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Abstract: Zirconia nanofiber mats containing filaments with the average diameter of less than 100 nm
were fabricated. It is found that the hardness and Young’s modulus of the mats are sensitive to the
microstructure, phase composition and average diameter of the zirconia nanofibers. The hardness
and Young’s modulus of the prepared zirconia nanofiber mats vary from 0.86 to 1.67 MPa and
from 133 to 362 MPa, respectively, wherein an increase in hardness is accompanied by the rise in
Young’s modulus.

Keywords: zirconia nanofibers; electrospinning; microstructure; phase composition; mechanical
characteristics; nanoindentation

1. Introduction

Among all the variety of nanofibers only ceramic ones possess increased thermal and
chemical resistance [1,2]. Electrospinning is a cost effective and simple method for the
large scale production of ceramic nanofibers of controllable composition and diameter [1,2].
The process of ceramic nanofibers fabrication by electrospinning consists of the following
three stages: preparation of the solution containing ceramic precursor and binding poly-
mer, hybrid fibers electrospinning, drying and annealing hybrid fibers to obtain ceramic
nanofibers. Nanofibers produced by electrospinning tend to form mats.

Zirconia and its precursors are widely used to obtain different advanced ceramic
materials [3]. Pure zirconia exhibits three allotropic modifications: low-temperature mono-
clinic (m-ZrO2) and high-temperature tetragonal (t-ZrO2) and cubic (c-ZrO2) [4]. However,
t-ZrO2 and c-ZrO2 phases can exist at room temperature if the stabilizer is introduced into
pure zirconia in the required amounts. Yttria is one of metal oxides commonly used as a
stabilizer. It is well known that the mechanical characteristics of bulk zirconia ceramics can
be significantly improved by adding 3 mol% Y2O3 to pure zirconia to obtain tetragonal
zirconia polycrystalline ceramics [4].

Zirconia nanofiber mats are ceramic nanofiber mats with a wide range of possible
applications as scaffolds for solid oxide fuel cells cathodes [5,6], separators for high-power
rechargeable batteries [7], filters and adsorbents [8–11], catalysts [12–14], gas sensors [15],
bone tissue regeneration scaffolds [16], shape-memory material for artificial muscle ap-
plications [17], electromagnetic interference shielding [18], an element of a light-sensitive
photodetector [19], electrode material for electrochemical devices [20], etc.

However, the functional properties of mats depend on the diameter, grain structure,
phase composition and porosity of the nanofiber components. There are several ways to
control the microstructure and phase composition of zirconia nanofibers via varying the
calcination temperature [21], dopant concentration [22] and zirconia precursor content in
the composite intermediate filaments [23].

For any zirconia nanofiber mat application the mechanical characteristics are impor-
tant. Tensile testing is usually performed to obtain data on tensile stress, ultimate strain
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and Young’s modulus of the ceramic nanofiber mats [8,23,24]. Nanoindentation, as the
preferred method for testing thin film and surface mechanical characteristics, is another
approach to examining the mechanical characteristics of nanofibrous mats, which allows
defining their hardness and Young’s modulus [25]. Young’s modulus values obtained by a
tensile test and nanoindentation will differ due to nanofibrous mats’ anisotropy. The given
mechanical characteristics are important if nanofibrous mats are under normal stress dur-
ing operation, for example, acting as adsorbents, filters or catalysts in gas flows. Random
orientation of the electrospun nanofibers and macroporous structure of the mats require
using a spherical indenter with a curvature radius many times larger than the diameter of
nanofibers and the size of macropores to obtain reliable values of hardness and Young’s
modulus for nanofibrous mats [26].

The aim of this work is to study the effect of zirconia nanofibers microstructure and
phase composition on the mechanical characteristics of their mats, such as hardness and
Young’s modulus, using the nanoindentation method. To reveal the relationship between
the morphology of zirconia nanofibers and the mechanical properties of the mats made
from them is important for any practical use of the latter, and also provides prerequisites
for fabricating nanofibrous materials with the required structure and functional properties.

2. Materials and Methods

The mats of zirconia nanofibers with the average diameter of less than 100 nm were
prepared and characterized according to the scheme shown in Figure 1.
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Figure 1. A schematic representation of the work methodology.

Polyacrylonitrile (PAN, molecular weight Mw = 150,000, Sigma-Aldrich, Saint Louis,
MO, USA, 1 g) was dissolved in N,N-dimethylformamide (DMF, Sigma-Aldrich, Saint
Louis, MO, USA, 9 g) under magnetic stirring for 2 h at 50 ◦C to prepare 10 wt.% polymer
solution. Zirconium acetylacetonate (ZrAA, Sigma-Aldrich, Saint Louis, MO, USA, 0.3 g)
and yttrium nitrate hexahydrate (Sigma-Aldrich, Saint Louis, MO, USA, 0.015 g) were
added into the prepared polymer solution and stirred at 80 ◦C until the solution became
transparent. The amount of yttrium nitrate hexahydrate was such to obtain 3 mol% Y2O3-
ZrO2 nanofibers. Composite solutions with ZrAA/PAN mass ratios of 0.1:1, 0.2:1 and 0.3:1
were fabricated.
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The prepared composite solutions were poured into a 10 mL plastic syringe and then
electrospun through a 23 G blunt tip needle upon the rectangular frame collector made of
copper wire placed in a NANON-01A electrospinning machine (MECC, Fukuoka, Japan).
The fibers were collected as non-woven mats. The accelerating voltage of 18 kV, the distance
between the needle tip and the collector of 15 cm and a feeding rate of 1 mL/h were chosen
to fabricate smooth and bead-free composite fibers.

The electrospun mats were calcined at different temperatures in air atmosphere be-
tween lightweight alumina plates with a smooth surface to prevent the mats wrinkling.
Calcination was carried out in several stages in accordance with the performed thermo-
gravimetric (TG) analysis and differential thermal (DT) analysis: heating to 320 ◦C with a
heating rate of 1 ◦C/min, holding at 320 ◦C for 1 h, further heating to 600 ◦C with the same
heating rate and holding at 600 ◦C for 1 h and finally heating to 700, 900 or 1200 ◦C with a
heating rate of 5 ◦C/min and holding at the target temperature for 1 h.

The TG analysis and DT analysis were performed on the thermal analyzer EXSTAR
TG/DTA7200 (SII Nano Technology, Tokyo, Japan) in air atmosphere with a heating rate of
10 ◦C/min.

The microstructure and diameter of the fibers were examined with a Merlin scanning
electron microscope (SEM, Carl Zeiss, Oberkochen, Germany). The XRD patterns were
registered in the 2θ range 20–80◦ by a D2 Phaser X-ray diffractometer (XRD, Bruker AXS,
Karlsruhe, Germany) using CuKα1 monochromatic radiation and analyzed by means of
the PDF-2 Diffraction Database File compiled by the International Centre for Diffraction.
The phase content was determined from the XRD patterns by the Rietveld method using
the TOPAS software (Bruker AXS) and the average grain size was also calculated in the
TOPAS software (Bruker AXS) using the Scherrer equation. SEM and XRD measurements
were carried out at room temperature. The specific surface area and the pore volume of
the fibers were measured by nitrogen adsorption at −196 ◦C with a gas sorption analyzer
Autosorb iQ-C (Quantachrome Instruments, Boynton Beach, FL, USA). The specific surface
area was determined using Brunauer-Emmett-Teller method in a relative pressure range of
0.05–0.35. The pore volume was determined from the amount of nitrogen adsorbed at the
relative pressure of 0.99.

Nanoindentation measurements were carried out by a TI-950 nanotriboindenter
(Bruker AXS) at room temperature using a stabilized zirconia spherical indenter with
a radius of curvature of 250 µm. A constant strain rate of 0.05 s−1 was kept during all the
tests. The load-displacement curves were obtained under peak load of 5 mN. Peak load
was held for 10 s to stabilize the possible creep in the mat. At the end of unloading a hold of
15 s was provided to correct the thermal drift. The Poisson’s ratio was about 0.25. Young’s
modulus (E) and hardness (H) of the samples were calculated from the load-displacement
curves using the Oliver-Pharr method [27]. The tested samples were carefully cut out from
the fabricated zirconia nanofibrous mats and fixed with ethanol on the polished surface of
3 mol% Y2O3-ZrO2 ceramic pellets with Young’s modulus of about 220 GPa and hardness
of about 14 GPa. The thickness of the tested samples was at least 50 µm.

3. Results and Discussion

The 3 mol% Y2O3–ZrO2 nanofibers calcined at 700 ◦C are cylindrical in shape, with a
smooth surface (Figure 2b). Their average diameter is 79 ± 7 nm. The average diameter of
the filaments calcined at 900 ◦C is 72 ± 6 nm. No difference in the average diameters of the
nanofibers calcined at 700 and 900 ◦C in the margin of error is associated with complete
decomposition of ZrAA and PAN before 700 ◦C (Figure 2a).
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Figure 2. (a) TG curve of electrospun composite filaments with ZrAA/PAN mass ratio of 0.3:1. The microstructure of 3 mol%
Y2O3–ZrO2 nanofibers prepared at: (b) 700 ◦C; (c) 900 ◦C; (d) 1100 ◦C from the composite filaments with ZrAA/PAN mass
ratio of 0.3:1.

An increase in calcination temperature from 700 to 900 ◦C stimulates ZrO2 grain
growth that results in appearance of a rough nanofiber surface (Figure 2c). A calcination
temperature increase to 1100 ◦C leads to further ZrO2 grains growth and also to a slight
filaments shrinkage due to sintering. The average diameter of the nanofibers attains
68 ± 4 nm and their surface becomes coarse (Figure 2d). The decrease in ZrAA/PAN
mass ratio in the intermediate composite fibers from 0.3:1 to 0.1:1 results in the zirconia
nanofibers average diameter reduction from 72 ± 6 to 52 ± 5 nm if they are calcined at
900 ◦C. It seems logical that a decrease in the mass ratio of the ceramic precursor to the
binder polymer leads to a decrease in the thickness of the zirconia nanofibers, since the
composite filaments containing no ZrAA do not form ceramic nanofibers. It should be
noted that no carbon-containing nanofibers are formed during the composite filaments’
calcination at elevated temperatures in air due to PAN burnout. To be carbonized the
pre-stabilized PAN filaments must be calcined in an inert atmosphere [28].

The rise in the calcination temperature leads to the decrease in specific surface area
of 3 mol% Y2O3-ZrO2 nanofibers (Table 1), which is associated with ZrO2 grain growth
due to an intensification of the diffusion process. Small values of the pore volume allow
classifying the prepared ceramic filaments as non-porous.

Table 1. The specific surface area and pore volume of 3 mol% Y2O3-ZrO2 nanofibers calcined at
different temperatures.

Calcination Temperature, ◦C Specific Surface Area, m2/g Pore Volume, cm3/g

700 23.6 0.051
900 15.1 0.037

1100 9.3 0.022
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The composite filaments with various ZrAA/PAN mass ratios annealed at the same
temperature produce 3 mol% Y2O3-ZrO2 nanofibers with a similar specific surface area.

Figure 3 shows the XRD patterns of 3 mol% Y2O3-ZrO2 nanofibers calcined at tem-
peratures in the range of 700–1100 ◦C. According to XRD patterns the fabricated filaments
have crystalline structure and are composed purely of t-ZrO2 grains since the observed
reflections at 30.2◦, 35.2◦, 50.2◦ and 60.2◦ correspond to the main peaks specific for the
t-ZrO2 phase. With the rise in the calcination temperature the t-ZrO2 peaks become sharper
and narrower and the reflections at 34.6◦, 50.7◦ and 59.3◦ are visualized. It indicates that
the crystallinity is higher and the grain size is larger for 3 mol% Y2O3–ZrO2 nanofibers
fabricated at higher calcination temperatures. At calcination temperature of 700 ◦C the
average t-ZrO2 grain size is 9 nm and it becomes 18 nm if 900 ◦C is used. Finally, the aver-
age t-ZrO2 grain size attains 31 nm at the calcination temperature of 1100 ◦C. SEM images
confirm ZrO2 grain growth with an increase in the calcination temperature (Figure 2).
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t—tetragonal phase of ZrO2.

It is revealed that the decrease in ZrAA/PAN mass ratio has no effect on the phase
composition of the resulting 3 mol% Y2O3-ZrO2 nanofibers (Figure 4). Poorly visualized
fine structure of the peaks near 35◦ and 60◦ in the XRD pattern of zirconia nanofibers
prepared from composite filaments with ZrAA/PAN mass ratio of 0.1:1 may indicate a
smaller size of t-ZrO2 grains in the nanofibers obtained from the composite filaments
with lower ZrAA/PAN mass ratio. The average t-ZrO2 grain size in 3 mol% Y2O3-ZrO2
nanofibers prepared at 900 ◦C from composite filaments with various ZrAA/PAN mass
ratios are 17.5 nm (0.1:1), 17.7 nm (0.2:1) and 18 nm (0.3:1). A slight decrease in the
average t-ZrO2 grain size due to reduced ZrAA/PAN mass ratio may be associated with a
decrease in the contact surface between the grains due to a decrease in the resulting ceramic
fibers diameter that negatively affects the diffusion process. Previously, a similar effect
was observed for zirconia nanofibers made of composite filaments containing zirconium
oxychloride and poly(ethylene oxide) [29]. Close values of the average grain size explain
the similarity in the specific surface area of 3 mol% Y2O3-ZrO2 nanofibers fabricated from
the composite filaments with ZrAA/PAN mass ratios of 0.3:1, 0.2:1 and 0.1:1.
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The phase composition of zirconia nanofibers changes dramatically if a dopant is not
used. In the XRD pattern a large number of m-ZrO2 peaks appear (Figure 5).

Polymers 2021, 13, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 4. The XRD patterns of 3 mol% Y2O3-ZrO2 nanofibers prepared at 900 °C from the compo-
site filaments with various ZrAA/PAN mass ratios; t—tetragonal phase of ZrO2. 

The phase composition of zirconia nanofibers changes dramatically if a dopant is 
not used. In the XRD pattern a large number of m-ZrO2 peaks appear (Figure 5). 

 
Figure 5. The XRD patterns of 3 mol% Y2O3-ZrO2 nanofibers and undoped ones prepared at 900 
°C; t and m—tetragonal and monoclinic phases of ZrO2, respectively. 

Figure 5. The XRD patterns of 3 mol% Y2O3-ZrO2 nanofibers and undoped ones prepared at 900 ◦C;
t and m—tetragonal and monoclinic phases of ZrO2, respectively.
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The main characteristic peaks of m-ZrO2 are located at 28.2◦ and 31.5◦. The undoped
zirconia nanofibers contain 74% of m-ZrO2 and 26% of t-ZrO2 after calcination at 900 ◦C.
In [30] it was revealed that with an increase in the calcination temperature the content of
m-ZrO2 in undoped zirconia nanofibers rises reaching 100%. It occurs due to t-ZrO2 →
m-ZrO2 transition induced by zirconia grain growth with an increase in the calcination
temperature. Due to the size factor t-ZrO2 is thermodynamically more favorable than m-
ZrO2 at amorphous ZrO2 crystallization [31]. According to Garvie’s theory the transition
probability of the metastable t-ZrO2 phase into the m-ZrO2 phase increases with the rise
in zirconia grain size [32]. The m-ZrO2 phase is stable at temperatures up to 1170 ◦C [33].
A dopant addition prevents this phase transition in zirconia nanofibers [34]. The t-ZrO2
→m-ZrO2 transformation is accompanied with the volume expansion due to an increase
in zirconia grain size [33]. It explains the larger average grain size of undoped zirconia
nanofibers prepared at 900 ◦C compared to 3 mol% Y2O3-ZrO2 nanofibers prepared at
the same temperature: 24 nm and 18 nm, respectively. The larger grain size of undoped
zirconia nanofibers explains their lower specific surface area compared with the 3 mol%
Y2O3-ZrO2 ones (11.3 and 15.1 m2/g, respectively). This allows concluding that a small
amount of yttria acts as an inhibitor of ZrO2 grain growth in nanofibers similarly to Y2O3
-stabilized zirconia bulk ceramics [35].

Figure 6 illustrates the load-displacement curves obtained for 3 mol% Y2O3-ZrO2
nanofiber mats calcined at different temperatures. It can be seen from Table 2 that the mat
fabricated at 1100 ◦C possesses the highest values of hardness and Young’s modulus.
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Table 2. The mechanical characteristics of 3 mol% Y2O3-ZrO2 nanofiber mats calcined at
different temperatures.

Calcination Temperature, ◦C Hardness, MPa Young’s Modulus, MPa

700 1.03 ± 0.05 171 ± 4
900 0.86 ± 0.05 133 ± 4

1100 1.25 ± 0.11 261 ± 12

High calcination temperature leads to formation of junctions between nanofibers
at the cross-points due to sintering, which negatively affects the nanofibers freedom of
movement. As a result, the mat loses flexibility and its Young’s modulus increases. Besides,
the mat becomes harder and more brittle. Low calcination temperature is insufficient for
nanofibers sintering at their cross-points as well as for zirconia grains sintering inside the
filaments to form strong contacts. Thus, we suppose that there are no other bonds than the
Van der Waals forces providing free movement of the nanofibers and the grains inside them.
Therefore, zirconia nanofibrous mats calcined at low temperatures are more flexible than
ones calcined at elevated temperatures. Flexible materials are known to be characterized
by reduced Young’s modulus [16]. Previously, it was found that the mat of yttria-stabilized
zirconia nanofibers fabricated at 1000 ◦C from composite filaments containing zirconium
oxychloride/yttrium nitrate/poly(vinyl pyrrolidone was characterized by a lower ultimate
strain in tensile testing than the one obtained at 800 ◦C, i.e., was more fragile [36].

The 3 mol% Y2O3-ZrO2 nanofibers produced at 700 and 900 ◦C have close average
diameter values and differ in their average grain size. The smaller size provides a stronger
connection between the grains due to a larger contact area, which hinders their free
movement. The nanofibers become stiffer andtheir Young’s modulus increases, respectively.
As a result, nanofibrous mat Young’s modulus increases too. The 3 mol% Y2O3-ZrO2
nanofibers prepared at 1100 ◦C have larger grains than filaments prepared at 700 and
900 ◦C. However, the connection between grains is stronger due to necks, which are formed
at elevated calcination temperatures. Besides, sintering provides interfiber junctions at the
cross-points as well. It explains the highest values of hardness and Young’s modulus for
the 3 mol% Y2O3-ZrO2 nanofiber mat fabricated at 1100 ◦C.

Young’s modulus of the fabricated 3 mol% Y2O3-ZrO2 nanofiber mats is three orders of
magnitude lower than that of bulk 3 mol% Y2O3-ZrO2 ceramics [4]. This means that zirconia
nanofibrous mats are more flexible than bulk zirconia ceramics. In [16] mats of 3 mol% Y2O3-
ZrO2 nanofibers with the average diameter of 530 ± 120 nm prepared using zirconium
n-propoxide, yttrium acetate hexahydrate and polyvinylpyrrolidone were characterized by
Young’s modulus of 1.11 ± 0.24 MPa obtained by means of microindentation. Different
Young’s modulus values of the mats presented in this article and those fabricated in [16]
can be associated with the different average diameter of the zirconia nanofibers forming
the mats. It is shown below that Young’s modulus of the mat increases with the decrease in
the average diameter of fibers.

The load-displacement curves obtained for 3 mol% Y2O3-ZrO2 nanofiber mats pre-
pared at the same temperature from the mats of composite filaments with different
ZrAA/PAN mass ratios are presented in Figure 7.
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The 3 mol% Y2O3-ZrO2 nanofibers fabricated from composite filaments with different
ZrAA/PAN mass ratios possess identical phase composition and consist of similar-sized
zirconia grains, but differ in their average diameter, which increases with the rise in
ZrAA/PAN mass ratio. A decrease in the zirconia nanofibers diameter associated with
a decrease in ZrAA/PAN mass ratio results in the rise in both hardness and Young’s
modulus of zirconia nanofibrous mat (Table 3). A decrease in ZrAA/PAN mass ratio
produces thinner zirconia nanofibers which, in its turn, results in the rise in both hardness
and Young’s modulus of a zirconia nanofibrous mat (Table 3). The higher values of hardness
and Young’s modulus of the mat formed by thinner zirconia nanofibers may be explained
by a reduced number of flaws. The presence of flaws in the material significantly worsens
the mechanical properties of ceramics by promoting stress concentration [37]. Ceramic
filaments with reduced diameter contain fewer flaws thus improving their mechanical
characteristics. An increase in TiO2 nanofibers Young’s modulus and Al2O3 nanofibers
tensile strength with a decrease in their diameter was observed in [38,39]. In [8,36] it was
reported that the tensile strength of nanofibrous membranes of yttria-stabilized zirconia
increases when the diameter of nanofibers decreases.

Table 3. The mechanical characteristics of 3 mol% Y2O3-ZrO2 nanofiber mats prepared at 900 ◦C
from the mats of composite filaments with different ZrAA/PAN mass ratio.

ZrAA/PAN Mass Ratio Hardness, MPa Young’s Modulus, MPa

0.1:1 1.67 ± 0.09 362 ± 13
0.2:1 1.11 ± 0.06 280 ± 8
0.3:1 0.86 ± 0.05 133 ± 4

The results of nanoindentation measurement indicate that the hardness and Young’s
modulus of zirconia nanofibrous mats are sensitive to phase composition of filaments
(Figure 8).
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nanofiber mat prepared at 900 ◦C.

Regarding the example of the 3 mol% Y2O3-ZrO2 nanofiber mat and the undoped zirco-
nia nanofiber mat both calcined at 900 ◦C it is revealed that Young’s modulus and hardness
of the mat of fully tetragonal zirconia nanofibers (E = 133 ± 4 MPa, H = 0.86 ± 0.05 MPa)
are less than those of the mat of nanofibers mostly comprised of m-ZrO2 (E = 300 ± 10 MPa,
H = 0.95 ± 0.04 MPa). The higher Young’s modulus and hardness of the undoped zirco-
nia nanofiber mat indicate that it is stiffer and more brittle than the 3 mol% Y2O3-ZrO2
nanofiber mat prepared at the same temperature and containing no m-ZrO2. As mentioned
above, t-ZrO2 → m-ZrO2 transition occurs if undoped zirconia nanofibers are calcined
at 900 ◦C. Phase transition is accompanied with volume expansion which creates large
internal stresses. The latter may induce nanofiber damage. It results in greater fragility of
undoped zirconia nanofiber mats compared to stabilized zirconia nanofiber mats. Thus, it
can be concluded that the presence of m-ZrO2 in zirconia nanofibers worsens the strength of
both zirconia nanofibers themselves and the mats they form. An increase in the calcination
temperature leads to the rise in the fragility of individual undoped zirconia nanofibers and
their mats, respectively, due to m-ZrO2 content increase. In [30,36] it has been revealed
that the mats of fully monoclinic zirconia nanofibers manufactured at 1300 ◦C crumble into
powder upon preparation.

4. Conclusions

Zirconia nanofiber mats containing filaments with the average diameter of less than
100 nm were fabricated. It is found that the hardness and Young’s modulus of the mats are
sensitive to the microstructure, phase composition and average diameter of the zirconia
nanofibers. A decrease in the diameter of nanofibers and an increase in the heat treatment
temperature leads to an increase in the hardness and Young’s modulus of the mats. The
hardness and Young’s modulus of the prepared zirconia nanofiber mats vary from 0.86
to 1.67 MPa and from 133 to 362 MPa, respectively, wherein an increase in hardness is
accompanied by the rise in Young’s modulus. The obtained results indicate the possibility
of controlling the hardness and Young’s modulus of nonwoven zirconia membranes via
varying the calcination temperature and intermediate filament composition.
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