
RESEARCH ARTICLE

Isomorphic decisional biases across

perceptual tasks

Mario TreviñoID
1*, Santiago Castiello2, Oscar Arias-Carrión3, Braniff De la Torre-

Valdovinos4, Ricardo Medina Coss y LeónID
1

1 Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de
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Abstract

Humans adjust their behavioral strategies to maximize rewards. However, in the laboratory,

human decisional biases exist and persist in two alternative tasks, even when this behavior

leads to a loss in utilities. Such biases constitute the tendency to choose one action over oth-

ers and emerge from a combination of external and internal factors that are specific for each

individual. Here, we explored the idea that internally-mediated decisional biases should sta-

bly occur and, hence, be reflected across multiple behavioral tasks. Our experimental

results confirm this notion and illustrate how participants exhibited similar choice biases

across days and tasks. Moreover, we show how side-choice behavior in a two alternative

choice task served to identify participants, suggesting that individual traits could underlie

these choice biases. The tasks and analytic tools developed for this study should become

instrumental in exploring the interaction between internal and external factors that contribute

to decisional biases. They could also serve to detect psychopathologies that involve aber-

rant levels of choice variability.

Introduction

Humans are generally thought to maximize expected utilities by making choices that render

the highest payoffs [1–3]. They achieve this by continuously adjusting their choice variability,

which can be intentionally increased/decreased in search for actions that yield more rewards

[4]. However, most people also exhibit systematic choice biases that lead to sub-optimal out-

comes [5–8]. Such biases constitute the tendency to choose one action over others, with low

variability from trial to trial (i.e., it is inversely related to adaptivity [9]) and no apparent goal

or function. At the extreme, high levels of choice stereotypy characterize some human psycho-

pathologies and mental disorders [10]. Similar manifestations of sub-optimal choice behavior

have also been documented for rats [11], mice [6, 12, 13], and pigeons [14].

Human choices are influenced by sensory features, contextual factors, and display substan-

tial individual differences [15]. Although it is clear that humans employ adaptive mechanisms

to cope with dynamic environments, they also typically exhibit plenty of behavioral attributes
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that are primarily innate and relatively stable through life [16–18]. In the laboratory, sensory

(visual) and decisional (non-visual) biases can be studied and dissected by employing specific

task instructions for a two-alternative forced-choice (2AFC) task with symmetric alternatives

[7]. In the 2AFC paradigm, participants are ’forced’ to choose one from two options based on

a perceptual criterion. Similarly, decisional (i.e., non-perceptual) side-choice biases can be

studied through unforced choice (2AUC) tasks with equally rewarded alternatives [13, 19, 20].

Thus, in the 2AUC approach, the discriminative stimulus does not predict reward. Interest-

ingly, using the latter task, we have found that decisional biases were independent of stimulus

discriminability and the predictive value of sensory stimuli. We also found that side-choice

behavior varied widely across participants but was stable for each individual across experimen-

tal days, suggesting the existence of diverse task-solving strategies [13].

Decisional biases are not exclusive to psychophysics and value-decision procedures. Using

a memory detection task, researchers have shown that such response preferences are also stable

across time and experimental conditions [19, 21–25]. Therefore, an intriguing possibility is

that at least a portion of the observed decisional biases could derive from internal variables

that are entirely independent of the sensory features and/or the contextual factors involved.

We thus hypothesized that if human participants stably exhibit side-choice biases, they should

co-vary with other behavioral metrics when the same individuals solved unrelated tasks.

Employing forced and unforced tasks [13], we confirmed that participants exhibited different

but consistent proportions of side-choice biases (i.e., decisional biases) across experimental

days. Moreover, we found that the unique profiles of choice-bias production allowed us to use

this behavioral attribute to identify participants, suggesting that individual traits might under-

lie side-choice behavior.

It is well established that subjects adjust their behavior in particular ways even if they are

challenged under the same environmental contingencies. These adaptations reflect individual

differences [26]. Our experiments and results support this notion, revealing that behavioral

metrics from a reversal-learning task (employing volatile contingencies) predicted side-choice

bias and alternation probabilities from individuals. Altogether, our results confirm the notion

that stable internal elements gated decisional preferences and behavioral attributes that indi-

viduals exhibited reliably across multiple tasks. Thus, we propose that establishing a frame-

work that distinguishes the internal and external factors that influence decisional biases is

fundamental to understand how ’normal’ and ’abnormal’ behaviors are organized. The tasks

and methods that we developed for this study could help detect and classify psychopathologies

that involve aberrant levels of choice stereotypy.

Materials and methods

Participants

We conducted experiments using three tasks in 113 healthy volunteers (63 women and 50 men;

age range (yr.): 16–39, mode: 27). For all tasks, participants performed a warm-up phase until

obtaining 20 consecutive correct trials. Most participants were right-handed (� 90%), with nor-

mal or corrected vision, and without detectable neurological disorders or history of drug abuse.

The ethics committee of our institution approved all these procedures (ET092018-271; Instituto

de Neurociencias, Universidad de Guadalajara, México). We obtained written consent from all

participants and gave them written instructions about the tasks they performed in silence.

Free side-choice task (task #1)

To separately quantify visually guided choices and side-choice biases, we implemented a two-

alternative forced-choice (2AFC) match-to-sample visual task (1st forced visual choice)
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coupled with a second unforced-choice phase (2nd free side-choice), as described in detail pre-

viously [13]. Briefly, participants sat upright in front of a computer monitor while we recorded

their responses using a conventional joystick (Thrustmaster 2960623 USB Joystick; 1000 Hz)

connected to a standard computer (Intel (R) Xeon (R) @ 3.40 GHz; 64 Bit Operating system;

Graphics card: NVIDIA Quadro K600, 8 G.B.; Fig 1A). The visual stimuli (416 x 300 pixels;

visual angle: 7˚ x 5˚) were two pictures randomly positioned to the left and right sides of a pro-

jecting 27-inch computer screen (Dell P2414H, at a viewing distance of 60 cm). These two

images had low semantic attributes, as validated previously [13]. We manipulated the task dif-

ficulty by creating distracter images (i.e., the SΔ, delta, or non-rewarded stimulus) with differ-

ent similarities (SIM) relative to the sample stimulus (i.e., the SD, discriminative, or rewarded

stimulus). We achieved this by using linear combinations of the two source images (Fig 1B).

To solve the tasks, participants had to push the joystick in one direction specified by instructive

arrows projected on the center of the screen. Choice regions occupied 5% of the overall search

space. We measured the response times (RT, in s) as the interval between the visual stimuli’

appearance and the moment when the participants placed the joystick in the appropriate

response regions. After choosing, the participants had to let the joystick return to its baseline

position. During the 1st visual phase (2AFC), participants made their choice based on visual

Fig 1. Stable side-biased and alternating probabilities in the free side-choice task. (A) Cartoon of the experimental setting where we measured perceptual and side-

choices in humans. (B) The difficulty of discrimination is controlled by increasing image similarity (SIM, when k! 1). (C) Stimulus timeline of the visual task. Each

trial involves a discriminative (visual) forced-choice (1st choice, where the side of the SD side predicts reduced delay interval), and a free side-choice (2nd choice). We

included auditory and visual feedback after recording joystick responses. (D) % Correct choices and response times (RT; in s) for two groups of participants tested with

high (k = 0) or zero (k = 1) discriminability conditions. Thin lines: individual performances; thick lines and symbols: average ± S.E.M. (E) The side-choices from

unsorted participants illustrated as colormaps with black (right) or white (left) rectangles across trials (x-axis). (F) Stable side and alternating choice probabilities across

two experimental days. Number of subjects in parentheses.

https://doi.org/10.1371/journal.pone.0245890.g001
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evidence by identifying the SD location,, which was projected for 1s to the left or right side of

the SΔ (the SD/ SΔ positions were randomized). Next, two white arrows appeared on the center

of the screen, pointing towards the right and left inferior corners, respectively, indicating the

two response options (Fig 1C). These arrows remained on the screen until the participant

responded. Next, the SD was projected at the center of the screen for either 750 ms or 3 s if the

participant answered correctly or incorrectly, respectively (i.e., a 1:4 relationship in the waiting

intervals [27, 28]). During the 2nd free side-choice phase (2AUC), the participants could visual-

ize two white arrows that appeared on the center of the screen, pointing towards the right and

left superior corners, indicating the two response options (Fig 1C). Here, participants could

freely select upper left or right sides, respectively, with equal reinforcement for both sides.

Thus, the choices during the second phase were used to characterize free side-choice behavior,

as previously validated [13].

Orientation discrimination task to measure sensory and decisional biases

(task #2)

To dissociate the contribution of sensory and decisional processes to global choice biases, we

adapted a method developed by López-Moliner’s group [7]. This task consisted of determining

whether a Gabor patch (projected for 100 ms) was rotated clockwise or counterclockwise rela-

tive to an imaginary reference placed either on the top or the bottom of the screen (green circle

in Fig 2A). This task’s premise is that sensory (visual) and decisional (non-visual) biases con-

tribute distinctively to choice biases. More specifically, visual biases lead to different horizontal

shifts in the psychometric curves depending on where the reference is placed (top or bottom),

whereas decisional biases shift both curves towards a preferred side, independently of where

the reference is placed (Fig 2B). The orientation of the Gabor patch was randomly selected

from an angular range of ±2˚, with 0.5˚ increments. To complete the task, the participants had

to perform four blocks of 270 trials each. During the first two blocks, they were asked to imag-

ine the reference on the same location for all trials (either up or down). During the last two

blocks, the instructions randomly changed the location for the imaginary reference on every

trial (experimental timeline in the lower panel from Fig 2A).

Reversal learning task (task #3)

To investigate the adaptability of participants to solve a task with changing demands, we used

the same core elements of task #1, but modified the 2nd choice phase to reinforce either vari-

able side-choices (using randomly permuted but balanced reinforced locations [29]) or choices

towards the left or right sides only (i.e., the task became a 2AFC). Reinforcement was achieved

by using a 1:4 relationship in the waiting intervals for correct and incorrect responses [13]. We

employed stimuli with variable discriminability during the 1st choice (Fig 3B), and we switched

reinforced contingencies for the 2nd choice every 60 trials, for a total of 12 blocks/day. To proj-

ect the visual stimuli for all tasks, we used programs written in MATLAB R2016a (MathWorks,

Inc.; Natick, USA) using the Psychophysics Toolbox extensions (PTB-3).

Analysis of choice behavior

Participants selected left or right sides during the 2nd side-choice phase of our experiments

(task #1 and task #3). They typically exhibited a choice bias towards a preferred side [6, 13]. To

illustrate participants’ side-choices, we employed colormaps to plot the trials with the left or

right responses (from the 2nd choice) as white or black rectangles, respectively. Next, to quan-

tify such side preferences, we measured the probability that sequences of side-choices were

produced towards the same side or in alternation. These probabilities were quantified by using
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Fig 2. Comparison of choice-biases measured with two perceptual tasks. (A) Representation of López-Moliner’s task (task #2), which allows the dissection of

sensory and decisional biases [7]. The diagram shows two trials in which the participants had to imagine a reference either on top (panel on the left) or on the

bottom of the screen (panel on the right). (B) Example of an average choice response curves and psychometric curves from trials with top (indian red) and bottom

(federal blue) references. Decisional (black square) and sensory (empty rectangle) biases can be extracted from each participant’s psychometric fits. (C-D) Two

examples of experimental results from participants #3016 and #3011 solving task #2 (left panels) and our free side-choice task (center and right panels). (E) List of

the 42 predictors extracted from task #2. ymax (asymptote), β (steepness) and x50 (inflection point) correspond to the parameter fits from the psychometric curves.

ΔA.U.C. (A1) is the area under the curve for the differences in choice responses with the reference on top and bottom (lower panel in B), and ΔA.U.C. (A2)

corresponds to the differences from the psychometric fits obtained with the reference on top and bottom. (F) List of 5 response variables from the free side-choice

task (task 1). Insets in panels E and F show the cross-correlation coefficients across predictors and response variables. Using PCA: the first 15 principal components

explained 99.5% of the variance of the 42 predictors, whereas the first two principal components explained 90.74% of the variance of the 5 response variables. (G)

Observed slopes from the MLRM comparing how parameters extracted from task #2 (rows) predicted measures from our free side-choice task (columns, task #1).

Non-significant interactions appear as empty rectangles. (H) Sample linear regressions using relevant pairs of predictors/responses. Number of subjects in

parenthesis.

https://doi.org/10.1371/journal.pone.0245890.g002
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Fig 3. Comparing behavioral metrics from reversal learning with choice-biases from our free side-choice task. (A) Stimulus timeline of the reversal learning task

(task 3), which consisted of a visual discriminative choice (1st choice) followed by a forced side-choice (2nd choice) during which we reinforced either left, right or

alternating side-choices. (B) Average psychometric curve as a function of stimulus similarity (1st choice). (C) Probability that side-choices involved the same side as the

visual choice (P(repeat side)). Orange distribution corresponds to a random process derived from a binomial distribution (same number of trials). (D) Average %correct

side-choice (2nd choice) is fully independent of stimulus discriminability during visual choice. (E) Average %correct side-choice (2nd forced side-choice, blue line) while
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a pair-wise alignment method that consisted of sliding a query sequence of side-choices along

with the choice records from each participant. A sequence was considered to be present in the

choice record when the alignment rendered a perfect match for the entire length of the query

sequence (i.e., observed choices = query sequence; sequence length refers to the number of tri-

als of the sequence). The probability of occurrence of a choice sequence was then calculated by

dividing the number of times that it was found in the choice record from each participant by

the maximum number of times that it could fit within the total trials without interfering with

any identical sequence that generated a count in previous trials, as explained and justified pre-

viously [6]. To complete this analysis: we added the counts of complementary sequences (side-

biased: [‘LL. . .L’ + ‘RR. . .R’]; alternation: [‘LR. . .L’ + ‘RL. . .R’]) and normalized them to an

equivalent number of training trials, thus allowing group comparisons. Note that measuring

probabilities instead of the number of cases was crucial because the alignment method implic-

itly increases the counts of shorter sequences contained in longer ones [6, 30]. As a reference,

we also created randomized choice patterns (rnd, binomial distribution; gray dotted line in Fig

1F) of equal length to the original choice records and measured biased and alternating

sequences’ probabilities.

To analyze the experimental data from task #2 [7], we first quantified the probability of esti-

mating a clockwise rotation of the patch (P(Clockwise)) as a function of the rotation angle for

trials performed when the imaginary reference was placed on top (reference on top) or bottom

(reference on bottom) of the screen, respectively (Fig 2A and 2B). Two psychometric curves/

participant (one for each reference) were then estimated by fitting the following logistic func-

tion (using ’lsqcurvefit’ from MATLAB):

P Clockwiseð Þ ¼
ymax

1þ e� bðx� x50Þ
ð1Þ

where P(Clockwise) is the probability of estimating a clockwise rotation of the patch at x˚, ymax

is the curve´s maximum value, e is the natural logarithm base (Euler’s number), β is the slope

(proportional to choice variability [9]), and x50 is the x-value of the sigmoid’s midpoint (Fig

2B). The magnitude of the decisional bias (i.e., non-visual component) for each participant

was estimated as the midpoint between x0|ref.top and x0|ref.bottom. The magnitude of the sensory

bias (i.e., visual component) was taken as the absolute difference between any x0 and the deci-

sional bias (i.e., this value is spatially invariant; Fig 2B). As a secondary estimate of the sensory

bias, we calculated the area under the curve of the difference between the two psychometric

curves derived either from raw data (A1), or from the fitted logistic curves (A2) P(Clockwise)|
ref.top—P(Clockwise)| ref.bottom (ΔA.U.C.; Fig 2E). We incorporated both measurements in our

table of predictors because each approach has a distinctive strength: i) the difference calculated

from the raw data corresponds to a clean and unprocessed estimation, whereas ii) the differ-

ence extracted from the fitted sigmoids is less sensitive to outliers.

For the experiments involving task #3 (illustrated in Fig 3), we reinforced single-side (Left

reinf. or Right reinf.) or variable responses (rnd reinf.) using a training paradigm with contin-

gencies that favored side-choices (left or right) or variable/random choices, respectively. For

using alternating or stationary left (vanilla yellow) or right (flax yellow) rewarding schedules. (F) Averaged learning curves are associated with the three reinforcement

scenarios. Insets show sample side-choice colormaps from one of the four blocks for each reinforced contingency. (G) Sample mono-exponential fits to the learning

curves from three participants. Taus (τ) and peak performance (λ) are extracted from these fits. (H) Cumulative probability distributions for the taus for left and right

reinforcement. Participants are color-coded relative to τleft. (I) Side-choice colormaps for the same participants solving the free side-choice task (task #1). (J) Cumulative

probability distributions for SP(Bias) and SP(alternation). Participants are color-coded relative to SP(Bias). (K) List of the 24 predictors extracted from task #3. The

response variables from task #1 are identical to those presented in panel E from the previous figure. (L) Slopes for the MLRM comparing how 24 predictors from the

reversal-learning task (task #3) predict, as a function of cumulative trials within each block, the three main response variables from the free side-choice task (labeled on

top of each panel). Empty rectangles represent non-significant (n.s.) slopes. Number of subjects in parenthesis.

https://doi.org/10.1371/journal.pone.0245890.g003
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each condition, we took the block-averaged choice records from each participant (y) and fitted

them with mono-exponential curves with the form:

y ¼ l � ðy0 � e
� txÞ ð2Þ

where λ corresponds to the maximum average performance achieved during the block, y0 is

the initial % Correct responses (a free parameter in the fitting procedure), x are the trials

within the block, and τ is the rise constant.

We used a Bayesian approach to estimate reward (r) and volatility (v) probabilities given

the history of trial outcomes (rewards) for each participant, as described in detail previously

[31]. The Bayesian learner (BL) is a hierarchical generative model that estimates an agent’s

beliefs about the probability of reward (r) at every trial. Thus, from the BL perspective, the par-

ticipant’s goal is to estimate ri+1 from all previous data (r�i) to increase the chances of obtain-

ing a reward at the subsequent trial. Rewards in task #3 involved waiting for a shorter interval

combined with a green feedback screen (Fig 3A). Using a Markovian setting, the change of r
was represented with a beta distribution:

Pðriþ1jri; vÞ � bðri;VÞ ð3Þ

where ri defines the mean of the distribution, and V = exp(v) defines the distribution’s width

(i.e., the integrals were performed in log space; see below). V corresponds to the volatility as it

controls how the observed outcomes of decisions influence the estimated reward probability

between trials. Therefore, if the environment goes through stable and volatile phases, the sub-

ject must adapt to this changing volatility to perform optimally. For simplicity, the change of v
was represented with a Gaussian distribution:

Pðviþ1jvi; kÞ � Nðvi;KÞ ð4Þ

where K = exp(k) controls the rate of change of volatility. We mapped k values from log(5e-4)

to log(20) with 0.2 irements for our analysis. A small k value leads to a narrow transitional dis-

tribution (small changes in v), whereas a large k value leads to a wide distribution (large

changes in v).

In order to make a decision at trial i+1, the BL requires to estimate the reward rate ri+1. The

BL must therefore compute the marginal distribution P(ri+1) from the joint probability distri-

bution P(ri+1,vi+1,k) by integrating over vi+1 and k:

Pðriþ1Þ ¼
RR

Pðriþ1; viþ1; kÞdviþ1dk ð5Þ

The current estimate of the reward rate was then given by the mean of this distribution:

r̂ iþ1 ¼
R
riþ1Pðriþ1Þdriþ1 ð6Þ

All integrals were performed numerically. The BL was applied to the data from each partici-

pant, and it returned r and v as a function of the experimental trials.

To indirectly assess the overall bias, we used the stationary (Shannon) entropy:

HðResponse sideÞ ¼ �
P2

i¼1
PðsÞ � log2½PðsÞ� ð7Þ

where s is the response side (left or right).

To measure the level of unpredictability of the transitions between consecutive choices

[32], we measured the transition entropy for side-choices as:

HðResponse sidejprior response sideÞ ¼ �
P2

i¼1
PðsiÞ

P2

j¼1
Pðsijsi� 1Þ � log2½Pðsijsi� 1Þ� ð8Þ
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where si is the response side (left or right), and si-1 is the prior response side (left or right). The

entropy values ranged between 0 and 1.

Finally, to estimate the contributions of previous visual choices, side-choices, and their out-

comes (success or failure) on the production of current side-choices, we carried out multiple

linear regression (MLRM) analyses, as previously described [6, 13, 29].

Statistical analysis

We used t-tests, parametric and non-parametric tests for statistical comparisons, and repeated

measures ANOVA (RM-ANOVA) tests with Bonferroni’s or Wilcoxon Signed Rank post hoc
tests for group comparisons. We compared the probability distributions using Kolmogorov-

Smirnov (KS) tests. To determine the MLRM analyses’ significance, we compared the actual

regression coefficients against 1000 surrogate data sets generated by shuffling the predictors

[33]. With this approach, we established the empirical significance of the observed coefficients

by comparing them against coefficients obtained with randomly permuted predictors (surro-

gates) to test the null hypothesis that the regression coefficients might have been generated by

chance. We also employed principal component analysis (PCA) to quantify the explained vari-

ance in subsets of predictors and response variables from task #2. The total variance corre-

sponded to the sum of variances from all original components. The fraction of explained

variance by a principal component (PC) was the ratio of that PC’s variance and the total vari-

ance. We illustrate our group data as averages ± S.E.M. with a significance set at P� 0.05. For

the experiments shown in Fig 1, we discarded from the analysis a participant who exhibited

chance performance under high discriminability conditions (i.e., distracted or with low com-

mitment to the task). For the experiments shown in Fig 2, we discarded six participants

because they exhibited low performance either in task #1 (% Correct with [k = 0]� 60%) or in

task #2 (P(+2˚)� 60%). The number of participants used for each task’s analysis is illustrated

inside parentheses in the corresponding figure panels.

Results

Stable production of decisional biases in a free side-choice task

Our first task allowed us to sequentially measure visual performance (two-alternative-

forced choice [2AFC] task; visual choice), and side-choice biases (two-alternative-unforced/

free choice [2AUC] task; side-choice) during consecutive phases within each trial (see

Methods; Fig 1A–1C; [13]). For the 1st visual choice (2AFC), participants had to identify

which of the two stimuli was identical to a target stimulus (SD), by responding with a joy-

stick down-left or down-right. We recorded the choices and response times (RT, in s) of the

participants by connecting the joystick to a standard computer. Feedback for the visual task

involved waiting longer times after incorrect choices (3000 ms) than after correct ones (750

ms; i.e., negative reward schedule; Fig 1C). Thus, the implicit motivation to solve the task

was to discriminate correctly to finish the task promptly. During the 2nd free side-choice

(2AUC), participants responded either up-left or up-right to advance to the next trial,

which involved visualizing the target stimulus for another 750 ms, regardless of the chosen

side (Fig 1C).

Next, we explored the stability of visual and side-choice behavior along consecutive days

using either high (k = 0) or zero (k = 1; identical images) discriminability conditions. We

found similar (paired t-test, k = 0; P = 0.07; k = 1, P = 0.58) visual performance across two con-

secutive days for both groups of participants (k = 0; Choice | D1: 91.00% ± 2.04%; D2: 96.66%

± 1.94%; RT | D1: 1.67s ± 0.13s; D2: 1.24s ± 0.11s, n = 22; k = 1; Choice | D1: 49.97% ± 0.52%;

D2: 50.24% ± 0.35%; RT | D1: 2.70s ± 0.05s; D2: 2.64s ± 0.07s, n = 10; Fig 1D). RTs were stable
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with zero discriminability (paired t-test, P = 0.20), and they were ~ 23% smaller in high

discriminability conditions (paired t-test, k = 0; P< 0.001). To visualize the side-choices of the

participants (2nd choice from task#1), we employed colormaps to illustrate left and right

choices with white or black rectangles, respectively (Fig 1E). We then measured the probability

of producing choice sequences towards the same side (P(Bias) = P(Bias|left) + (P(Bias|right)), or

in alternation (P(Alternation); see Methods) [6, 13]. We found remarkably similar side-choice

and alternation probabilities across consecutive days (k = 0; Prob. Bias | Repeated Measures

[RM] ANOVA test, F = 0.49, P = 0.87; Prob. Alternation | Repeated Measures [RM] ANOVA

test, F = 1.13, P = 0.29; k = 1; Prob. Bias | Repeated Measures [RM] ANOVA test, F = 0.13,

P = 0.96; Prob. Alternation | Repeated Measures [RM] ANOVA test, F = 0.22, P = 0.92, Fig

1F). Using a paired t-test, we confirmed that the stability of this measurements held at the indi-

vidual level (Prob. Bias | k = 0, P = 0.13; k = 1, P = 0.10; Prob. Alternation | k = 0, P = 0.35;

k = 1, P = 0.08). As a reference, we calculated the probability distributions for a random bino-

mial process (rnd, gray dotted lines in Fig 1F). Note how P(Bias) increased it’s overall differ-

ence relative to P(rnd) when using zero discriminability. These results illustrate how human

side-choice behavior is stable over time. Intra-individual (temporal) stability in free side-

choice behavior was present in both groups irrespectively of the discriminability conditions.

Decisional biases measured across different perceptual tasks

We next wondered whether participants’ side-choices would manifest similarly across differ-

ent tasks. For that, in a new group of naïve participants, we conducted the free side-choice task

(task #1; k = 1) followed by a second orientation discrimination task (task #2, Fig 2A)[7]. We

illustrate sample results from participant #3024 solving task #2 in Fig 2B, with fitted psycho-

metric curves to the observed averaged choices (Fixed side condition: Bottom | ymax = 1.00, β =

-2.24, x50 = -0.52, A.U.C. = 3.26; Top | ymax = 0.92, β = -2.95, x50 = 0.21, A.U.C. = 5.15, Δ[A.U.

C.] = -1.89; Sensory bias = -0.31; Decisional bias = -0.29; ymax: asymptote, β: steepness, x50:

inflection point).

Next, we compared the choice bias estimations from the 47 participants solving the orienta-

tion discrimination task (task #2) with their side-choice behavior extracted using the original

free side-choice task (task #1). In Fig 2C and 2D, we illustrate examples from two participants

solving both tasks. To assess a potential relationship between the behavioral metrics from

these two tasks, we extracted 42 predictors from task #2 (Fig 2E), and five response variables

from task #1 (Fig 2F). Notably, there were strong cross-correlations across some of these vari-

ables, suggesting that many of these parameters were interdependent of influenced by a com-

mon source (insets in panels from Fig 2E and 2F).

We then applied a multivariable linear regression model (MLRM) to predict the response

variables from task #1 (Fig 2F and 2G). The MLRM regression coefficients revealed significant

interactions between predictors and responses (warm and cold colors show significant positive

and negative slopes, respectively, whereas a white color indicates a non-significant ‘n.s.’ slope

against 1000 shuffles, Fig 2H). In particular, predictors 37–42 from task #2, which directly

quantified sensory and decisional biases, had strong and significant interactions with practi-

cally all response variables from task #1. This reveals a direct link between the decisional and

sensory biases measured in task #2 and the side-choice bias and alternation probabilities

extracted from task #1. We illustrate four relevant sample pair-wise linear regressions in Fig

2I. Interestingly, choice-biases measured in the free side-choice task (task #1 [13]) were better

coupled to decisional than to sensory biases from task #2 (Fig 2I; [7]). These results confirm

the idea that human choice biases are exhibited reliably across different tasks, possibly reflect-

ing behavioral outputs with a stable and common source.
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Behavioral attributes extracted from a reversal-learning task predict

decisional biases

Reinforced sides in 2AFC tasks are generally distributed in a randomized fashion so that deci-

sional biases lead to chance performance [29]. Yet, we know that decision-makers can quickly

adapt their behavior to contingencies that favor one over another option [10, 13]. We imple-

mented a reversal-learning task (task #3) to measure such adaptations. To test visual discrimi-

nation capacities during the first visual choice, we modified task #1 by incorporating stimuli

with 12 similarities (SIM) ranging from k = 0.8 to k = 1. We also changed the 2nd side-choice

phase to a negatively reinforced schedule to favor particular sides during training (in this con-

text, choice biases corresponded to inverse adaptivity [9]; see Methods). We used the same

feedback rules for both discriminative and reinforced side-choices (Fig 3A).

With this task #3, we trained 33 participants across 12 blocks of 60 trials each. For each

block, we used variable or stationary rewarding epochs by reinforcing either randomized (rnd,

randomly permuted balanced sides), or all-left (L), or all-right (R) sequences, respectively. We

repeated each of these blocks four times so that all participants experienced all combinations

of possible transitions across conditions (experimental timeline in the lower panel from Fig

3A).

As expected, visual choices depended on stimulus similarity (F = 19.3, P< 0.001), with per-

formance dropping when k! 1 (logistic fit: ymax = 0.35, β = 76.65, x50 = 0.97; Fig 3B). We next

measured sequential effects (i.e., 1st choice influencing the 2nd choice) by calculating the proba-

bility that the side-choice (2nd choice) involved repeating the same side as with the visual

choice (1st choice). Interestingly, in these conditions, we found no apparent sequential effects

between choices (F = 3.69, P = 0.08), with the observed side-choices following a random bino-

mial process (rnd, orange; F = 0.37, P = 0.54; Fig 3C), and fully independent of stimulus simi-

larity (F = 1.12, P = 0.31; Fig 3D). These observations reflect the lack of sequential effects or

that such effects canceled each other out due to our balanced experimental design. Next, we

calculated a moving average of the participants’ %correct choices during the 2nd forced side-

choice phase (blue line corresponds to group averaged data, Fig 3E). We separated the learning

curves by reinforcement conditions (average of the last 10 trials within each block; randomized

| 48.07% ± 1.39%; left | 96.03% ± 1.73%; right | 95.46% ± 1.49%; non-parametric Kruskal-Wal-

lis test with Bonferroni correction, P< 0.001; n = 33; Fig 3F). The chance performance level

(average from the four blocks with the same contingency) observed in the randomized-side

reinforced condition (Rnd reinf.) implies that participants increased their choice variability

during these blocks. We then took the block-averaged choice records from each participant

and fitted them with mono-exponential curves to extract rising taus (τ) and peak values

achieved (λ; three different examples in Fig 3G). The sorted τ values for left and right rein-

forcements covered a wide range from a τmin� 0.01 to τmax� 0.13 (Fig 3H).

To estimate the volatility (v) and reward (r) rates, we fitted an optimal Bayesian Learner

(BL) model [31] to the side-choice records from the participants (not illustrated; see Methods).

The hierarchical aspect of this model is that the change in r depends on v, and will change

from trial to trial. For example, if a current trial is preceded by many trials with incorrect

responses, then the model will estimate a high v, which will increase the change in r. In con-

trast, lower v values will lead to more stable r probabilities. Thus, when r is stable, then v will

be small, which in turn implies that r will not get much influence by previous trials. Volatilities

were similar with left and right reinforcements (randomized | 22.77 ± 0.51; left | 16.58 ± 0.40;

right | 16.98 ± 0.42; n = 33), but they were ~35% higher with randomized reinforcement (non-

parametric Kruskal-Wallis test with Bonferroni correction, P< 0.001). Likewise, the estimated

reward rates from the BL were similar with left and right reinforcement (randomized | 48.85%
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± 0.76%; left | 87.90% ± 1.70%; right | 87.14% ± 1.50%; n = 33), but were ~43% smaller with

randomized reinforcement (F = 60.97, P< 0.001). Interestingly, participants with higher vola-

tility exhibited a reduced performance (area under the curve) during the single side-reinforced

(R2 = 0.75, m = -3.56, P< 0.001), but not during the randomized-side reinforced blocks (R2 <

0.001, m = 0.02, P = 0.91).

As secondary metrics to detect and quantify overall choice biases, we included the station-

ary (i.e., Shannon) and transition (i.e., conditional) entropies [32] (not illustrated; see Meth-

ods). In addition, we characterized the bias and alternation probabilities for the same

participants when solving task #1 (Fig 3I and 3J). We then collected 24 predictors from task #3

(enlisted in Fig 3K) and applied an MLRM to predict the five response variables from task #1

(same response variables as those depicted in Fig 2F). The MLRM coefficients (plotted as a

function of the training trial within each block) revealed significant interactions between pre-

dictors and responses (colored squares in Fig 3L; see Methods). These results demonstrate that

choice biases and other behavioral attributes extracted from task #3 displayed a strong co-vari-

ation with metrics from task #1.

Choice biases as an individuality measure

Behavioral responses primarily depend on sensory cues, but they are also influenced by past

choices and reinforcers [7]. To assess the dependence of current side-choices on previous

choices, we applied a multiple logistic regression analysis (MLRA with a “logit” link; Fig 4A;

[6]) to the behavioral responses from our last experiments involving task #1 and task #3. We

calculated the regression coefficients (β) by using 15 previous trials [6, 29]. As expected, previ-

ous-side choices from both task #1 (Fig 4B) and task #3 (Fig 4C) had a strong influence on cur-

rent side-choice behavior that outlasted at least 4–5 previous trials. The positive coefficients

reflect increased odds of repeating the same side on the subsequent trials, whereas negative

coefficients indicate alternation.

Because the MLRM from the previous section revealed that behavioral metrics extracted

from multiple tasks strongly co-varied, we explored the possibility of using the predictors to

identify the participants. We implemented a simple linear classifier that minimized the Euclid-

ean distance between observed (i.e., the value of the predictor at a given trial within the block)

and ’final’ predictors extracted from the entire 60 trials/block (i.e., the value of the predictor at

the end of the block). We then calculated the cumulative match characteristic curves by using

increasing epoch durations (the number of cumulative trials from which potential matches

were calculated [13]). As expected, we found that prediction accuracy grew by increasing the

epoch duration, compared against classifications made with 1000 random permutations of the

predictors (rnd, in orange). Moreover, accuracy grew faster when using stronger predictors

(dark and shamrock greens), particularly those extracted from alternation probabilities (Fig

4D). We ranked the predictive power of the predictors on response variables from task #1 by

using a stepwise regression learning procedure (Matlab Regression Learner App; P(Bias) | five

best predictors (increasing strength): 22, 12, 13, 3, 1; five worst predictors (increasing

strength): 24, 17, 4, 7, 11; P(Alternation) | five best predictors: 3, 7, 18, 12, 24; five worst predic-

tors: 20, 13, 19, 1, 11; these numeric IDs correspond to predictor numbers displayed in Fig

3K). Interestingly, this approach revealed that the transition entropy was the best predictor for

alternating choices, but the worst one for biased-choices. In contrast, the rectified slope of the

linear regression applied to the participants’ side-choices in the randomized-side reinforced

blocks was the best predictor for biased-choices but one of the worst for alternating choices.

These results confirm the idea that bias and alternation choice probabilities can be used to pre-

dict the identity of the participants.
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Fig 4. Past decisions influence side-choices in multiple tasks. (A) We conducted a multiple logistic regression

analysis to predict current side-choice behavior from past side-choices, using the same data as in the previous

experiment where participants solved the free side-choice (task #1, B) and the reversal learning (task #3, C) tasks. For

task #1, the probability of repeating a side was strongly influenced by the amount of previous side-biased choices (B).

For task #3, the odds of repeating the same side increased when side-choices were reinforced but decreased when

alternating choices were reinforced (C). (D) Cumulative match characteristic curves as a function of epoch duration

(x-axis). The curves were calculated by using different sets of predictors with their strength identified by using a

stepwise regression learner. Classifications were performed using predictors falling in different percentile ranges, as

indicated by the color bar on the right. Number of subjects in parenthesis.

https://doi.org/10.1371/journal.pone.0245890.g004
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Discussion

We used three tasks aimed to explore perceptual and internally-guided choice biases [13]. The

tasks were easy to perform, allowing us to test 1000 trials/day from each participant. The mea-

sured choice-biases showed heterogeneous magnitudes and preferred sides, indicating that they

were not an artifact from our experimental apparatus and/or experimental conditions [6]. Fur-

thermore, we found that each participant’s side-choice behavior was remarkably stable across

experimental days. Particularly under low discriminability conditions, such a stable representa-

tion was reflected as distinctive patterns of side-choice biases at the individual level. In contrast,

side-choices (measured during the 2nd free side-choice phase) tended to be more similar across

participants under high discriminability conditions (task #1). This was reflected as a strong group

choice coherence and could be explained by at least two factors. The first one is that all partici-

pants were visually tested with precisely the same sequence of pseudo-randomized stimuli. The

second one is that side-choices in task #1 exhibit strong sequential effects with respect to choices

produced during the discriminative phase [13]. In agreement, such strong side-choice coherence

was practically absent in the experiments performed with zero discriminability. The marked dif-

ference between the side-choice and chance level probability distributions make the experiments

performed with zero discriminability a better approach to characterize side-choice behavior.

One of our main results is that behavioral attributes extracted from the participants solving

the different tasks showed a strong intra-individual consistency that could not be explained by

chance [21, 22, 34–36]. Furthermore, the strong MLRM regression coefficients between side-

choices in task #1 and choice biases from task #2 suggests that decisional preferences were

exhibited reliably across these tasks. An alternative way of explaining it is that the measured

behavioral outputs were influenced by stable and shared sources.

In humans, evidence suggests that individual differences influence learning about the pre-

dictive value of multiple cues [37], and differences in the learning curves unveil distinctive

adaptive strategies [38, 39]. In agreement, we found that side-choice biases could be used to

identify participants that solved our tasks, in line with what has been shown for memory detec-

tion tasks [21, 22]. Therefore, an interesting possibility is that choice biases could reflect

human psychological traits that extend to other decision-making settings. Furthermore, such

decisional biases could substantially impact the perceptual evidence accumulation process, as

understood and analyzed through sequential-sampling models [27].

By using reversing contingencies, we found that side and alternating choice sequences

could be effectively reinforced. The premise here was that participants with more flexible

choices had greater choice variability (lower bias) whereas those with less flexible choices had

lower variance (higher bias)

In general, human decisions are adaptive and involve integrating uncertain information in

different time scales [9, 13]. Thus, from this perspective, the learning curves from the partici-

pants solving task #3 could reflect a Bayesian inference strategy, with a strong influence of pre-

vious side-choices [13, 40, 41]. Indeed, the training protocol in this task involved adaptive

side-choice behavior (i.e., action volatility), and reward estimations were beneficial to subjects

to discount information with passing trials. Usually, volatility refers to blocks of trials in which

the optimal solution is continually changing (v.gr., on a trial-by-trial basis). Volatility in posi-

tive reinforcement studies has been widely explored (v.gr., produce positive outcomes; [31,

42], as well as with negative reinforcement schedules (v.gr., avoid adverse outcomes; [43, 44].

Such a reversal-learning paradigm serves to measure the ability of participants to suppress pre-

viously learned responses. Thus, our task #3 provided a proper setting to test the trade-off

between exploration (high choice variance) and exploitation (low choice variance). Indeed, it

has been shown how individual differences in this learning process can reflect different
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implicit assumptions about sequence complexity, leading to performance trade-offs [9]. Inter-

estingly, the learning curves quantified through this approach are thought to reflect the flexi-

bility of responses, and changes in these learning parameters have been linked to impulsive

and compulsive behaviors in a variety of psychopathologies [45, 46]. Therefore, the analysis of

behavioral outputs in our multiple reversal-learning task (task #3) might detect such psychopa-

thologies. Notably, previous evidence suggests that controlled motor variability could also be

beneficial in some conditions [47, 48]. For example, task-relevant variability could explain

some individual differences in learning rates and motor development [48, 49].

Altogether, our results illustrate how participants exhibited isomorphic side-choice biases,

manifested reliably across days and tasks. Many other behavioral metrics co-varied across

tasks and could be employed to predict the side-choice preferences that were not guided by

any feedback. Also, it has been shown that when reinforcement of specific side and alternating

choice sequences is removed, then participants tend to return to their ’innate’ side choice

behavior [13]. A parsimonious explanation is that all these behavioral metrics linked to deci-

sional biases are influenced by a common, internal, and stable source. Our results support this

notion, showing how human choice-biases can be taken as an intrinsic characteristic that var-

ies distinctively among humans.

A complete picture of all the variables and mechanisms contributing to the manifestation of

repetitive behaviors is still missing. However, the propensity to develop such choice stereotypies

should also depend on genomic factors [50]. Structured behavioral patterns are essential for sur-

vival, and highly skilled behavior involves sequences of repetitive actions [51]. Response biases

are also tightly correlated to inhibitory control [23] and could be linked to delayed discounting

(i.e., the reduction in the value of an outcome when it’s reception is delayed; [52]). Some stereo-

typies could also reflect reinforced habits that are quite persistent and hard to extinguish [51].

At the extreme, a high level of behavioral stereotypy could characterize some forms of impulsiv-

ities and psychopathologies [10, 21, 52]. For example, there is a parallelism between choice

biases and the stereotypical clinical behavior exhibited in some cases of autism spectrum disor-

der (ASD; [53]. There is an ongoing debate about what maintains this type of behavior. One

possibility is that repetitive actions produce constant and predictable self-sensory information

[53], and given that people with ASD have an intolerance to uncertainty (IU; [54]), a stereotypi-

cal source of self-sensory information could reduce sensory uncertainty. Given that ASD has

been characterized as a spectrum or a continuum [55], a proposal is that we could use the level

of stereotypical side-choice biases from the presented tasks to predict severity within this range.

Moreover, stereotypies might also be related to the production of non-goal-directed behaviors,

which are impaired in schizophrenia [56], Tourette’s syndrome, and obsessive-compulsive dis-

order patients [57, 58]. Other psychopathologies, such as attention deficit hyperactivity disorder

(ADHD), and Down’s Syndrome, show elevated amounts of intra-individual variability in basic

motor skills [10]. Thus, it would be interesting, if not crucial, to explore how the ’behavioral fin-

gerprint’ extracted from the reversal-learning task predicts psychological traits and syndromes.

To summarize: we showed that human decisional biases were similar across tasks and days.

Although choice stereotypy probably emerges under a variety of environmental conditions, we

here described how this behavior could be precisely characterized in the laboratory using

quantitative metrics. Finally, we showed how side-choice biases could be used as a ‘behavioral

signature’ to identify participants.
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