidated brain structure may hinder the detection of clear, concrete
brain patterns that would facilitate classification. Factors associated
with the use of anti-psychotic drug treatment are, also, a serious consid-
eration because medication may have an effect on brain structure
(Pantelis et al., 2003) possibly even up to a point that the sensitivity of
the classifier to detect morphological abnormalities specifically associ-
ated with schizophrenia diagnosis is compromised.

3.2. Early diagnostic studies of schizophrenia

Several recent neuroimaging studies have shown structural and
functional abnormalities in subjects at high-risk of developing schizo-
phrenia compared to healthy controls aswell as compared to established
patients (Lawrie et al., 2008; Mechelli et al., 2011; Smieskova et al.,
.
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2010). To date, there are no biological markers for the identification of
emerging psychosis, which is currently identified by clinical symptom-
atology. The early identification of those high-risk individuals who are
most likely to develop psychosis is of high potential clinical value, as
early intervention and treatment planning could alleviate symptoms
burden or even prevent disease onset (Marshall and Loockwood, 2006;
Riecher-Rossler et al., 2006). Job et al. (2005) were the first to assess
the predictive value of gray matter reductions in genetic high-risk
subjects regarding the possible transition to schizophrenia but they
used univariate analysis methods, with their known limitations. More
recently, machine learning has been applied in the context of making
an early diagnosis of schizophrenia andeven to predict disease transition
at individual level (see Table 2), by identifying the neuroanatomical cor-
relates of vulnerability to psychosis in individuals at high-risk of devel-
oping the disorder mainly due to clinical reasons.

Koutsouleris et al. (2009)were the first to applymultivariate pattern
recognition to evaluate individual vulnerability to psychosis and predict
disease onset. In their work, a SVM classifier was built upon structural
MRI data of individuals in early (ARMS-E, n = 20) and late at-riskmen-
tal state of psychosis (ARMS-L, n = 25) and a group ofmatched healthy
controls (HC1, n = 25). The performance of the classifier was validated
by distinguishing sMRI data derived from baseline scans of individuals
with subsequent transition to schizophrenia (ARMS-T, n = 15), those
who did not make the transition (ARMS-NT, n = 18) and matched
healthy controls (HC2, n = 17). Three group and pairwise classifiers
were constructed, all achieving classification performance above 80%
(with the exception for the binary classifier HC1 vs ARMS-L = 78%). In
the most critical in terms of clinical utility, the ARMS-T vs ARMS-NT
pairwise classifier achieved an accuracy of 82%, suggesting the potential
of a MRI-based system in predicting transition to schizophrenia. In a
follow-up study, Koutsouleris et al. (2011) emphasized on the predic-
tive potential of SVMs in classifying an independent cohort of 22 HC,
16 ARMS-T and 21 ARMS-NT subjects. The authors, here, constructed a
robust classification method, based on SVM ensemble classifiers that
performed feature selection, model learning and predictive ensemble
Table 3
Studies using machine learning to predict transition, progression and treatment response in sc

Author Sample(N, diagnostic classification)

Koutsouleris et al. (2009) HC1 = 25, HC2 = 17
ARMS-E = 20, ARMS-L = 25, ARMS-T = 15, ARMS-N
At inclusion: DSM-IV
At follow-up: ICD-10

Khodayari-Rostamabad et al. (2010) Train set: SCHZ = 23
R = 12, NR = 11
Test set: SCHZ = 14
At inclusion: DSM-IV
Post-treatment evaluation: PANSS

Koutsouleris et al. (2010) HC = 28,ARMS = 25
ARMS-T = 12, ARMS-NT = 13
At inclusion: DSM-IV
At follow-up: ICD

Koutsouleris et al. (2011) HC = 22, ARMS-T = 16, ARMS-NT = 21
At inclusion: APS, BLIPS
At follow-up: classification criteria by Yung et al. (199

Mourao-Miranda et al. (2012) HC = 28, EP-PS = 28
CON-PS = 28, INT-PS = 32
At inclusion: ICD-10
At follow-up: WHO Life Chart

Zanetti et al. (2013) R-FE = 15, NRsub-FE = 21
At inclusion: DSM-IV (SCID)
At follow-up: DSM-IV

Abbreviations: ARMS, at-riskmental state; ARMS-E, at-riskmental state early; ARMS-L, at-riskm
at-riskmental statewithout transition to schizophrenia; APS, Attenuated Psychotic Symptoms; B
IV, Diagnostic and Statistical Manual of Mental Disorder Fourth Edition; EP-PS, episodic psycho
Related Health Problems; INT-PS, intermediate psychotic; NR, non-responders; NRsub-FE, su
and negative syndrome scale; PSLR, partial least squares regression; R, responders; R-FE, re
SVM, Support Vector Machine; SVR, Support Vector Regression; WHO, World Health Organiza
learning wrapped in a nested cross-validation framework. The critical
ARMS-T vs ARMS-NT pairwise classifier showed slightly improved clas-
sification results compared to that of Koutsouleris et al. (2009), whereas
diagnostic performancewas lower in the pairwise HC vs ARMS-NT clas-
sifier (66.9% accuracy as opposed to 86% in Koutsouleris et al. (2009)),
possibly due to greater heterogeneity in the control sample.

Despite the fact that neuroanatomical pattern classificationmethods
provide very encouraging results in the context of prediction of disease
transition, there is, however, some way to go before demonstrating
their clinical utility. The small sample size in these studies limits the sta-
tistical power of the MRI-based system proposed, so replication of the
results to larger data sets is crucial. Another consideration is that the
at-risk mental state sample in those studies involved symptomatic,
help-seeking individuals (Koutsouleris et al., 2011) and it is therefore
unclear if these classification results could generalize to asymptomatic
high-risk groups as well.

3.3. Predicting disease progression and treatment response

Prediction of disease progression is also of interest and potential
clinical utility in established cases of schizophrenia, with a view to
establishing the prognostic context and/or therapeutic responsivity
of the psychosis. Based on neuroanatomical pattern classification
methods, studies reported poor to modest diagnostic performance
(Table 3) in predicting the outcome of psychosis in FE schizophrenia pa-
tients at baseline. In this context, Mourao-Miranda et al. (2012) used a
linear SVM to predict clinical outcome from baseline sMRI scans of
100 FE psychosis individuals, who at 6-year follow-up were classified
as having a continuous, episodic or intermediate course and a group of
91 matched HCs. Although classification accuracy was less than 75% in
all contrasts (see Table 3), this result serves as a promising starting
point in predicting subsequent course type at the individual level. In an-
other study, Zanetti et al. (2013) failed to predict 1-year outcome of FE
schizophrenia patients. Despite the fact that the authors presented a ro-
bust method for feature generation and feature selection, their SVM
hizophrenia.
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classifier (based on themethod proposed in Fan et al. (2007)), achieved
an 58.3% accuracy in predicting clinical outcome of 15 FE patients with a
subsequent remitting course versus 21 first-episodeswith a subsequent
non-remitting course. Differences in data samples (and/or data sample
selection procedures) and in the duration of follow-up study might
partly explain the accuracy discrepancies observed between the two
studies.

A key determinant of prognosis in psychosis is diagnosis, both be-
cause schizophrenia tends to have a worse outcome than bipolar disor-
der, and because these conditions tend to respond differently to
treatments. Early studies have shown the possibility of distinguishing
group activation patterns on fMRI in schizophrenia and bipolar disorder
(McIntosh et al., 2008), but little SVM work has thus far been done in
this vein, especially atfirst presentationwhen itmight bemost valuable.
In the context of predicting response to treatment in schizophrenia,
only one study that we are aware of has thus far employed machine
learning to do so. Khodayari-Rostamabad et al. (2010) used kernel par-
tial least squares regression in order to predict response to clozapine in
chronic schizophrenia subjects, based on pre-treatment electroenceph-
alography (EEG) data, providing 85% accuracy in identifying responders
and non-responders to the medicine.

The really useful thing to do, for clinicians, patients, their families,
and society more widely, would be to determine likely therapeutic re-
sponse to different treatments in individual patients to facilitate the
timely and effective application of particular treatments to patients
who need them. In someone with psychotic symptoms, in early inter-
vention or general adult services, it would be very useful to know, for
example, who needs treatment because spontaneous resolution is un-
likely or would take too long or, who needs ongoing treatment to
avoid relapse and/or optimize day-to-day function. It would also be
helpful to be able to identify those who are likely to be treatment-
resistant who will need treatments like clozapine or intensive rehabili-
tation at an early stage in treatment. These goals remain aspirational at
the moment, and may well require the inclusion of multiple data
sources for successful implementation.

4. Discussion

In this review, we have presented an overview of machine learning
methods in clinical studies and a detailed consideration of studies
employing them in schizophrenia research. Studies published so far
demonstrate promising leads for the development of neuroimagingma-
chine learning-based tools that could assist in establishing the diagnosis
and prognosis of schizophrenia and therefore be useful in clinical prac-
tice. Machine learning methods are advantageous compared to stan-
dard univariate statistical methods, in that they have the potential to
make inferences about effects of interest at a single-subject level and
can detect subtle and widespread neuroanatomical and functional dif-
ferences that span over large networks of brain regions, by virtue of
their multivariate nature.

The development of aMRI-basedmachine learning system couldwell
aid in the identification of objective biologicalmarkers for schizophrenia,
and could thus help overcome the subjectivity in traditional clinical as-
sessments. There are, however, significanthurdles to be overcomebefore
their integration ofmachine learning into clinical practice is possible. The
classifiers' performance is a key element for the potential integration of
machine learning into clinical decisionmaking. As a general observation,
diagnostic classification performance in psychiatry may not supersede
clinical expertise in the foreseeable future, no matter the techniques
employed, since training a classifier requires prior knowledge of a
subject's clinical status (Orru et al., 2012). Where imaging and machine
learning could seriously impact upon clinical practice is where future di-
agnosis, outcome and treatment response are difficult to predict. The
identification of high-risk individuals, likely to convert to schizophrenia
is of high clinical value as a means to inform early treatment strategies
that could have better outcome for the patients. It is, however, evident
from the early diagnosis studies thus far (see Tables 1–3) that classifica-
tion accuracy in the early detection of schizophrenia and predicting clin-
ical course is not as high as in diagnostic schemes. This is probably
explained by the fact that in the diagnosis of established groups of pa-
tients from controls, neuroanatomical and functional patterns of differ-
entiation are more clearly and strongly established than in same group
subjects who do or do not go on to show an outcome of interest and
therefore present a more difficult classification problem.

It should be borne in mind that a classifier with high sensitivity and
high specificity is desirable, and that overall accuracy is important, but
the relative value of high and low sensitivity and specificity could
have different implications in patients' clinicalmanagement, in different
clinical scenarios, depending on the availability of treatment and the se-
riousness and frequency of adverse effects. Moreover, for an individual-
ized patient high positive/negative predictive power is the most critical
consideration (Lawrie et al., 2011). Furthermore, classification perfor-
mance is primarily affected by the sample size. The limited number
and nature of patient populations in SVM neuroimaging-based studies
mean that these encouraging early results may not generalize well to
other patient groups. Recruiting patients for research studies can be dif-
ficult and patients with co-morbid conditions are often excluded,
resulting in a limited representation of the various phenotypes across
the spectrum of schizophrenia. Despite the fact that several machine
learning methods can deal effectively with small sample size (Pereira
et al., 2009), a limited number of data samples can cause model
overfitting, resulting in poor generalization of the method to indepen-
dent data sets. In such cases, cross-validation frameworks are often
employed, to partition the original data set. However, cross-validation
schemes should be performed and interpreted with caution, because
there is a serious danger of biasing classifier's performance, especially
in cases where data samples in the validation set are also present in
the testing set. As a general rule, the greater the complexity of amethod,
the higher is the risk for overfitting the data (Mourao-Miranda et al.,
2012). Ideally, data for validation should be derived from completely in-
dependent cohorts from the training population, as the case in a few
model studies thus far (Kawasaki et al., 2007; Nieuwenhuis et al.,
2012) in order to ensure the robustness and reliability of the system.

The need for large data sets could be addressed with pooling data
from multiple research centers (Mechelli et al., 2011). The existence of
a well-validated training dataset to be shared between neuroimaging
centers is likely to be of importance for standardizing classification ac-
curacy across laboratories. In addition, future multi-site studies could
provide the possibility for encompassing more heterogeneous clinical
populations, demonstrating a range of clinical manifestations of a disor-
der (Borgwardt and Fusar-Poli, 2012), for example subjectswith various
transition rates to psychosis or subjects of lower diagnostic certainty,
which could thus provide amore realistic mirroring of everyday psychi-
atric practice. Data sharing among research centers faces, however, its
own difficulties. Different scanners, imaging parameters and protocols
result in varying image intensity and susceptibility profiles that will re-
quire careful consideration and compatibility solutions. One promising
approach is however to generate metrics from individual scans that
can then be compared to reference data sets (Tijms et al., 2011).

It is a priority that future studies also address the challenge and op-
portunity of fusing neuroimaging data from various imagingmodalities,
along with genetic and clinical information, that seem likely to interact
in determining the development and outcome in schizophrenia (Lawrie
et al., 2011). It would be reasonable to assume that the introduction of
neurocognitive and other clinical measures could possibly enhance di-
agnostic power of the classifier. Just as a clinician takes a detailed report
of symptoms and other clinical measures to diagnose a patient with
schizophrenia, so might the integration of symptom severity measures
and other neurocognitive scores, along withMRI scans aid to the classi-
fication process. Early studies have already shown that classification
performance might well be improved (Sui et al., 2012; Yang et al.,
2010), as in Karageorgiou et al. (2011) where Karageorgiou et al.
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observed a 92% accuracy in classifying recent-onset schizophreniawhen
structural MRI data and neuropsychological variables (NP) were com-
bined than when employing either quantitative measure alone (86.7%
when only NP data were used and 70.7% with sMRI data alone). Other
neuroimaging technologies such as arterial spin labeling (ASL) perfu-
sionMRI and diffusion tensor imaging (DTI) have shownvery promising
leads in unraveling the neurobiological substrate of several psychiatric
and neurological disorders (Pinkham et al., 2011; Sussmann et al.,
2009; Van Essen et al., 2012), and might as well be combined with
MRI methods in schizophrenia research. The interpretability of such
data is not, however, necessarily straightforward and, as a general
rule, each additional diagnostic variable increases sensitivity at the ex-
pense of specificity. It is overdue, though, that combined features, such
as symptoms, duration of illness, genomics and proteomics along with
various brain imaging modalities are incorporated into imaging and
other evaluations in clinical research studies, with the scope of making
more reliable and objective judgements about the diagnosis of schizo-
phrenia and to classifying patients into more homogenous subgroups
(Lawrie et al., 2011).

Equally important, future studies should test the efficacy of machine
learning in making a diagnosis of psychiatric disorders apart from
schizophrenia, such as bipolar disorder, borderline personality disorder,
depression and autism. Initial studies have already usedmachine learn-
ing to diagnose schizophrenia and bipolar disorder versus HC subjects
(or in a one-vs-all rationale), providing very encouraging results
(Calhoun et al., 2008; Costafreda et al., 2011). However, replication of
these early findings in studies that include larger samples and more
cases across a putative psychosis spectrum is necessary in order to iden-
tify patterns that differentiate between these psychiatric disorders.

From a methodological point of view, novel methods for feature se-
lection and decision making of the classifiers could be introduced in
order to improve diagnostic power in schizophrenia studies. For exam-
ple, ensemble learningmethods could be introduced in order to improve
the generalization ability of a classifier. Ensemble classifiers can achieve
better predictive performance than single classifiers, by combiningmul-
tiple weak learning models that decide upon the classification of a new
instance throughmajority voting (Polikar, 2006). Somewell-known en-
semble learning methods, such as bagging and random subspace
methods have already been used in neuroimaging settings to identify bi-
ological markers for prodromal Alzheimer's disease (Fan et al., 2008a;
Liu et al., 2012), reporting excellent diagnostic results. Ensemble learn-
ing could be a useful approach in data fusion studies aswell, where a sin-
gle classifier could be built and trained for each imagingmodality and/or
clinical measures (such as neurocognitive measures) separately and
outputs from each classifier could be combined to classify new in-
stances. An example of this approach is the study of Yang et al. (2010),
who developed SVM-based ensemble classifiers of genetic and fMRI
data and combined them to a single module that decided upon classifi-
cation of testing samples viamajority voting, achieving better diagnostic
accuracy than either SVM ensembles alone (87% for the combinedmod-
ule, 74% for the genetic data classifier and 83% for the fMRI classifier).
Future studies could, also, possibly address the problem of ‘tuning’ ama-
chine learningmethod to fit into neuroimaging settings. Refinements in
the SVMmethod, for example, already exist. The SVM-Recursive Feature
Elimination (SVM-RFE), a very popular method that performs feature
selection during training and recursively removes data instances, and
has already been successfully employed in cancer classification (Guyon
et al., 2002), and SVM-Sequential Minimal Optimization (SVM-SMO)
which facilitates and speeds up the classifier's training, are methods
yet to be validated for their efficacy in neuroimaging settings. Finally,
probabilistic machine learning might also be a promising tool in
neuroimaging-based schizophrenia research.More specifically, probabi-
listicmachine learning can be used to quantify a degree of uncertainty in
the prediction and could thus be applied in the context of predicting
transition to psychosis or future clinical outcome, indicating for example
a percentage of confidence for classification into one group or another
(e.g. 75% risk transition to schizophrenia and 25% not making a
transition.).

The application of machine learningmethods for the purposes of di-
agnosing or making a prognosis in schizophrenia has already demon-
strated very encouraging results. The main advantage of machine
learning methods, over standard univariate ways of analyzing and
interpreting neuroimaging data, is that they may allow inferences to
be made at subject-level, a feature essential in clinical practice. There
are however, important difficulties yet to be fully considered and over-
come, before their translation into routine clinical practice. The optimal
means ofmulti-center analyses, fusing imagingmodalities and integrat-
ing various sources of information are critical considerations. Finally,
once suitable techniques have been developed, they will ideally need
to be tested, preferably in randomized control trials to ensure that
they are acceptable and useful to clinicians and patients.
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