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ABSTRACT: The thermocapillary migration of a drop placed on a
solid plate is examined. The Brochard model using the lubrication
approximation provides both Marangoni and Poiseuille flow
components. The present 2D model extends Brochard analysis
and provides a solution for the dynamics of drop migration using extended boundary conditions at the advancing and receding
contact lines to account for both Marangoni and Poiseuille flow components, derived approximate drop profiles, and conservation of
mass. The model is analytical, and the results are presented in a dimensionless form. The effects of the temperature gradient, surface
tension coefficient to surface tension ratio, liquid viscosity, and static advancing and receding contact angles on migration dynamics
are analyzed.

1. INTRODUCTION
Marangoni flows are driven by gradients in surface tension along
the free liquid surface due to differences in temperature or
composition. Marangoni flows have several applications
including microfluidics, extraction processes, and tribology.1,2

In thermocapillary migration of drops on heated plates,
migration occurs from the hot side to the cold side in the
direction of decreasing surface tension. Previous work related to
migration over solid substrates is addressed in refs 2−8.2−8 Such
flows involve moving advancing and receding contact lines.
Knowing their dynamics is essential in modeling dropmigration.
The dynamics of moving contact lines are characterized by
singularity at the leading edge for hydrodynamic models, with
unbounded viscous dissipation at the contact line as indicated in
a previous study.9 Huh and Scriven9 explored the use of dynamic
conditions including slip and long-range interaction forces in
relation to the singularity at the moving contact line. Reviews of
the dynamics of contact lines can be found in Dussan,10 de
Gennes,11 Blake,12 and the references therein. The different
approaches taken include (i) a molecular-kinetic theory
approach based on the Eyring concept,13 (ii) a hydrodynamic
approach using the slip condition near the leading edge,14,15 and
(iii) a relation between the dynamic contact angle and the
contact line velocity, limiting the hydrodynamic approach to a
distance above a cut-off level of molecular size.4,16 In the case of
perfect wetting, the hydrodynamic approach includes molecular
interactions between the solid and the liquid using the disjoining
pressure concept.17−19 The approach used in ref 19 to solve the
dynamics of spreading of a drop was found to yield results in very
good agreement with experimental data obtained using different
techniques, including those in ref 18.18

Greenspan3 addressed the case of drop migration driven by
the concentration gradient along the drop surface and used a
dynamic contact angle condition based on a linear relation
between the contact line velocity and the deviation of the

dynamic contact angle from the equilibrium contact angle. The
dynamic contact angle condition in Brochard4 and Brochard and
de Gennes16 was found based on a hydrodynamic approach
using the lubrication theory approximation and viscous
dissipation argument with integration performed near the
contact line down to a point where the distance is of molecular
size. Most viscous dissipation is considered to occur near the
advancing and receding contact lines for the circular wedge
migration. Brzoska et al.5 considered the case of small drops
moving on nonwettable surfaces. They found experimentally
that drop migration requires the drop radius to exceed a critical
value with a velocity proportional to the drop radius and the
temperature gradient. Ford and Nadim6 investigated migration
of a long wedge assumed infinite in length as an approximation
and provided an expression for the steady-state migration
velocity as a function of slip length and a steady-state thickness
profile. The use of the migration velocity expression in ref 6
requires determination of the drop thickness profile. Smith7

used a dynamic contact angle condition in which a power-law
form relates the contact line velocity to the deviation of the
dynamic contact angle from the equilibrium one. Smith reached
the conclusion that two steady-state cases are possible: no
motion and steady migration velocity. Dai et al.2 considered the
migration of a wedge of uniform drop thickness, except near the
edges (pancake configuration), and compared the model with
their experimental data for migration velocity, using measured
values for volume to area ratios to get the assumed uniform oil
thickness values as motion proceeds. Dai et al. experimental
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data2 show that migration velocity is enhanced at a lower
viscosity and higher temperature gradient (in magnitude).
Pratap et al.8 used a hydrodynamicmodel limited to a distance of
molecular size from the moving contact line, estimated based on
molecular dynamics simulations to derive an expression for the
migration velocity assuming a circular footprint and a spherical
cap drop. The results were found to underestimate the
experimental data determined in ref 8.8

In more recent investigations, thermocapillarity has been used
for processing polymer−nanoparticle composites20 and fab-
rication of micro and nanostructures.21 The thermal gradients
used are mainly classified into longitudinal and transverse.20 A
simulation of a thin liquid drop deposited on a cool plate below a
warm plate is shown to deform and reach equilibrium.21 At a
large temperature difference and Marangoni number exceeding
the critical value, the drop deforms and the maximum height
increases until it touches the top plate protrusion.21 The
numerical results21 are validated against Xie et al.22 experimental
data for drop migration in a microgravity environment. The
analysis shows the need to account for inertia terms for Reynolds
numbers larger than one.21 Muñoz et al. model and numerical
results23 show that combining thermocapillarity, by subjecting a
drop surface to aGaussian temperature distribution, with surface
acoustic waves (SAW) atomization reduces aerosol droplets’
diameter and work input, with slip on the solid surface reducing
the rupture time. When imposing a radial temperature gradient
on a drop placed on a horizontal surface, spreading occurs first,
followed by ring migration as shown in the numerical model
results of Ma et al.24 Ring-like motion was observed
experimentally by Dai et al.25 Confining wettability in a
symmetric and rectangular hydrophilic zone is shown to expel
fluid once the advancing contact line touches the hydrophobic
zone borders.24 The ultimate splitting of the drop suggests that
the method can be a compelling substitute to other methods.24

Chebbi26,27 used Brochard-de Gennes dynamic boundary
conditions4,16 to model the partial wetting of drops on the solid
surface using (i) an analytical approach assuming a nearly
circular profile27 and (ii) a numerical approach to account for
deviations from the spherical cap.26 Both approaches gave very
close results with good agreement with experimental data from
three different publications, including data from Hocking and
Rivers.14 In the present model, the 2D planar model for the
Brochard velocity profile4 is used. We extend the Brochard-de
Gennes boundary conditions4,16,28 at the dynamic and receding
contact lines for the case of Poiseuille flow to account for the
additional Marangoni flow component, derive an approximate
drop profile, and use the conservation of mass condition in order
to solve for the dynamics of drop migration. The governing
equations are presented first, followed by extended boundary
condition derivation, approximate drop profile determination,
solution and procedure, results and discussion, and conclusions.

2. COMPUTATIONAL METHODS
2.1. Governing Equations.We consider the case of a drop

of cylindrical shape. A schematic of the cross section is shown in
Figure 1 where x and z denote horizontal and vertical
coordinates, respectively, θA and θB represent the left and right
dynamic contact angles, respectively, η ranges from 0 to a, and χ
ranges from 0 to b in a reference system moving with the
migrating drop, with both η and χ measured from a point where
the slope of the thickness profile is zero and the drop thickness is
maximum.

For a thick drop, gravity causes flattening and gives a pancake
shape to the drop.4 We consider the case of a thin drop
(cylindrical ridge). This restricts the drop dimension in the
direction of drop migration, w (equal to xA − xB) to be smaller
than the Laplace length (defined as g/ where σ, ρ, and g
denote surface tension and density of the liquid and acceleration
of gravity, respectively).4 We consider the case of partial wetting.
The solid is subject to a uniform and longitudinal temperature
gradient. Temperature is assumed independent of z given the
small thickness of the drop.2 Liquid density changes are
neglected, and the fluid is assumed Newtonian. Using the
lubrication theory approximation (requiring relatively small
contact angles), and assuming small velocities, we can neglect
inertia terms with the Navier−Stokes equations reducing to

=p
z

0
(1)

=p
x

v
z

2

2 (2)

where p denotes pressure, and v is the liquid velocity measured
in a coordinate system moving with the migrating liquid drop at
a velocity U with respect to a fixed reference system originating
at O.
The two boundary conditions at the gas−liquid and solid−

liquid interfaces are

= =z h v
z x

at ,
(3)

= =z v Uat 0, (4)

where h denotes the liquid thickness and μ represents the
liquid viscosity. Equation 4 expresses the no slip boundary
condition in the moving reference system. We assume
temperature T independent of z, in addition to the uniform
temperature gradient Tx and a constant surface tension
temperature gradient, σT. Using the chain rule yields the surface
tension gradient induced by the temperature gradient.

=
x

TT x (5)

Using eqs 1−5 gives2,4
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There is no net volumetric flow rate through any cross section.
This yields2,4

= +p
x

U
h h

T
d
d

3 3
2 T x2 (7)

Figure 1. Schematic of a migrating drop (cylindrical wedge) moving
from right to left (warm side to cool side).
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ApplyingNewton’s second law and the zero flux condition, while
using the expression for the capillary driving force,4 gives

= +
+

m
U
t

dz
d
d

( )

( )

x

x

w SG,A SL,A

SG,B SL,B

B

A

(8)

where t is the time, denotes the wedge dimension in the
transverse direction to migration, ε is of molecular size, m is the
droplet mass, and σSG,A and σSL,A represent the solid−gas and
solid−liquid interfacial tensions at A with similar notations used
at B, respectively. The wall shear stress is given by

=
=

v
zw

z 0 (9)

Using the Young−Dupre ́ equation and neglecting the inertia
term reduces eq 8 to

+ =
+

xd ( cos cos ) 0
x

x

w A A,e B B,e
B

A

(10)

where subscript e refers to equilibrium values.
2.2. Viscous Dissipation and Contact Angle Correla-

tions.We define x̅ as the distance from the right contact line (xA
− x). Near the contact line and for x̅ as low as ε and as high as x̅m,
the profile near contact line A is approximated as linear (wedge
profile).

= =d
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where Φv is the rate of viscous dissipation.
Differentiating eq 6 gives
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Then substituting into eq 11 and integrating yields, after
substitution of the pressure gradient expression using eq 7 and
simplification
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The second term is predominant near the contact line where h is
small. Neglecting the first term in eq 13 and integrating yields

= =U x
3 ; lnv
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k
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zzz (14)

Equating Φv with the work term l U(cos cos )e gives at
the advancing contact line A

=U
(cos cos )

3

( )

6
A,e A A A

2
A,e
2

(15)

EquatingΦvwith the work term l U(cos cos )e gives at the
receding contact line B

=U
(cos cos )

3

( )

6
B B B,e B B,e

2
B
2

(16)

This shows that the dynamic contact angle condition in refs
4,16,28 also applies to the variable surface tension gradient case
considered here as a good approximation.

2.3. Dynamics of Drop Migration. Outside a small region
near the advancing contact line, the drop profile, assumed as
approximately circular (Figure 1), is given by

=h
a

alower temperature side:
2

( )A
A 2 2

(17)

The profile satisfies the following boundary conditions
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In the same way we have
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b

bhigher temperature side:
2
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The profile satisfies the following boundary conditions
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The shear force term in eq 10 is split into two terms.
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+
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w
0 0B

A

(23)

where integration excludes two regions very near the contact
lines (within ε) in which continuum mechanics is no longer
applicable with the present model. Integrating both terms using
eqs 7, 12, 17, 20 gives
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Then substituting into the force balance eq 10 gives after
approximating the logarithmic terms as Γ

+ =U U T
w

3 3
2

cos cosT x

A B
A A,e B B,e

(25)

In addition, the conservation of mass equation yields

= +V h hd d
a

a

b

b
0 0 (26)

where V is the liquid drop volume, assumed constant.
Substituting eqs 17 and 20 into eq 26 provides after integration

= +V a b
3 3

A
2

B
2

(27)

Using the continuity of the lower and higher temperature
profiles at the origin

= = =h hat 0, A B (28)

along with

+ =a b w (29)

yields
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Substituting for a and b into eq 27 gives

=
+

=
+

V w V w3 or
32 A B

A B

3 A B

A B (31)

with ζ defined as w/ .
2.4. Solution Procedure. The solution can be reached by

using the following steps: (i) guess U, (ii) calculate θA and θB,
assuming a constant logarithm term, denoted as Γ and using the
following expressions obtained from the cubic eqs 15 and 16,
respectively
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where Λ is defined as 6ΓCa, and Ca denotes the capillary
number μU/σ.
Defining θe and contact angle hysteresis δ28 as

= + =cos (cos cos )/2; cos cose Ae Be Be Ae
(34)

and substituting into eq 25 gives
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Considering the case of small static contact angle hysteresis δ
and combining eqs 31 and 34 to eliminate w yields the following
equation.
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where θA and θB are functions of Λ. The solution is by trial and
error and provides Λ, then θA and θB by substituting for Λ into
eqs 32 and 33, and the migration velocity U using

=U
6 (37)

Using eqs 15 and 16 yields the following asymptotic solutions as
Λ tends to zero.
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Integration yields

= = +x U t x x wd ;
t

B
0

A B (39)

whereU varies with x and the right edge position xB is selected as
zero at t equals to 0.
For a constant gradient in surface tension, surface tension is

obtained as

= + = +T x T T; ( )T x Ti B i r i r (40)

μ is a function of temperature T at xB
= +T T T xxi B (41)

We can simply use numerical integration of eq 39

=x U tB (42)

3. RESULTS AND DISCUSSION
The results are given in graphical forms for the case δ ≅ 0 (zero
or negligible static contact angle hysteresis). The advancing and
receding contact angles θA and θB are plotted versus Λ for θe =
10, 30, and 50° (Figure 2). The arguments of the arccosine
function are restricted not to exceed one in absolute value. This
limits the range for Λ for each selected value of the equilibrium

Figure 2. Plots of advancing and receding contact angles versus Λ for θe = 10, 30, and 50° (small contact angle hysteresis effect case).
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contact angle. The advancing contact angle θA is found to
increase with the increasing capillary number, while θB decreases
with the increasing capillary number, Ca = Λ/(6Γ). The
asymptotic solutions are seen to be good estimates in a major
part of the full range of values of Λ with a wider range of validity
in the case of θA. Furthermore, the asymptotic solution θA,as is
found to overestimate the dynamic advancing contact angle,
while θB,as underestimates the dynamic receding contact angle.
Figure 3 shows plots of f versus Λ for different values of θe. As

seen from Figure 3, f increases with the increasing capillary
number and/or decreasing equilibrium contact angle. Using eq
36, we conclude that Ca increases as volume V, absolute value of
temperature gradient |Tx|, and/or |σT|/σ increase. Furthermore,
for specific values of V, |Tx|, |σT|, and σ, migration velocity is
inversely proportional to absolute viscosity μ. Using Figures 2
and 3 shows that for a given value of θe, θA increases and θB
decreases with increasing volume V, |Tx|, and/or |σT|/σ.
Instead of using a numerical iterative procedure to solve the

problem (eq 35), it is possible to solve the migration dynamics
problem graphically. Substituting for the values of V, surface
tension coefficient, temperature gradient, and ζ in eq 35
provides the value of the f. Next, using Figure 2 provides the
value ofΛ and the values of θA and θB using the determined value
of Λ (Figure 3).

4. CONCLUSIONS
The present model extends the treatment of Brochard4 and
provides a solution for the dynamics of drop migration. The
dynamic contact angle relation derived in the case of Poiseuille
flow in refs 4,16,28 is shown to remain applicable in the case
where flow involves a Marangoni flow component in addition to
the Poiseuille flow one. The model can be used to solve
unsteady-state migration as an approximation, given the slow
migration dynamics. The effects of thermal gradient and
viscosity changes on the dynamics of migration in the present
investigation are found consistent with the experimental
observations in ref 2.2 Fully documented experimental data
including equilibrium contact angle data as a function of
temperature for the case of uniform, longitudinal, and
unidirectional temperature gradients are required for compar-
ison with the present model. For the case of liquid drops, the 2D

planar model is an approximation, as the problem is strictly
speaking three-dimensional. The present treatment is an
approximation to a complex problem with experiments showing
very significant deviations from the initially circular shape of the
drop footprint2 as migration proceeds.
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