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A cautionary note on the use of the
Analysis of Covariance (ANCOVA) in
classification designs with and
without within-subject factors
Bruce A. Schneider *, Meital Avivi-Reich and Mindaugas Mozuraitis

Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada

A number of statistical textbooks recommend using an analysis of covariance (ANCOVA)

to control for the effects of extraneous factors that might influence the dependent

measure of interest. However, it is not generally recognized that serious problems of

interpretation can arise when the design contains comparisons of participants sampled

from different populations (classification designs). Designs that include a comparison of

younger and older adults, or a comparison of musicians and non-musicians are examples

of classification designs. In such cases, estimates of differences among groups can

be contaminated by differences in the covariate population means across groups. A

second problem of interpretation will arise if the experimenter fails to center the covariate

measures (subtracting themean covariate score from each covariate score) whenever the

design contains within-subject factors. Unless the covariate measures on the participants

are centered, estimates of within-subject factors are distorted, and significant increases

in Type I error rates, and/or losses in power can occur when evaluating the effects of

within-subject factors. This paper: (1) alerts potential users of ANCOVA of the need to

center the covariate measures when the design contains within-subject factors, and (2)

indicates how they can avoid biases when one cannot assume that the expected value

of the covariate measure is the same for all of the groups in a classification design.

Keywords: ANCOVA, classification design, within-subject design, between-subjects design, mixed design

Introduction

It is commonplace in Psychology to compare the performance of participants randomly sampled
from two or more mutually-exclusive groups. For instance, the ability of men to perform a particu-
lar task might be compared to that of that of women, or the ability of hearing-impaired individuals
to remember details from a lecture they heard might be compared to that of individuals without
hearing impairments. Such designs are often referred to as classification designs because partici-
pants are classified into two or more mutually-exclusive groups based on specific criteria (gender,
hearing status, age, etc.). Once performance measures have been acquired on the participants from
these different groups, the basis for their classification into different groups (e.g., gender, hearing
status, age) is treated as a between-subjects factor in subsequent statistical analyses.

Psychologists also often favor within-subject designs (repeated measures designs) to explore the
effects of fixed values of an independent variable on performance. For example, one could assess
the speech recognition abilities of younger and older adults under different levels of noise. In such
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a design, Age would be a between-subjects classification fac-
tor, and Noise Level a within-subject experimental factor. The
present paper identifies some pitfalls to be avoided when
attempting to use an analysis of covariance (ANCOVA) in
between-subjects classification designs, within-subject experi-
mental designs, and in mixed designs in which one or more
factors is classificatory, while other factors are within-subject.

Between-Subjects Classification Designs
In between-subjects classification designs, participants are ran-
domly sampled from mutually-exclusive populations (e.g., men
and women), giving rise to the different levels of a between-
subjects classification factor (e.g., male vs. female). Such designs
are to be contrasted with so-called experimental designs in which
participants are randomly sampled from a population, and ran-
domly assigned to different experimental conditions. For exam-
ple, an experimenter might want to find out the extent to which
the aggressive tendencies of adolescent males are modulated by
the presence or absence of adolescent females. In such designs,
half of the young men in the sample could have their aggres-
sive tendencies assessed in the presence of young women whereas
the other half have their aggressive tendencies assessed without
young women being present. Here the presence or absence of
young women when young men are being assessed for aggressive
tendencies becomes an experimentally-defined, between-subjects
factor in any subsequent statistical analyses.

In both experimental and classification designs it is under-
stood that task performancemight be affected by a number of dif-
ferent participant characteristics, such as their IQ, years of edu-
cation, etc. It follows that if one could remove the contribution of
individual differences on one or more of these characteristics to
performance, one could more accurately assess the effects of the
main factors of interest in the experiment. ANCOVA was specifi-
cally designed to do precisely this. Specifically, entering a covari-
ate (such as IQ) into the analysis of an experimental design allows
the experimenter to remove the contribution of the covariate to
performance. This is the reason why a number of statistical text-
books recommend using an ANCOVA in experimental designs to
control for the effects of extraneous factors that might influence
the dependent measure of interest (e.g., Rutherford, 2011).

It is also widely-known and understood that an ANCOVA
is based on the assumption that the relationship between the
dependent variable and the covariate is linear, and that the
slope of the line relating the dependent variable to the covari-
ate does not differ across the different conditions in the experi-
ment. For this reason, statistical textbooks recommend that the
homogeneity of slope assumption be tested before conducting an
ANCOVA. However, it is not so widely-known that the validity of
an ANCOVA also depends on another assumption that is, by defi-
nition, valid for experimentally-defined between-subjects factors,
but not necessarily for factors based on the classification of par-
ticipants into mutually-exclusive groups. This assumption is that
the expected value of the covariate is the same for all of the par-
ticipants in the experiment. In experimental designs participants
are randomly sampled from the same population and randomly
assigned to the different levels of the between-subjects factor.
Therefore, the expected value of a covariate measure taken on a

participant will be the same for the different levels of the between-
subjects factor. However, when a between-subjects factor is based
on a classification of participants, this assumption does not nec-
essarily hold. Hence, caution should be employed when consid-
ering an ANCOVA when one or more of the between-subjects
factors are based on a classification of participants into different
groups1.

To see why this is the case, consider the general linear model
for a single factor, between-subjects design with one covariate
measure taken on each of the participants, and only two levels
of the between-subjects factor2. The general linear model of how
the dependent variable (y) might be influenced by the two levels
of the between-subjects factor and a single covariate (x) is:

y1, k = µ + B+ α
(

x1, k − µx1

)

+ e1, k

y2, k = µ − B+ α
(

x2, k − µx2

)

+ e2, k
(1)

where the first subscript specifies the level of the between-subjects
factor, and the second subscript the kth subject in that level
(1 ≤ k ≤ n), with n subjects in each of the two groups. The
grand mean in the population is µ , B is the additive effect asso-
ciated with group 1 of the between-subjects factor, the x1, k and
x2, k are normally-distributed covariate measures on the subjects
in groups 1 and 2 of the between-subjects factor, α is the slope of
the function relating the dependent variable yi, k to the covariate,
ei, k is a normally-distributed error term whose mean is zero and
whose standard deviation is σwg , where σwg represents the joint
contribution of both within-subject and between-subject error
(σ 2

wg = σ 2
ws+σ 2

bs
). Finally, for the sake of simplicity let us assume

that the population standard deviations of the covariates in the
two groups are equal (σx1 = σx2 = σx), but allow the popula-
tion means of the covariates in the two groups to differ one from
another (µx1 6= µx2).

Note that there are two sources of variability in this model:
within-group variance, and variance in the covariate measures.
Hence, when α 6= 0, the error term in a standard ANOVA
(without the covariate) will reflect both sources of variance. The
advantage of an ANCOVA is that it can remove the source of
variance due to the covariate when evaluating between-subjects
effects when certain conditions are met.

To determine the boundary conditions under which an
ANCOVA can remove the source of variance due to the covariate,
and legitimately test for mean level differences between the two
groups (test the null hypothesis that B = 0), we need to deter-
mine the expected values of the various sums of squares for a

1Although a number of authors (e.g., Anderson, 1963; Huitema, 1980; Algina,

1982; Howell, 2010) have noted that violation of the assumption that the expected

values of the covariate are the same for all groups can lead to serious issues with

respect to the interpretation an ANCOVA, to our knowledge, there has been no

thorough exploration of how such violations affect the interpretation of results and

the validity of statistical tests.
2In Section A2 of the Appendix (see Supplementary Material) we show that Equa-

tion (1) specifies the general linear model that is appropriate for a situation in

which: (1) the dependent variable and the covariate are both normally distributed

in each of the two groups; and (2) the correlation between the dependent variable

and the covariate is the same in both groups.
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TABLE 1 | (A) Expected values of the Mean Squares for an ANCOVA analysis of a two-level, Between-Subjects Experiment for data characterized by

Equation (1), when µd = µx1 − µx2 = 0. Because covariate measures are automatically centered (mean covariate score subtracted from each covariate

score) across all subjects when using one of the standard ANCOVA statistical packages, the experimenter does not need to center them when entering

the data. (B) Expected Values of the Mean Squares for an ANCOVA for data characterized by Equation (1), when µd 6= 0 (µx1 6= µx2). An ANCOVA should

always be used to test the null hypothesis that α = 0 because the expected values of the Mean Square for the Covariate and the Mean Square for Error

are the same independent of whether or not µd = 0. Note: PDFNCF is the non-central F distribution with df1 = 1, df2 = 2(n− 1), and non-centrality

parameter, λ = (nµ2
d
)/(2 σ2

x ), where n is the number of participants in each group. (C) Expected Values for an ANOVA of the data. An ANOVA should be

used to test for the Main Effect when µd 6= 0 (µx1 6= µx2).

(A)

Source df ANCOVA: E[Mean Square] when µd = 0 F

Between 1 σ2
wg +

4n (n− 1)B2

2n− 1

MSBetween
MSError

is a valid test of H0: B = 0

Covariate 1 σ2
wg + 2(n− 1)α2σ2

x
MSCovariate
MSError

is a valid test of H0: α = 0

Error 2n–3 σ2
wg

(B)

Source df ANCOVA: E[Mean Square] when µd 6= 0 F

Between 1 σ2
wg +

∫ ∞
x= 0

n (n− 1)
(

2B− α
(

µx1 − µx2
))2

2 (n− 1) + f
PDFNCF [df1,df2, λ, f]df

MSBetween
MSError

is not a valid test of H0: B = 0

Covariate 1 σ2
wg + 2(n− 1)α2σ2

x
MSCovariate
MSError

is a valid test of H0: α = 0

Error 2n–3 σ2
wg

(C)

Source df ANOVA: E[Mean Square] F

Between 1 σ2
wg + α2σ2

x + 2nB2
MSBetween
MSError

is a valid test of H0: B = 0

Error 2n–2 σ2
wg + α2σ2

x

standard ANCOVA of a two-level, between-subjects design3. In
Table 1 we have done this for two cases: (1) µx1 = µx2; and
(2) µx1 6= µx2. Table 1A presents the expected values of the
sums of squares in this design when µx1 = µx2. As the Table 1A
shows, an ANCOVA of data conforming to this model accom-
plishes three things. First, it removes any contribution arising
from variability in the covariate from the error term used to test
null hypotheses (the expected value of the mean square error
term reflects only within-group variance, σ 2

wg). This increases the
precision of the tests of statistical significance provided by the
ANCOVA. Second, the expected value of the mean square for the
between-subjects effect is a joint function of n, B, and σ 2

wg . Hence,
the ratio of the mean square between-subjects to the mean square
error provides a valid test of the null hypothesis that the mean
difference between the two levels of the between-subjects factor
is 0 (a valid test of H0: B = 0). Third, the ratio of the mean
square for the covariate to the mean square error provides a valid
test of whether the dependent variable and the covariate are cor-
related. Hence, an ANCOVA is clearly beneficial for evaluating
between-subjects effects whenever the relationship between the
covariate and the dependent variable does not vary across con-
ditions, and µd = µx1 − µx2 = 0. Note that this assumption
will always be valid when the subjects associated with the differ-
ent between-subjects’ levels are randomly selected from the same

3The derivation of the expected values of this and the other designs considered

here are to be found in Section B of the Appendix (see Supplementary Material).

population and randomly assigned to different experimental
conditions.

The Table 1B shows how a violation of the assumption that
µd = 0 affects tests of significance in an ANCOVA. Note that
the expected value of the mean square error is the same indepen-
dent of whether or not the covariate means (expected values of
the covariate) in the two populations are equal, as is the mean
square for the covariate. Hence, the ratio of the mean square for
the covariate to themean square error is a valid test of the hypoth-
esis that α = 0, independent of any differences in the population
mean values of the covariate in the two groups. However, the sta-
tistical test of the main effect provided by the ANCOVA when
µd 6= 0 (µx1 6= µx2) has a non-central F-Distribution with a
centrality parameter that is a function of µd and σx. Hence in
classification designs, the statistical test for the between-subject
main effect is not valid unless µd = 0 (µx1 = µx2). An exami-
nation of the expected value of the mean square for the between-
subjects main effect whenµd 6= 0 indicates that the probability of
a Type I error, when there is a correlation between the dependent
variable and the covariate, will be higher than the nominal value
chosen. The reason for this is that the covariate contributes to this
main effect even when B = 0. Conversely, this same mean square
indicates that a strong main effect (B > 0) will be reduced when-
ever α(µx1 − µx2) ≈ 2B, thereby reducing the power to detect a
difference between the two groups when, in fact, there is one.

The Table 1C shows that a standard ANOVA provides a valid
test of whether the expected difference between the two groups
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is significantly different from 0 even when µd 6= 0 (µx1 6= µx2).
This leads to the following recommendations when considering
applying an ANCOVA. If participants are randomly assigned to
the levels of a between-subjects factor, then conduct a standard
ANCOVA. If, however, one or more of the factors is classifica-
tory, use an ANCOVA to evaluate the overall contribution of
any covariates. Then, use a standard ANOVA to evaluate other
between-subjects effects.

To better understand the implications of performing an
ANCOVA when there is, and when there is not, a difference
between the expected values of the covariate in the two popu-
lations, consider the following concrete example. Suppose we are
interested in how well native and non-native listeners can com-
prehend speech in different types of listening conditions. Because
the literature has established a link between listening comprehen-
sion and reading comprehension, it makes sense tomeasure both,
and use reading comprehension as a covariate when analyzing
how acoustic variables affect listening comprehension. Research
in our lab (Avivi-Reich et al., 2014) has shown that young adults
whose first language is English (native speakers) have average
Nelson-Denny reading comprehension scores of approximately
25, with a standard deviation of 6, whereas young adults for
whom English is a second language (non-native speakers) have
average Nelson-Denny reading comprehension scores of approx-
imately 17, also with a standard deviation of 6. Because both
listening and reading comprehension scores are likely to draw on
a common pool of linguistic and cognitive processes, we would
expect them to be correlated. In our lab we typically find the
correlation coefficient between listening and reading comprehen-
sion scores to be about 0.4 in both populations when listening
occurs in a quiet background. If we assume that these param-
eters characterize the distributions from which the participants
were sampled, we can construct a model in which: (a) listen-
ing comprehension is correlated with reading comprehension
scores to the same extent in both groups (ρ = 0.4); (b) the
population standard deviation of the covariate measure (reading
comprehension) is the same in both groups (σx = 6); (c) but the
means of the covariates differ between the two group (µx1 = 17,
µx2 = 25). Furthermore, we will make the assumption that pairs
of scores (listening comprehension and reading comprehension)
are bi-normally distributed.

Figure 1A plots the hypothetical bi-normal distribution asso-
ciated with the native speakers for the case in which the hypo-
thetical population mean score for listening comprehension is
50, the population mean score for reading comprehension is 25,
with the same standard deviation (6) for both measures, and
a correlation between them of 0.4. As this distribution shows,
higher listening comprehension scores tend to be associated with
higher reading comprehension scores, and vice versa. Figure 1B
plots this distribution along with a hypothetical distribution of
paired listening and reading comprehension scores for the non-
native speakers. In the non-native speakers’ distribution, the
mean value of the listening comprehension scores is assumed
to be the same as for the native speakers (µL, native speakers =

µL, non−native speakers = 50). However, the mean scores for read-
ing comprehension are assumed to differ between the two groups
(µR, native speakers = 25, µR, non−native speakers = 17), with the

standard deviation of the scores along each dimension being the
same in both groups for both reading and listening comprehen-
sion (σL, native speakers = σL, non−native speakers = σR, native speakers =

σR, non−native speakers = 6). Finally, the correlation between listen-
ing and reading comprehension is assumed to be the same in both
groups (ρ = 0.4).

Equation (1) specifies the general linear model that is equiva-
lent to the bi-normal models depicted in Figure 1. Note that in
the general linear model, the parameter α specifies the degree
to which the covariate (in our example, the covariate is reading
comprehension) contributes to the dependent variable (listen-
ing comprehension), whereas µ+ B corresponds to the expected
value of the dependent variable for group 1 (non-native speak-
ers), and µ − B corresponds to the expected value for group 2
(native speakers)4. Hence, the two null hypotheses that we would
like to test are B = 0, and α = 0.

In Figure 1B the green line outlines the plane defined by
y = 50. Clearly, in this example, the mean listening comprehen-
sion score in both native speakers and non-native speakers is 50.
Hence in this example B = 0. The blue line outlines the plane
defined by x = 17, whereas the red lines outline the plane defined
by x = 25. These planes clearly indicate that the mean covariate
value for the non-native speakers’ group is 17, whereas it is 25
for the native speakers’ group. To simulate a two group experi-
ment based on the model shown in Figure 1B, we took random
samples of size 40 from each distribution, labeled the listening
comprehension score as the dependent variable, and the read-
ing comprehension score as the covariate, and conducted both
an ANCOVA and ANOVA analysis of the data. Assuming a Type
I error of 0.05, we determined whether or not the null hypothesis
that there was no main effect due to Group (B = 0, no differences
between the native and non-native speakers) was rejected for
the ANCOVA and ANOVA. We repeated this procedure 10,000
times and counted the number of rejections of this null hypothe-
sis for both types of analyses. The null hypothesis that there was
no main effect due to group (no differences between the native
and non-native speakers) was rejected approximately 5% of the
time when an ANOVA was conducted on the data (consistent
with a Type I error of 0.05), but was rejected approximately 50%
of the time by the ANCOVA analysis of the same data, despite
the fact that Figure 1B indicates that the average listening com-
prehension score is the same for native and non-native speakers.
Hence, applying an ANCOVA to these data leads to a serious ele-
vation of the Type I error rate when evaluating the main effect
due to a between-subjects factor.

Figure 1C, indicates a different situation where an absolute
difference of 3.2 units is introduced between the mean listening
comprehension scores in the two groups (µL, non−native speakers =

48.4, µL, native speakers = 51.6), with all other parameters remain-
ing the same. In this example, the research hypothesis concern-
ing the Group effect is true, namely that there is a main effect
of Group (B 6= 0, there is a difference between the native and
non-native speakers in terms of performance on the listening

4The expected value of ex,1 = the expected value of ex,2 = 0, and the expected value

of (x1,k −µx1)= the expected value of (x2,k −µx2) = 0, so that the expected value

of y1,k = µ + B, and the expected value of y2,k = µ − B.
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FIGURE 1 | Hypothetical bi-normal distributions of pairs of listening

comprehension (dependent variable, y) and reading comprehension

(covariate, x) scores for a population of native speakers for whom

English is a first language (EL1s) and non-native speakers for whom

English is a second language (EL2s). In all four plots the population

correlation coefficient between listening and reading comprehension is 0.4

for both native speakers (EL1s) and non-native speakers (EL2s). (A) A

hypothetical bi-normal distribution for native speakers (EL1s) with population

mean value for listening comprehension of 50 (SD = 6), and reading

comprehension of 25 (SD = 6). The green line defines the plane for y = 50,

the red line for the plane x = 25. (B) The same distribution for the native

speakers (EL1s) as in (A) along with the hypothetical distribution of data for

non-native speakers (EL2s). Non-native speakers (EL2s) differ from native

speakers (EL1s) only insofar as the population mean for their covariate

measures is 17 instead of 25. The blue line outlines the plane for x = 17. (C)

The mean of the y values for the native speakers (EL1s) here is 51.6,

whereas it is 48.4 for the non-native speakers (EL2s). All of the other

parameters are the same as in (B). The gray line outlines the plane for

y = 48.4, whereas the black line outlines the plane for y = 51.6. (D) The

mean value of the covariate measure (reading comprehension) has been set

to 21 for both groups. All other parameter values are the same as in (C). The

purple line outlines the plane corresponding to x = 21.

TABLE 2 | (A) Expected values for an ANCOVA of a Within-Subject Experiment with two levels when the covariate measures are centered for the model

described in Equation (2). W*C is the interaction between the within-subject factor and the covariate. Before conducting an ANCOVA with standard

statistical packages, be sure to center the covariate. (B) Use an ANOVA to estimate all Within-Subject Sources of Variance other than that due to the

interaction between the Within-Subject factor and the Covariate.

(A)

Source df ANCOVA: E[Mean Square] when the covariate measures are centered F

Within 1 2nW2 + 2α2
d
σ2
x + σ2

ws
MSWithin

MSError
is not a valid test of H0: W = 0

W*C 1 2(n− 1)α2
d
σ2
x + σ2

ws
MSW∗C

MSError
is a valid test of H0: αd = 0

Error n−2 σ2
ws

(B)

Source df ANOVA: E[Mean Square] when the covariate measures are centered F

Within 1 2nW2 + 2α2
d
σ2
x + σ2

ws
MSWithin

MSError
is a valid test of H0: W = 0

Error n−1 2α2
d
σ2
x + σ2

ws
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comprehension task). Yet an ANCOVA conducted on simula-
tions based on these distributions (with 40 points in each group)
rejected the null hypothesis that there was no main effect due
to group only approximately 5% of the time, whereas this null
hypothesis was rejected approximately 56% of the time in the
corresponding ANOVA analysis. This result follows directly from
an examination of the expected value of the mean square for the
main effect when there is a difference between the covariate pop-
ulation means in the two groups (see Table 1B), because in the
general linear model of these data, the slope parameter is α = 0.4,
and the parameter for the Group effect is B = −1.6 for the non-
native speakers, so that 2B − α

(

µx,EL2 − µx,EL1

)

= −3.2 − 0.4
(17–25)= 0. Hence an ANCOVA of data generated by this model
fails to detect a difference between the means of the dependent
variable of the magnitude shown in Figure 1Cwhereas the power
to detect a difference of this magnitude is 0.56 for an ANOVA of
the same data.

Figure 1D depicts a situation in which the expected value of
the covariate measure is the same in both groups (µx1 = µx2 =

21) but there is still a difference of 3.2 between the listening com-
prehension measures in the two groups. Simulations in this case
show that the power to reject the null hypothesis for the Group
effect, when this specific research hypothesis is true, is greater for
the ANCOVA analysis (p ≈ 0.62) than it is for the ANOVA anal-
ysis of the same data (p ≈ 0.56). This illustrates that when the
expected values of the covariate are the same in both groups, and

the covariate measure is correlated with the dependent variable,
an ANCOVA provides a more powerful test of whether or not
there is a main effect due to Groups than does an ANOVA.

An examination of Table 1 also indicates that an ANCOVA
provides a valid test of the null hypothesis that α = 0,

FIGURE 2 | Estimated probability density functions for older and

younger adults on the Mill Hill Vocabulary test.

TABLE 3 | (A) Expected values of the Mean Squares for the within portion of mixed 2 × 2 ANCOVA when µd = 0 (µx1 = µx2). W*C and W*B are the

Within*Covariate and the Within*Between interactions, respectively. (B) The expected values of the Within portion of an ANCOVA when µd 6= 0 (µx1 6= µx2).

Note: PDFNCF is the non-central F distribution with df1 = 1, df2 = 2(n− 1), and non-centrality parameter, λ = (n µ2
d
)/(2 σ2

x ), where n is the number of

participants in each group. (C) Expected Value and F test of the W*B interaction and within-subject main effect from the within section of an ANOVA.

(A)

Source df ANCOVA: E[Mean Square] when µd = 0 F

Within 1 4nW2 + 2α2
d
σ2
x + σ2

ws
MSWithin

MSError
is not a valid test of H0: W = 0

W*C 1 4(n− 1)α2
d
σ2
x + σ2

ws
MSW∗C

MSError
is a valid test of H0: αd = 0

W*B 1
8n (n− 1)BW2

2n− 1
+ σ2

ws
MSW∗B

MSError
is a valid test of H0: BW = 0

Error 2n–3 σ2
ws

(B)

Source df ANCOVA: E[Mean Square] when µd 6= 0 F

Within 1 4nW2 + 2α2
d
σ2
x + σ2

ws
MSWithin

MSError
is not a valid test of H0: W = 0

W*C 1 4(n− 1)α2
d
σ2
x + σ2

ws
MSW∗C

MSError
is a valid test of H0: αd = 0

W*B 1
∫ ∞
x= 0

2n (n− 1) (2BW − αd
(

µx1 − µx2
)

)
2

2(n− 1)+ f
PDFNCF [df1,df2, λ, f]df + σ2

ws
MSW∗B

MSError
is not a valid test of H0: BW = 0

Error 2n–3 σ2
ws

(C)

Source df ANOVA: E[Mean Square] F

Within 1 4nW2 + 2α2
d
σ2
x + σ2

ws
MSWithin

MSError
is a valid test of H0: W = 0

W*B 1 4 nBW2 + 2α2
d
σ2
x + σ2

ws
MSW∗B

MSError
is a valid test of H0: BW = 0

Error 2n–2 2α2
d
σ2
x + σ2

ws
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independent of the difference between the means of the covari-
ate in the two groups. Hence this null hypothesis was rejected
approximately 96% of the time for the three models depicted in
Figures 1B–D. These example indicate that an ANCOVA always
provides a valid test of the null hypothesis that the relationship of
the covariate to the dependent variable is zero, but only provides
a valid test of whether themeans of the two groups with respect to
the dependent variable differ from one another when the popula-
tion mean values of the covariate measures are the same in both
groups.

Evaluating Within-subject Effects

The first thing to note is that when an ANCOVA is conducted on
data collected in an experiment in which there are within-subject
factors, the covariate measures must be centered across all of the
participants in the experiment. When the experimental or classi-
fication design consists only of between-subjects factors, one does
not need to worry about centering the covariate measures when
using standard statistical packages because these packages auto-
matically center the covariates5. However, when the experiment

5To confirm that the covariates are centered by the standard statistical packages

when there are only Between-Subjects factors, conduct such an analysis with and

without the covariates centered. The results of the analysis will be the same in both

contains within-subject factors, these standard programs do not
automatically center the covariatemeasures, and the usermust do
so before entering the measures into these programs. Although
the need to center the covariate has been noted previously (e.g.,
Delaney and Maxwell, 1981) automatic centering of the covari-
ate has not been incorporated into standard statistical packages
such as SPSS, SAS, or R. Moreover, we are not aware of any men-
tion of the need to center the covariate before entering data into
these programs in any of the manuals that have been published
for users of these three packages that we have examined6. Hence,
when the experiment contains within-subject factors, it is neces-
sary to center the covariates across all participants before using
any of these programs.

instances. However, if the design contains only Within-Subject factors, the sums

of squares for Within-Subject effects that do not involve the covariate will differ

depending upon whether or not the covariates are centered. Since it is also true that

these packages do not center the covariate in mixed Within-Subject and Between-

Subjects designs, the experimenter should center the covariate measures whenever

the design has Within-Subject factors.
6We could find nomention of this problem in three commonly used SPSSmanuals:

(1) Bryman and Cramer (2009), (2) Field (2009), and (3) Norušis (2004), and we

could not find any clear warning to center the covariate in within-subject designs

in two SAS manuals: (1) Der and Everitt (2009), and Marasinghe and Kennedy

(2008). The R manuals we reviewed (Faraway, 2005; Gries, 2009; Pace, 2012) did

not discuss the use of ANCOVA in within-subject or mixed within-subject and

between-subjects designs.

TABLE 4 | Hypothetical number of questions correctly answered under two different levels of background noise (Quiet vs. Noise, within-subject factor) by

subjects sampled from two different age groups (Young vs. Old, between-subjects factor).

Subject no. Age group Background noise level Covariate (vocabulary size) Covariate (centered) Covariate (centered within each group)

Quiet Noise

1 Young 48 41 17 −0.15 3.3

2 Young 51 39 18 0.85 4.3

3 Young 40 40 14 −3.15 0.3

4 Young 41 39 13 −4.15 −0.7

5 Young 35 34 11 −6.15 −2.7

6 Young 36 32 12 −5.15 −1.7

7 Young 39 41 12 −5.15 −1.7

8 Young 47 44 16 −1.15 2.3

9 Young 41 37 14 −3.15 0.3

10 Young 39 41 10 −7.15 −3.7

11 Old 44 39 23 5.85 2.4

12 Old 44 45 19 1.85 −1.6

13 Old 46 46 23 5.85 2.4

14 Old 45 40 21 3.85 0.4

15 Old 46 43 21 3.85 0.4

16 Old 45 48 21 3.85 0.4

17 Old 40 46 20 2.85 −0.6

18 Old 45 43 21 3.85 0.4

19 Old 40 42 18 0.85 −2.6

20 Old 41 43 19 1.85 −1.6

The covariate measure is vocabulary size. To center the covariate measures across groups, compute the mean value of the covariate for all of the subjects and subtract this value

from each of the covariate measures. This is how the column labeled “Covariate (Centered)” was obtained. It is the centered covariate measures that are entered into the analyses

(see Figure 3). In the column labeled “Covariate (Centered within each group),” the mean of the covariates in each group is subtracted from the covariate measures in that group. The

covariate measures centered within each group are not entered as input to the statistical package. However, they are useful in interpreting the results (see Figure 4).
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Once the covariate measures have been centered, an
ANCOVA applied to an experiment with within-subject fac-
tors can be quite useful under certain conditions. To illus-
trate the possible benefits of an ANCOVA in such a sit-
uation, we will examine the general linear model for an
ANCOVA in a single-factor, within-subject design with only
two levels of the within-subject factor. The model for such a
design is:

y1, k = µ +W + (α + αd) (xk − µx) + Sk + ews1,k

y2, k = µ −W + (α − αd) (xk − µx) + Sk + ews2,k
(2)

where µ is the grand mean in the population,W is the effect due
to being in level 1 of the within-subject factor, Sk is the effect
due to being subject k (1 ≤ k ≤ n), xk is covariate measure on
subject Sk, α is the coefficient specifying the average contribu-
tion of the covariate to the dependent variable, αd specifies the
extent to which the contribution of the covariate in level 1 of the
within-subject factor differs from its average contribution to the
dependent variable, and ews1,k and ews2,k are normally distributed
random deviates whose mean is zero and whose standard devi-
ation, σws, is the same for all subjects and levels of the within-
subject factor. The covariate measure, xk, is also assumed to have
a normal distribution in the population with a mean of µx and a
standard deviation of σx.

Note that this ANCOVA model allows the linear relationship
between the covariate and the dependent variable to differ for dif-
ferent levels of the within-subject factor. Specifically, the slope
of the function relating the dependent variable in level 1 of the
within-subject factor to the covariate measure is α + αd, whereas
in level 2, the slope is α−αd. Hence, the slope difference between
the two levels of the within-subject factor is 2αd. Indeed, one of
the advantages of conducting an ANCOVA in a within-subject
design is that one can test whether the slope of the line relating
the dependent variable to the covariate is altered by the different
levels of the within-subject factor by testing the null hypothesis
that αd = 0.

The Table 2A presents the expected values of the mean
squares for an ANCOVA for a single-factor, within-subject design
with two levels when the covariate has been centered before
submitting the data to one of the standard statistical packages.
Table 2 shows that an ANCOVA successfully removes any con-
tribution of the covariate to the mean square error and provides
a valid test of the null hypothesis that αd = 0. However, it does
not provide a valid test as to whether the difference between the
two conditions is significant because the mean square for the
within-subject main effect is contaminated by the presence of
covariant variance, whereas the mean square error is not. Hence,
the probability of a Type 1 error will be elevated when αd 6= 0. To
evaluate the main effect of the within-subject factor, one needs
to conduct an ANOVA on the data (see Table 2B). Hence, when
analyzing data in a design that is solely within-subject, once the
measures have been centered, one can use an ANCOVA to esti-
mate the within∗covariate interaction, but then should employ
a standard ANOVA to evaluate any effects not involving the
covariate.

Mixed Between-Subjects and
Within-Subject Design

We have seen that an ANCOVA of a between-subjects design
provides valid tests of all between-subjects effects when the fol-
lowing two assumptions are met: Assumption 1, the slope of
the line relating the covariate to the dependent variable is the
same for all levels of the between-subjects factor, and Assump-
tion 2, the expected value of the covariate in each level of the
between-subjects factor is the same. Recall that the latter assump-
tion will be met if subjects are randomly assigned to the dif-
ferent levels of the between-subjects factor but is unlikely to be
met when the different levels represent different populations of
subjects. We have also seen that when the design includes only
within-subject factors, an ANCOVA can be used to test for inter-
actions between the within-subject factors and the covariate, but
an ANOVA should be used for evaluating all other within-subject
effects. Hence, in a mixed between-subjects and within-subject
design, all tests in the between-subjects portion of the analysis will
be valid when Assumptions 1 and 2 are met, as well as any inter-
action between the covariate and within-subject factors in the
within-subject portion of the ANCOVA as long as the covariate
is centered by the experimenter. However, this does not address
the question of whether or not the tests involving interactions

FIGURE 3 | The SPSS data file used as input to both an ANCOVA and

an ANOVA of the data from Table 4. Quiet and Noise are identified as the

two levels of the Within-Subject factor in a repeated measures analysis. Age

Group is the Between-Subjects factor in this analysis. In the ANCOVA, the

covariate is the Centered Vocabulary scores. The output of these analyses are

shown in Table 5.
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between within-subject and between-subjects factors provided
by an ANCOVA are valid even when the two above-mentioned
assumptions are met.

To evaluate how Between∗Within interactions are handled
in an ANCOVA, we have examined what happens to the
Between∗Within interaction in a mixed model with within- and
between-subjects factors with two levels each. The equations
defining this model are:

y1,1,k = µ + B+W + BW + (α + αd)
(

x1,k − µx1

)

+ S1,k + ews1,1,k

y1,2,k = µ + B−W − BW + (α − αd)
(

x1,k − µx1

)

+ S1,k + ews1,2,k

y2,1,k = µ − B+W − BW + (α + αd)
(

x2,k − µx2

)

+ S2,k + ews2,1,k

y2,2,k = µ − B−W + BW + (α − αd)
(

x2,k − µx2

)

+ S2,k + ews2,2,k

(3)

where the first subscript of y specifies the level of the between-
subjects factor, the second subscript of y specifies the level of the
within-subject factor, and k, n, µ , B, W, x1,k, x2,k, α, αd, µx1,
µx2, S1,k, and S2,k are as defined above. The Table 3A presents
the expected values of the various within-subject sums of squares
when Assumptions 1 and 2 apply in this mixed 2× 2 design, and
the covariate is centered by the experimenter. An examination of
this table shows that when these assumptions are met, the within-
subject section of the ANCOVA removes the source of variance
due to the covariate in the error term, and provides a valid test
of the Within∗Covariate interaction (i.e., a valid test of the null
hypothesis that αd = 0), and a valid test of the Between∗Within
interaction (i.e., a valid test of the null hypothesis that BW = 0).
However, as an examination of themean squares indicates, it does
not provide a valid test of the within-subject main effect because
the mean square for the within-subject main effect is contami-
nated by the variability in the covariate when αd 6= 0 whereas the
mean square error is not. Finally, because the between-subjects

portion of the general linear model is based on the average per-
formance of a participant (averaged over within-subject effects),
all tests involving between-subjects factors in an ANCOVA will
also be valid when the data satisfy Assumptions 1 and 2, and the
covariate measures are centered by an experimenter.

This raises the question of how to analyze the data from
an experiment in which Assumption 2 is unlikely to be valid.
Such is likely to be the case when the different levels of the
between-subjects factor represent different populations of partic-
ipants (e.g., musicians versus non-musicians, young versus old
adults). The Table 3B presents the expected sums of squares of
the within-subject effects in a mixed 2× 2 design when Assump-
tion 2 does not hold but where the experimenter has centered
the covariate before submitting the data to a standard ANCOVA
analysis. This Table 3B shows that the only test that is valid in the
within-subject portion of the ANCOVA is the Within∗Covariate
interaction. Moreover, simulations, similar to those carried out
for single factor, between-subjects designs (see Figure 1) indi-
cate that substantial increases in Type 1 error rates, as well as
substantial losses in power can occur in these designs when the
means of the covariates differ in a classification design, and there
are correlations among the dependent variable and the covariate.
Hence, in this case, the appropriate solution is to use an ANOVA
to evaluate all other within-subject effects. The Table 3C shows
the expected values obtained from the within-subjects portion of
an ANOVA of the data.

How to Use ANCOVA in Mixed
Between-Subjects and Within-Subject
Designs

When it is reasonable to assume that the expected value of a
covariate measure is the same for each grouping of subjects, one
can use a standard ANCOVA to analyze the data provided that
one first centers the covariate before entering the data into a stan-
dard statistical package. If this is done an examination of the

TABLE 5 | Composite ANCOVA table for the Table 4 data.

Source Type III Sum of Squares df Mean Square F Sig

TESTS OF WITHIN-SUBJECT EFFECTS

Background*VocabularyCentered (from ANCOVA) 71.348 1 71.348 17.693 0.001

Error term (from ANCOVA) 68.552 17 4.032

Background (from ANOVA) 22.500 1 22.500 2.895 0.106

Background*AgeGroup (from ANOVA) 19.600 1 19.600 2.522 0.130

Error (from ANOVA) 139.900 18 7.772

TESTS OF BETWEEN-SUBJECTS EFFECTS

VocabularyCentered (from ANCOVA) 162.950 1 162.950 15.076 0.001

Error (from ANCOVA) 183.750 17 10.809

AgeGroup (from ANOVA) 108.900 1 108.900 5.654 0.029

Error (from ANOVA) 346.700 18 19.261

The data were submitted first to a repeated measures ANCOVA with Vocabulary as a Covariate. Note that the Vocabulary scores were centered when they were submitted to the

ANCOVA. The Within*Covariate and the Main effect of the covariate are evaluated within the ANCOVA. All other effects are taken from an ANOVA on the same data without the

covariate.

Frontiers in Psychology | www.frontiersin.org 9 April 2015 | Volume 6 | Article 474

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Schneider et al. ANCOVA in classification designs

µd = 0 (µx1= µx2) portion of Tables 1, 3 indicate that all F-
tests involving the covariate, and all tests involving the between-
subjects factor are not only valid, but also more precise because
the ANCOVA eliminates the contribution of the covariate to
performance when conducting statistical tests.

When there is reason to believe that the expected values of the
covariate measures in the two groups are substantially different,
conducting a standard ANCOVA can lead to serious errors, and
a different procedure should be followed. Consider, for example,
a classification design in which the experimenter wishes to com-
pare younger and older adults with respect to how well they can
comprehend spoken material in different levels of background
noise. Two age groups constitute the between-subjects factor. Let
the within-subject factor be the level of a background masker
(quiet versus steady-state noise), and the covariate be vocabulary
size. Data from our laboratory indicate that older adults typically
have a larger vocabulary score than younger adults. Figure 2 plots
estimated probability density functions for Mill Hill Vocabulary
scores based on data collected in our lab over the past few years
for two age ranges (young, 17–32,M = 21; old, 60–91,M = 73).
Figure 2 shows that these scores are normally distributed with
the same variance in both age groups. Indeed an F-test of the ratio
of sample variances failed to reject the null hypothesis that the
two population variances were equal [F(379, 280) = 1.06, p > 0.5].
However, a t-test of the hypothesis that the population means
were equal clearly indicates that they are not [t(657) = 10.52,
p < 10−20]. Hence, the expected value of this covariate is not
likely to be the same in both age groups and it is best to assume
that µd 6= 0. Sample data for the above specified design are pre-
sented in Table 4. In such a case, the recommended procedure is
to conduct a standard ANCOVA to test hypotheses concerning
the effect of covariate (α) and the Within∗Covariate interaction
(αd), and to use a standard repeated measures ANOVA (with-
out the covariate) to evaluate all other effects. Figure 3 shows
the data file that served as input to SPSS (version 22). Both an
ANCOVA and an ANOVA were performed on the data. Table 5
presents the hybrid analysis for this type of design for the input
shown in Figure 3. In this hybrid analysis, the only test taken
from theWithin Section of the ANCOVA is theWithin∗Covariate
interaction (Background∗VocabularyCentered), and the only test
taken from the Between Section of the ANCOVA is main effect of
the Covariate (VocabularyCentered). The tests of the main effect
due to the Within factor (Background) and the Within∗Between
interaction (Background∗AgeGroup) are taken from the Within
Section of the ANOVA, and the main effect of the Between factor
(AgeGroup) is taken from the Between Section of the ANOVA.

Interpretation of Interactions Between
Covariates and Within-Subject Factors

TheWithin∗Covariate interaction term tests whether the slope of
the line relating the covariate to the dependent measure differs
among the different levels of the within-subject factor. Figure 4
plots the relationship between the dependent variable and the
covariate (centered within each age group) for the example used

FIGURE 4 | Relationships between the number of questions

answered correctly and the covariate (centered in each age group)

for the data in Table 4. The top panel plots the number of questions

answered correctly, averaged over the within-subject factor, as a function

of the covariate measures. The middle and bottom panels plot the data

for the quiet and noisy conditions. The estimated scale factors for the

different conditions (α̂, α̂d ) can be obtained from the slopes of the lines in

these plots. In this model the estimated within-subject difference

(ŵ1 − ŵ2) is the difference between the intercepts of the two straight

lines in the lower two panels. Hence, in this example, the Mean Square

for the Within-Subject Main Effect is 10× (42.65− 41.15)2 = 22.5, as

computed by the ANOVA.
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TABLE 6 | Recommended procedures to follow when conducting an ANCOVA for three types of designs: (1) All factors are Within-Subject; (2)

Experimental designs in which subjects are randomly selected from a uniform population and randomly assigned to different experimental conditions,

and (3) Classification designs in which the different levels of Between-Subjects factor consist of samples from different populations (e.g., musicians and

non-musicians) where it cannot be assumed the expected value of the covariate is the same across populations.

All factors Within-Subject Experimental, Between-Subjects Designs with or

without a Within-Subject component (subjects randomly

selected from a uniform population and randomly

assigned to different experimental conditions)

Classification Designs (with or without a Within-Subject

component) where it cannot be assumed that the

expected value of the covariate measures is the same

for each group of participants (e.g., the different levels

of the Between-Subject factor represent random

samples from different populations)

1. Center the covariate measures 1. Center the covariate measures* 1. Center the covariate measures

2. Conduct an ANCOVA 2. Conduct an ANCOVA 2. Conduct an ANCOVA

3. Use the ANCOVA to evaluate all

effects involving covariates

3. Use the ANCOVA to evaluate all Between-Subjects effects

and any interactions of Between-Subjects and Within-Subject

effects, including Within*Covariate interactions

3. Use the ANCOVA to evaluate all effects involving a covariate

4. Conduct an ANOVA 4. Conduct an ANOVA 4. Conduct an ANOVA

5. Use an ANOVA to evaluate all

remaining effects

5. Use an ANOVA to evaluate all remaining Within-Subject

effects

5. Use the ANOVA to evaluate all remaining effects

Note that whenever between-subject factors are involved, it is important to first test whether the relationship between the dependent variable and the covariate is the same for all levels

of the between-subjects factor (e.g., Howell, 2010, p. 600–603).

*Although it is not necessary to center the covariate measures before entering the data into a standard statistical package when all factors are Between-Subjects, it is necessary to do

so when the experimental design contains Within-Subject factors because these programs do not center the covariate measures when evaluating within-subject effects. To be safe,

always center the covariate measures before entering them into a statistical package.

above to visualize the contribution of the covariate to the average
performance of each subject (top panel), and to the different lev-
els of the within-subjects factor (middle and lower panels). Here
we find that the contribution of the covariate to performance is
lessened in a noisier environment. This would be consistent with
a hypothesis that the presence of noise disrupts lexical processing.
Because this model specifically hypothesizes that the expected
value of the covariate differs between the two groups, it is reason-
able to estimate the level of difference between the two functions
relating the dependent variable to the covariate as the difference
between these two functions at the point on the abscissa that rep-
resents our best estimate of the expected values of each of the
covariate measures in each group. Note that our best estimate
of the population mean covariate in each group occurs when
xi,k = xi. Hence, the difference in the intercept values of the two
linear functions in the two lower panels of Figure 3, provides an
unbiased estimate of 2W.

In general, when there is reason to believe that the popu-
lation mean value of the covariate is the same across all sub-
ject groups, the data can then be submitted to a standard
ANCOVA package provided that the covariate measures are cen-
tered across all subjects before entering the data into a stan-
dard statistical package (centering the covariate is a neces-
sary step when the design contains within-subject factors). If
this is done then all of the tests involving the covariate and
all of the tests involving between-subjects factors in both the
Within-Subject and Between-Subjects portion of the ANCOVA
will be valid. The remaining within-subject effects then should
be evaluated using an ANOVA. When there is some doubt as
to whether the population mean covariate is the same across
all groups, conduct both an ANCOVA and an ANOVA. Use
the ANCOVA for testing the main effect of the covariate and
the Within∗Covariate interaction. Then use the ANOVA to test

all other remaining effects. Table 6 specifies the recommended
steps to be followed when: (1) all factors are within-subject; (2)
the design contains between-subjects factors where the expected
value of the covariate is the same for all groups of subjects;
and (3) the expected value of the covariate might differ across
groups.

Concluding Remarks

In psychological research, we often have reason to believe that
two different measures taken on individuals are likely to be
correlated in the population from which individuals were sam-
pled. For instance, we would expect measures of listening com-
prehension to be correlated with measures of reading compre-
hension because a common set of linguistic and cognitive pro-
cesses are likely to be engaged when information is received
either aurally or visually. Hence, the appropriate samplingmodel,
given that both measures are normally distributed, is one in
which paired observations are being sampled from bi-normal
distributions like those shown in Figure 1. If one of the two
measures is the main variable of interest, it would appear to
be sensible to enter the other measure as a covariate. When
the expected value of the covariate measure is the same in
every group of subjects in a between-subjects design, conduct-
ing an ANCOVA reduces both the error sum of squares, and
the sum of squares due to the Group main effect, thereby
increasing the power of tests involving group differences. Note
that this is a reasonable assumption in experimental designs,
in which subjects are drawn from the same population and are
randomly assigned to different levels of the between-subjects
factor.

However, the ANCOVA in classification designs, where the
different levels of a between-subjects factor consist of individuals
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sampled from different populations, is not so straightforward7. In
such instances, tests involving between-subjects factors are con-
taminated by the differences among the expected values of the
covariate measures across the different populations in the exper-
imental design. In this paper, we have shown that the hybrid
procedure, outlined in the third column of Table 6, circumvents
these problems, and provides valid tests of all of the parameters
of the model.

In conclusion, we urge investigators, who have used SPSS
or any equivalent package to conduct an ANCOVA in designs
which contained one or more within-subject factors (repeated
measures designs), to re-examine their analyses to see if and
how the covariate or covariates were centered before performing
the ANCOVA. If the covariate measures were not centered in
designs involving within-subject factors before entering the data

7It is interesting to note that the division of a population into different subgroups

leads to interpretational difficulties in other designs. These include the paradoxical

results (Yule, 1903; Simpson, 1951) that can occur in the analysis of contingencies

among dichotomous variables; or how the correlation between before and after

measures of an attribute clouds the interpretation of whether or not the passage of

time has a differential effect on different populations of subjects (Lord, 1967). For a

discussion of the interpretational difficulties inherent in these designs and possible

ways to resolve them, see Tu et al. (2008).

into these packages, the data should be reanalyzed with the mea-
sures centered across all subjects. If between-subject factors were
included in the design, and it is reasonable to expect that there
might be differences in the expected values of the covariate mea-
sures across different groupings of subjects, the data should be
re-analyzed following the procedures recommended. Alterna-
tively, one should look for another means of analyzing the data,
which take into account model assumptions, and the nature of
the experimental design and the questions to be asked.
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