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Background: Early identification of Alzheimer’s disease or mild cognitive

impairment can help guide direct prevention and supportive treatments,

improve outcomes, and reduce medical costs. Existing advanced diagnostic

tools are mostly based on neuroimaging and suffer from certain problems in

cost, reliability, repeatability, accessibility, ease of use, and clinical integration.

To address these problems, we developed, evaluated, and implemented an

early diagnostic tool using machine learning and non-imaging factors.

Methods and results: A total of 654 participants aged 65 or older from the

Nursing Home in Hangzhou, China were identified. Information collected

from these patients includes dementia status and 70 demographic, cognitive,

socioeconomic, and clinical features. Logistic regression, support vector

machine (SVM), neural network, random forest, extreme gradient boosting

(XGBoost), least absolute shrinkage and selection operator (LASSO), and

best subset models were trained, tuned, and internally validated using a

novel double cross validation algorithm and multiple evaluation metrics.

The trained models were also compared and externally validated using a

separate dataset with 1,100 participants from four communities in Zhejiang

Province, China. The model with the best performance was then identified

and implemented online with a friendly user interface. For the nursing dataset,

the top three models are the neural network (AUROC = 0.9435), XGBoost

(AUROC = 0.9398), and SVM with the polynomial kernel (AUROC = 0.9213).

With the community dataset, the best three models are the random forest

(AUROC = 0.9259), SVM with linear kernel (AUROC = 0.9282), and SVM

with polynomial kernel (AUROC = 0.9213). The F1 scores and area under

the precision-recall curve showed that the SVMs, neural network, and

random forest were robust on the unbalanced community dataset. Overall

the SVM with the polynomial kernel was found to be the best model.
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The LASSO and best subset models identified 17 features most relevant to

dementia prediction, mostly from cognitive test results and socioeconomic

characteristics.

Conclusion: Our non-imaging-based diagnostic tool can effectively predict

dementia outcomes. The tool can be conveniently incorporated into

clinical practice. Its online implementation allows zero barriers to its use,

which enhances the disease’s diagnosis, improves the quality of care,

and reduces costs.

KEYWORDS

dementia, Alzheimer’s disease, early diagnostic tool, machine learning, non-imaging
factors

Introduction

Dementia is a clinical syndrome of brain diseases, involving
the progressive loss of memory, language, thinking and abilities
of action, which seriously affects patients’ daily life and
physical and mental health (Mitchell et al., 2009). The types
of dementia are usually divided into Alzheimer’s disease (AD),
vascular dementia (VaD), frontotemporal dementia (FTD),
dementia with Lewy bodies (DLB), and other dementias,
of which Alzheimer’s disease accounts for more than 60%
(Geldmacher and Whitehouse, 1996; Bruun et al., 2018).
Alzheimer’s disease is a neurodegenerative disease of the
nervous system associated with aging. The main features of
Alzheimer’s disease contain progressive memory impairment,
visual-spatial ability, executive function impairments, amnesia,
aphasia, apraxia, and agnosia, accompanied by personality
and behavior changes. The amyloid beta (Aβ) in plaques,
phosphorylated tau protein in neurofibrillary tangles are
defining neuropathological features of AD (Long and Holtzman,
2019; Selkoe, 2019; Janelidze et al., 2020). With aging, the
prevalence and incidence of Alzheimer’s disease are increasing
rapidly every year, which brings a heavy burden to patients, their
families, and social and economic development (Rabins et al.,
1982; Azevedo et al., 2021). Cognitive impairment that does
not meet dementia criteria refers to mild cognitive impairment
(MCI), which is consistently shown to have a high risk of
progression to dementia (Petersen et al., 1999; Grundman
et al., 2004). Unlike Alzheimer’s disease patients, MCI patients

Abbreviations: MCI, mild cognitive impairment; Aβ, amyloid beta; VaD,
vascular dementia; FTD, frontotemporal dementia; DLB, dementia with
Lewy bodies; SVM, support vector machine; XGBoost, extreme gradient
boosting; LASSO, least absolute shrinkage and selection operator; ANN,
artificial neural networks; CV, cross-validation; CDT, clock drawing
test; MMSE, Mini-Mental State Exam; CDR, clinical dementia rating;
GBDT, gradient boosted decision trees; AUROC, area under the receiver
operating characteristic curve; AUPRC, area under the precision-recall
curve; GP-UCB, Gaussian process upper confidence bound.

have no significant effect on activities of daily work and life
(Feldman et al., 2006).

Timely and accurate diagnosis of dementia is the key to
the prevention and treatment of dementia. At present, the
main methods used for dementia and MCI detection include
clinical screening of scales, pathological tissue biopsy, and
medical imaging diagnosis. Clinical screening of scales is the
most common detection method used in clinical practice. This
method mainly involves interactive communication between
professionals and patients or patients’ family members. By
objectively and comprehensively collecting information from
multiple perspectives, clinical screening of scales can help
make effective evaluation judgments (Sheehan, 2012; Bissig
and DeCarli, 2019). Nevertheless, this method relies on the
objectivity of data collection and the professional level of
evaluators, and can therefore be time-consuming and expensive.
Another method used in clinical and scientific studies is
pathological tissue biopsy, which mainly examines biomarkers
in the cerebrospinal fluid such as Aβ and Tau protein. Brain
biopsies are rarely performed in clinics. The disadvantage
of this approach is that its invasiveness and potential risk
of complications can have a certain negative impact on the
patient’s health. In addition, even if the biopsy is negative,
it does not completely rule out the possibility of dementia,
because there may be lesions in other parts of the brain
(Warren et al., 2005; Josephson et al., 2007; Leinonen et al.,
2010). The third diagnostic method uses medical images, such
as functional PET/MR. As an auxiliary diagnostic method,
medical imaging is useful in many cases, e.g., to rule out
the cognitive decline caused by secondary tumors or stroke.
This method also has many limitations. First, given the high
cost of equipment, not all hospitals can be equipped with
corresponding testing equipment. Second, the cost of testing
imposes a heavy financial burden to patients. Third, but not
least, since the morphological and pathological changes in
molecules and tissues may not be obvious at the early stage of
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the disease, imaging diagnosis often has blind spots in detection
(Mosconi, 2013; Ishii, 2014; Barthel et al., 2015; Shivamurthy
et al., 2015).

To assist and improve traditional dementia diagnosis
methods, machine learning and deep learning have been
increasingly applied in AD detection, especially in classifying
neuroimaging data (Pellegrini et al., 2018; Jo et al., 2019).
Frequently used machine learning algorithms to classify AD
neuroimages include support vector machines (SVM) and
artificial neural networks (ANN) (Pellegrini et al., 2018). With
the development of deep learning techniques, the performance
of deep learning models have in general surpassed that of
machine learning in classifying neuroimaging data and have
become the dominant method for dealing with such data.
At present, the convolutional neural network (CNN) is the
most widely used deep learning architecture for the diagnostic
classification of AD, due to its effectiveness in dealing with
imaging data (Jo et al., 2019). Compared with the CNN
models trained from scratch in earlier years (Sarraf and Tofighi,
2016), most recently developed CNN models have incorporated
transfer learning to make better use of small-scale datasets for
better model performance (Hon and Khan, 2017; Islam and
Zhang, 2017; Aderghal et al., 2018; Ding et al., 2019). The
dimensions of the neural images CNN can process have also
been upgraded from two to three (Hosseini-Asl et al., 2016;
Khvostikov et al., 2018). In addition to CNN, some other
important deep learning architectures have also been actively
studied for AD diagnosis, including deep belief networks
(Cai et al., 2016), deep auto-encoder (Dolph et al., 2017;
Shi et al., 2017), recurrent neural network (Cui et al., 2019;
Lee et al., 2019), etc.

Although neuroimaging based machine learning/deep
learning algorithms have achieved a high accuracy in many
AD classification tasks, these algorithms are not always the best
path to build the automated AD diagnosis system for a number
of reasons. First, training neuroimaging based models typically
requires a large amount of high-quality labeled medical imaging,
which can be a huge challenge because of the institutional
barriers and the cost of collecting and labeling data. Second,
due to the limitation of design, the image-based models typically
cannot utilize other types of data that may contain specific
information for prediction. Third, due to geographic, economic
or other constraints, patients may not be able to access the
established models or provide the image required by the model.
Fourth, due to the complex structure or inherent “black-
box” limitation, it is difficult to understand the relationship
between selected variables and predicted results or the relative
importance of each selected feature, resulting in difficulties in
interpreting models and correcting potential biases arising from
the training data. These problems can greatly limit models’
clinical relevance, practical application value, and the possibility
of future improvement. Integration of non-imaging features
(such as patient demographics, cognitive test results, clinical

covariates, etc.) has been called to further advance the field of
AD diagnosis (Pellegrini et al., 2018).

In this study, we explored the diagnostic effects of non-
imaging features from the nursing home located in Hangzhou,
Zhejiang Province, China. We employed a wide range of
advanced machine learning models and validated these models
in two ways: internally using a novel double cross-validation
(CV) algorithm (Krstajic et al., 2014) and externally on a
separate dataset from four communities in Zhejiang. Apart
from developing predictive models, we analyzed the features
that are important to the diagnosis of AD/MCI and discussed
their roles in clinical practice. We also used the best-performing
model to build an automated AD/MCI detection tool online.
This study shows that non-imaging factors can be exploited to
obtain rich predictive information and create good diagnostic
models for AD/MCI. In the literature there are few studies on
machine learning with non-imaging features to detect AD/MCI.
Shankle et al. (1997) used decision tree learners, rule learners,
and the Naive Bayesian classifier on the non-imaging dataset
from University of California to learn the best decision rules
to distinguish normal brain aging from the earliest stages of
dementia. Maroco et al. (2011) compared 10 machine learning
algorithms using several neuropsychological tests as predictors
for predicting the evolution into dementia in elderly people
with MCI. We note that the clinical questions investigated in
these studies are different from the clinical question we studied,
and that they lacked adequate internal/external valuation or
online implementation. Therefore our research adds to the
knowledge in this area.

Materials and methods

Data

The data were collected from the nursing home in
Hangzhou, Zhejiang Province, China, between May and
November 2014. Patients aged 65 or older were included and
those in critical conditions were excluded. The data contain
dementia status and 70 non-imaging features derived from
demographic information (sex, age), cognitive tests [Mini-
Cog test, clock drawing test (CDT), Mini-Mental State Exam
(MMSE), and AD8 screening], socioeconomic information
(education, main occupation before retirement, marital status),
and clinic characteristics (past medical history, smoking
status, alcohol status). Detailed definitions and demographic
characteristics of the 70 features are listed in Supplementary
Tables 1, 2, respectively. The dementia status of patients were
evaluated by experienced physicians based on the combination
of the clinical diagnostic criteria for Alzheimer’s disease, the
Clinical Dementia Rating (CDR) scale, and reports from
patients’ families about the patients’ daily life (e.g., memory
of the way home, memory of past life, response to usual
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FIGURE 1

Flow diagram of selecting participants from the nursing home and the communities.

communication, etc.), and classified into three levels AD, MCI,
non-AD/MCI (Albert et al., 2011; McKhann et al., 2011). To
facilitate the analysis, we removed observations with missing
values in cognitive status or any of the 70 features. The final
nursing dataset for analysis includes 654 patients. See Figure 1
for a detailed data collection process.

The nursing data were collected from the nursing home
and hence were based on a population with a high risk of
AD/MCI. In the final nursing dataset, 168 participants (25.7%)
were diagnosed with AD, 182 (27.8%) with MCI, and 304
(46.5%) with Non-AD/MCI. It is seen that observed outcomes
were roughly balanced for two classes (53.5% AD/MCI vs. 46.5%
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FIGURE 2

Visualization of the nursing dataset after dimension reduction
with principal component analysis. Black dots represent patients
diagnosed with Alzheimer’s disease (AD), red dots represent
patients diagnosed with mild cognitive impairment (MCI), and
green dots represent patients from neither class (non-AD/MCI).

normal). Principal component analysis, a dimension reduction
technique, was performed to reduce the nursing data into two-
dimensional and visualize it (Figure 2). The clusters of AD and
non-AD/MCI barely overlap, while the cluster of MCI is mixed
with the other two classes. This shows that three classes can
present a clear pattern through non-imaging features.

For validation purposes, we collected data with the
same cognitive status and non-imaging features from four
communities across 12 counties in Zhejiang province. A multi-
stage stratified random cluster sampling method was adopted
to select the communities. We first divided 12 counties into
four groups based on economic levels, then systematically
selected one district from each of these four groups, and finally
randomly chose one community from each district. The same
inclusion/exclusion criteria and data processing progress as
for the nursing dataset were applied (Figure 1). The final
community dataset contains 1,100 cases, of which 59 (5.4%)
were diagnosed with AD, 118 (10.7%) with MCI, and 923
(83.9%) with non-AD/MCI.

For the collection of the nursing and community data, ethics
approval was obtained from the Ethics Committee of Zhejiang
Hospital and informed consents were signed by participants.

Machine learning methods

Logistic regression
The logistic regression (Hosmer et al., 2013) is a classical

machine learning method widely used in medical research.
It performs well if there is a linear relationship between the
features and logit of the outcome. Due to the simplicity of the
design, inferences regarding the contribution of each feature in
predicting the outcome can be easily drawn from the model.
We used this simple but powerful classification model as a

benchmark: the included machine learning models should have
at least as good predictive performance as the logistic model.

Support vector machines
The SVM (Vapnik, 2013), a state-of-the-art machine

learning algorithm, is a generalization of linear decision
boundaries for classification. It has successful applications in
a variety of medical classification tasks, e.g., diagnosing heart
valve diseases (Comak et al., 2007), breast cancer (Akay,
2009), diabetes (Yu et al., 2010), etc. Using a kernel function,
SVM can transform the data into a higher-dimensional space
and construct a linear boundary in the new space while
generating a non-linear boundary in the original space. In this
study, we tried four different SVM models SVM_l, SVM_r,
SVM_s, and SVM_p, which correspond to models obtained
by using linear, radial basis, sigmoid, and polynomial kernel
functions, respectively.

Neural networks
Neural networks are non-linear machine learning models

with computing systems inspired by how the human brain
processes information. They have been widely applied in image
analysis, biochemical analysis, drug design, diagnostic systems,
and other branches of human medicine (Amato et al., 2013).
Despite the low interpretability, neural networks are very flexible
and quite effective in purely predictive settings thanks to
the model-free design. In this study, we used a feedforward
neural network with a single layer of hidden neurons and L1
weight regularization, which can be thought of as a non-linear
generalization of linear logistic regression. The single-layer
design and weight regularization can constrain the complexity
of the model and prevent it from overfitting.

Random forests
Random forests use de-correlated tree predictors to build

powerful classification models (Breiman, 2001). By combining
predictions from a large collection of individual decision trees,
random forests outperform the individual tree predictor and
produce more accurate predictions. Being easy to understand
and effective to use, random forests have many applications
in the medical field, such as predicting Alzheimer’s and other
diseases (Khalilia et al., 2011; Gray et al., 2013; Kane et al., 2014).
In the random forest, a small number of trees will lead to poor
performance of the model while a large number will not cause
the model to overfit (Hastie et al., 2001). Therefore, we used a
large number of trees, 500 in this study, to build the random
forest model. In the model training process, we also assessed the
importance of each feature by computing the mean decrease in
Gini Index (Louppe et al., 2013).

XGBoosting
Boosting uses a combination of many “weak” classifiers

to generate an ultimate strong classifier (Hastie et al., 2001).
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Though less popular than SVMs and random forests, boosting
can provide outstanding prediction performance (Zhang et al.,
2017). One popular boosting algorithm is gradient boosted
decision trees (GBDT) (Friedman, 2002), which use the
decision tree as the weak learner and use the gradient descent
algorithm to minimize the loss function of the model. In this
paper, we implemented XGBoost (short for “Extreme Gradient
Boosting”), one of the most efficient implementations of GBDT
(Chen and Guestrin, 2016). Compared to GBDT, XGBoost
achieves better performance by introducing the regularization
term in the loss function (the model is trained by minimizing the
loss function) and using a second-order Taylor approximation
for the loss function.

The least absolute shrinkage and selection
operator

To better understand the relationship between features and
outcome variables, we employed the least absolute shrinkage
and selection operator (LASSO) (Tibshirani, 1996), which allows
automatic feature selection by adding an L1 regularization term
to force coefficients of some features to be equal to zero. LASSO
is a popular and arguably the most effective method for selecting
features in a linear model (Hastie et al., 2017). It is especially
useful when there is a need to analyze a large number of features.
We implemented LASSO as a prediction model for AD/MCI.
And we investigated the contribution of features to the outcome
prediction by examining the coefficient paths of the model.

Best subset
Best subset selection is another approach to finding the

most relevant features to predict the outcome of interest.
By definition, it requires evaluating possible subsets of
the collection of all features according to some criteria.
Although this approach has unmatched advantages in terms
of interpretability, it is computationally demanding when the
number of features is large and is computationally infeasible
when cross-validation is used to evaluate subsets. In this study,
we used a two-step search strategy to approximate the optimal
result of best subset selection and reduce the computational
requirement: (1) for each S = 1, 2, ..., P, find the “best” S
out of P features, where the best features here refer to the
ones that can maximize the likelihood function of the logistic
regression model (achieved by the “BeSS.ONE” function in the
BeSS R package; Wen et al., 2017), (2) find the best number
of S (achieved by regarding S as a parameter and tuning it
with double CV).

Evaluation metrics and validation
methods

We performed both internal and external validation for
all proposed machine learning models. The performance of

all models was then assessed and compared according to
sensitivity (recall), specificity, accuracy, area under the receiver
operating characteristic curve (AUROC), precision, F1-score,
and area under the precision-recall curve (AUPRC). Note
that AUROC summarizes the trade-off between sensitivity and
specificity while the F1-score (harmonic mean of the precision
and recall) and AUPRC summarize the trade-off between
sensitivity and precision.

We trained and internally evaluated our proposed machine
learning models on the nursing dataset. The nursing dataset
(350 cases) was relatively small compared to the 70 features
and complex machine learning models we selected. Splitting
the dataset into training, validation, and test sets allows
parameter tuning. However, this method does not yield reliable
estimates because of the small test set. On the other hand, the
traditional k-fold CV can lead to over-optimistic estimates of
the model’s performance (Varma and Simon, 2006). Therefore,
we considered a novel double CV that can take care of both
model evaluation and parameter tuning (Krstajic et al., 2014).
To perform the double CV, we divided the nursing dataset
into 10 folds and performed the following for each model.
(1) Left one fold for validation. (2) On the remaining 9 folds,
performed a 10-fold CV to tune the parameters so that the
optimal parameters maximized the average AUROC. (3) Used
the optimal parameters to refit the model on the 9-folds. (4)
Computed evaluation metrics for the model fitted in step (3) on
the held-out fold in step (1). (5) Repeated steps (1)–(4) 10 times
across the 10 folds of the nursing dataset to obtain the 10 sets of
evaluation metrics and optimal parameters. The performance of
each model evaluated internally on the nursing dataset was then
represented by the average of 10 sets of evaluation metrics, i.e.,
the double CV metrics. The process of performing double CV is
illustrated in Figure 3.

After internal validation, we performed an external
validation for the models. The medians of 10 sets of
optimal parameters from the double CV were used to train
the final models on the whole nursing dataset. Then the
evaluation metrics of each final model were computed on the
community dataset.

Parameter optimization

In the inner loop of double CV, different parameter tuning
methods were applied to different models. Logistic regression
has no parameters to be tuned. Grid search was used in double
CV to fine-tune the parameters in the four SVM models,
neural network, random forest, LASSO, and best subset model.
For the last two models, tuning parameters (L1 regularization
parameter in LASSO and number of features “S” in the best
subset) is effectively equivalent to performing feature selection.
The XGBoost model contains many important parameters (e.g.,
learning rate, maximum depth of a tree, number of trees, etc.)
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FIGURE 3

Flowchart of the double cross-validation.

TABLE 1 Demographic characteristics of age, sex, education, and summary scores of cognitive tests across the normal, MCI, and AD groups.

Nursing dataset Community dataset

AD MCI Non-
AD/MCI

Overall AD MCI Non-
AD/MCI

Overall

(N = 168) (N = 182) (N = 304) (N = 654) (N = 59) (N = 118) (N = 923) (N = 1,100)

Sex

Male 52 (31.0%) 63 (34.6%) 114 (37.5%) 229 (35.0%) 30 (50.8%) 48 (40.7%) 448 (48.5%) 526 (47.8%)

Female 116 (69.0%) 119 (65.4%) 190 (62.5%) 425 (65.0%) 29 (49.2%) 70 (59.3%) 475 (51.5%) 574 (52.2%)

Age (SD) 85 (± 6.4) 85 (± 5.6) 82 (± 6.4) 84 (± 6.3) 80 (± 5.4) 79 (± 5.7) 75 (± 6.2) 76 (± 6.3)

Education (SD) 2.3 (± 1.3) 2.7 (± 1.3) 3.4 (± 1.4) 2.9 (± 1.4) 2.4 (± 1.2) 2.9 (± 1.1) 3.4 (± 1.2) 3.3 (± 1.2)

Summary score of
mini-cog test (SD)

1.0 (± 1.1) 2.1 (± 1.2) 3.2 (± 0.88) 2.3 (± 1.4) 2.1 (± 1.2) 2.6 (± 1.2) 3.6 (± 0.69) 3.4 (± 0.90)

Summary score of
clock drawing test
(SD)

0.98 (± 1.4) 2.4 (± 1.8) 4.2 (± 1.3) 2.9 (± 2.0) 3.1 (± 1.6) 3.9 (± 1.3) 4.7 (± 0.70) 4.6 (± 0.95)

Summary score of
mini-mental state
exam (SD)

13 (± 6.6) 22 (± 4.3) 27 (± 2.6) 22 (± 7.2) 21 (± 4.7) 24 (± 3.8) 28 (± 2.2) 28 (± 3.2)

Summary score of
AD8 screening (SD)

4.3 (± 2.6) 2.1 (± 1.8) 0.80 (± 1.1) 2.1 (± 2.3) 4.3 (± 2.2) 3.8 (± 2.0) 1.7 (± 1.1) 2.0 (± 1.5)

and requires extensive tuning to reach the desired performance.
To address this, we used the Gaussian process upper confidence
bound (GP-UCB) algorithm (Srinivas et al., 2009) in the double
CV to tune the parameters. GP-UCB is a popular Bayesian
optimization algorithm that chooses parameters by controlling
the exploration-exploitation tradeoffs.

Software

All statistical analyses were done in R (R version 3.6.2)
using the following libraries: e1071, randomForest, nnet,
NeuralNetTools, xgboost, rBayesianOptimization, glmnet,
BeSS, ROCR, cutpointr, ggplot2, and their respective
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TABLE 2 Classification performance of each model evaluated internally by the double CV on the nursing dataset.

Method Sensitivity Specitivity Accuracy AUROC

Logistic regression 0.8229 0.8289 0.8256 0.9068

SVM_l 0.8143 0.8453 0.8287 0.9127

SVM_r 0.8600 0.8455 0.8532 0.9287

SVM_s 0.8200 0.8976 0.8562 0.9374

SVM_p 0.8343 0.8947 0.8624 0.9378

Neural network 0.8429 0.8751 0.8578 0.9435

Random forest 0.8314 0.8618 0.8455 0.9340

XGBoost 0.8457 0.8552 0.8501 0.9398

LASSO 0.8400 0.8882 0.8624 0.9341

Best subset 0.8371 0.8553 0.8456 0.9141

dependencies. The online screening tool was employed
by using R Shiny.

Results

Models’ evaluation and comparison

We have applied a number of different machine learning
algorithms to build prediction models for detecting AD/MCI.
It is of interest to compare these methods and determine which
one performed best.

Table 1 compares demographic characteristics of age, sex,
education, and summary scores of cognitive tests across the
normal, MCI, and AD groups. Table 2 reports the classification
performance of each model evaluated internally by the double
CV on the nursing dataset. The averages of the 10 values of
sensitivity, specificity, accuracy, and AUROC in the outer loop
of double CV were provided. It can be seen that the SVM_r
model had the best sensitivity while the SVM_p had the best
specificity. The SVM_p and LASSO had the best accuracy
performance. The Neural network (Figure 4) achieved the best
AUROC, followed by XGBoost and SVM_p.

Table 3 reports the classification performance of each model
evaluated externally on the community dataset. Compared to
the nursing dataset, the community data were collected at
households and were based on a population with a low risk
of AD/MCI. The observed outcomes were quite unbalanced
between the two classes (16.1% AD/MCI vs. 83.9% normal).
Therefore, in addition to sensitivity, specificity, accuracy, and
AUROC, we recorded the metrics of precision, F1-score, and
AUPRC as these metrics are especially useful for the unbalanced
data. From Table 3, we can see that the SVM_r and SVM_p have
the best accuracy. SVM_l, SVM_p, and random forest models
are the top three models in terms of AUROC (> 0.92). The
SVM_r and SVM_p models had the highest F1-scores while
logistic regression, XGBoost, and best subset models had poor
F1-scores. The AUPRC values of SVM models, neural network,

and random forest were relatively high, while those of the
remaining models were relatively low.

Though, according to Tables 2, 3, no model appears to
be superior to all other models by all evaluation metrics,
we can find some clues based on the accuracy and AUROC.
The accuracy is the most common and intuitive metric to
compare models’ performance. SVM_p and LASSO have the
best accuracy in the internal validation (balanced data) while
SVM_r and SVM_p have the best accuracy in the external
validation (imbalanced data). According to this metric, the SVM
and LASSO models seem to be the best models. However, we
must note that accuracies have flaws in comparing models’
overall performance. First, the metric is limited to a single
decision threshold (0.5 in this study), with which the model’s
prediction probability is compared to determine whether the
outcome prediction is positive or negative. Second, the metric
cannot be used to compare models that are built upon datasets
with different outcome distributions. Third, the metric can
be misleading on classification problems with a skewed class
distribution. For example, the accuracy on a dataset with 10%
positive cases can be at least 90% accurate.

Compared to the accuracy, AUROC is a more robust and
informative evaluation metric as it summarizes the sensitivity
and specificity across different decision thresholds and can be
used to compare models on different (possibly skewed) outcome
distributions. On the nursing dataset, the neural network,
Xgboost, SVM_p have the highest AUROC values (Figure 5A).
However, the neural network and Xgboost have a low AUROC
on the community dataset (Figure 5B). On the community
dataset, the SVM_l, random forest, and SVM_p were the top
models in terms of AUROC, while the first two models had less
performance than the third model on the nursing dataset. It can
be seen that SVM_p is the only one performing well on both the
nursing (balanced) and the community (unbalanced) datasets.

While ROC can be used for skewed outcome distributions,
it may mask poor performance under unbalanced data (Jeni
et al., 2013). F1 score and AUPRC, two metrics based on
precision, are useful for the unbalanced setting since precision
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FIGURE 4

The final neural network model. Weights are color-coded by sign (blue+, gray−) and thickness is in proportion to magnitude. Input features
include sex, age, Mini-Cog test (c1–c2), Clock Drawing test (d1–d5), Mini-Mental State exam (e11–e15, e21–e25, e31–e33, e41–e45, e51–e53,
e61–e62, e7, e8, e91–e93, e10, e16), AD8 screening (f1–f8), education (h1), occupation (h22–h29), marital status (h32–h35, h37), past medical
history (h61–66), number of medications (h8), smoking (h9), and drinking (h10).

is an informative measure under imbalanced data (Saito and
Rehmsmeier, 2015). We examined F1-score and AUPRC on
the community dataset to rule out underperforming models on
these two metrics. It can be seen that SVM_p has relatively
high scores on these two measures (Figure 5C), which again
confirms that SVM_p is robust on the unbalanced data. Through
the above analysis, we concluded that overall SVM_p is the best

AD/MCI detection model. We had implemented SVM_p online
for patients and healthcare professionals to access (R Shiny).1

In terms of AUROC, our SVM_p is one of the
best-performing models in predicting dementia to date

1 https://hwmachinelearning.shinyapps.io/Dementia/
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TABLE 3 Classification performance of each model evaluated externally on the community dataset.

Method Sensitivity Specitivity Accuracy AUROC Precision F1-score AUPRC

Logistic regression 0.6215 0.8895 0.8464 0.8435 0.5189 0.5656 0.5199

SVM_l 0.5763 0.9458 0.8864 0.9282 0.6711 0.6201 0.6652

SVM_r 0.6102 0.9404 0.8873 0.9137 0.6626 0.6353 0.6395

SVM_s 0.5650 0.9437 0.8827 0.9177 0.6579 0.6079 0.6560

SVM_p 0.6045 0.9415 0.8873 0.9213 0.6646 0.6331 0.6549

Neural network 0.5876 0.9426 0.8855 0.9139 0.6624 0.6228 0.6513

Random forest 0.5706 0.9437 0.8836 0.9259 0.6601 0.6121 0.6623

XGBoost 0.5424 0.9415 0.8773 0.9006 0.6400 0.5872 0.6323

LASSO 0.5932 0.9393 0.8836 0.9023 0.6522 0.6213 0.6284

Best subset 0.4859 0.9274 0.8564 0.8483 0.5621 0.5212 0.5432

FIGURE 5

ROC and PRC curves for the machine learning models for detecting dementia. (A) Mean ROC curves for the models on the nursing datasets.
Each curve represents the mean ROC curve from the outer loop of the double cross validation. (B) ROC curves for the models on the
community data. (C) PRC curves for the models on the community data.

(Hou et al., 2019). While most published models relied on a
small number of features and few reported (proper) validation
results (Pellegrini et al., 2018; Hou et al., 2019), our models
took advantage of 70 features and went through both internal
(double cross) validation and external validation.

Therefore, our study made maximum use of the information
from available features while ensuring the reliability and
repeatability of the results.

Features’ contribution

Some of the machine learning models we built enabled us
to see the contribution of the features for predicting AD/MCI.
We studied the relative importance of features by the tree-based
random forests and XGBoost models and further investigated
the role of the important features by the Lasso model and the
best subset model.

In the random forest model, the Gini index is used to decide
which feature to split at each node within each component tree
classifier. Each split of a node results in a decrease in Gini where
the magnitude of the decrease indicates the discriminatory

power of the split. For each feature, the decrease in the Gini
index is accumulated each time the feature is selected to split
a node. Therefore, the average decrease over all component
tree classifiers for each feature can be used to represent the
contribution of this feature to the prediction and thus serve as a
measure of importance. A greater mean decrease means higher
importance. Based on information gain, a measure similar to
the mean decrease in Gini, the XGBoost can also compute each
feature’s contribution to the model using all the splits.

Supplementary Figure 1A presents the 20 most important
features based on the final random forest model. It can be seen
that the tests of counting down from 100 by 7 (e41-e45) and
clocking drawing (d1-d5) are of most importance for predicting
outcome. Mini-Cog test (c1-c2), time orientation test (e11-e15),
and age have a lower level of importance. Of less importance
is the test of copy drawing (e16), the test of repeating phrase
(e7), the test of repeating previous items (e51-e53), medications
(h8), and others. The feature importance rankings given by the
XGBoost model are similar to those given by the random forest
(Supplementary Figure 1B), while the former highlights the
importance of education (h1), and AD8 Dementia Screening
(f1-f8), and the test of saying a complete sentence (e10).
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FIGURE 6

The role of education in predicting dementia. (A) The marginal distribution of the levels of education on the nursing dataset. (B) The correlation
coefficients between education and other features on the nursing dataset.

To understand the specific impact of important features,
we also studied the features selected by the LASSO and best
subset model and analyzed the signs of the features’ coefficients.
In the final LASSO model, the L1 regularization shrunk the
coefficients of less important features to zero. There were
35 features considered by LASSO to be relevant to outcome
prediction (Supplementary Figures 2A,B). In contrast, the best
subset model selected 19 features (Supplementary Figure 2C),
almost all of which are included in the features selected by
LASSO. These results show that many non-imaging features
could help predict AD/MCI.

Specifically, 17 were selected by both LASSO and best subset.
These features were most likely to be relevant to AD/MCI
prediction, including age, Mini-Cog test (c2), clocking drawing
test (d2, d5), time orientation test (e15), address orientation test
(e23), the test of counting down from 100 by 7 (e43, e44), the
test of repeating previous items (e51, e52), the test of repeating
previous items (e7), the test of saying a complete sentence

(e10), AD8 Dementia Screening (f6, f8), education (h1), “cadres
staff” in the occupation (h24), and “married” in the marital
status (h32). For these 17 features, LASSO and the best subset
agreed on the signs of their coefficients. These signs allow us to
further understand the influence of the features on predicting
the disease. From Supplementary Figure 2B, it can be seen that
the coefficients of all test-related features were negative, which is
reasonable since passing the test indicates a lower likelihood of
developing AD/MCI. “Married” (compared to “single”) in the
marital status also suggests a lower risk. On the other hand,
age, “handling complex personal financial matters” (f6) and
“daily memory and thinking” (f8) in AD8 screening, education,
and “cadres staff” (compared to “worker”) in the occupation
(h24) have positive coefficients, suggesting that these features are
risk indicators.

In the nursing dataset, if we only look at education
without considering other features, then education is negatively
associated with ADI/MCI (Figure 6A). But this relationship
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is reversed when other features are taken into account
(Supplementary Figures 2B,C). These results of education echo
the findings that the role of education can be controversial in
predicting the risk of dementia (Caamaño-Isorna et al., 2006;
Sharp and Gatz, 2011). Instead of being an independent risk
factor, education could be a factor that protects against or delays
the clinical manifestations of dementia. In other words, patients
with a severe brain damage and a high educational level may
present similar clinical symptoms of the disease as those with
a less severe brain damage and a lower educational level. This
view can also be confirmed by the results in Figure 6B where
education is highly positively correlated with cognitive abilities
(Mini-Cog, Clock Drawing, MMSE) and negatively correlated
with cognitive problems (AD8 Screening features). Therefore,
our model in fact suggests that a higher educational level may
mean more severe brain damage if cognitive levels are equal.

Discussion

We created and validated our AD/MCI diagnostic tool
using extensive data collected from the nursing home and
the communities. These data are readily available and closely
related to clinical diagnosis, which makes our model highly
applicable. The applicability of our tool is further enhanced
by its online deployment. Patients and clinicians who do not
understand machine learning algorithms can easily input the
collected non-imaging features into our tool to obtain timely
predictive results. Compared to the traditional clinical screening
of scales, our approach simplifies the data collection task and
quickly performs high-quality analysis, thus greatly improving
the diagnostic efficiency of clinicians. In addition, our approach
does not involve any risk of complications associated with
invasive biopsies, nor rely on equipment and operators for
medical imaging systems. These merits make our approach
almost free of test costs or risk of use, therefore avoiding
economic or health impacts on patients and their families. We
believe it has great potential applications, especially in small
cities and rural areas.

Conclusion

Automated diagnostic tools have become crucial in the
diagnosis of dementia. Although neuro-images have been
heavily used in recently developed tools, traditional non-
imaging features can effectively diagnose dementia and
conveniently incorporate clinical practice. We used a large
number of non-imaging features and machine learning to
create a highly performing dementia diagnostic tool. Our work
leverages the predictive potential of non-imaging features and
significantly lowers the barriers for using the diagnostic tool.

We believe this study will have a direct impact on physicians’
diagnostic practice and patients’ self-screening.
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