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Abstract: Insulin is implicated as a leading factor in glucose homeostasis and an important

theme in diabetes mellitus (DM). Numerous proteins are involved in insulin signaling

pathway and their dysregulation contributes to DM. microRNAs (miRNAs) as single-

strand molecules have a critical effect on gene expression at post-transcriptional levels.

Intensive investigation done by DM researchers disclosed that miRNAs have a significant

role in insulin secretion by direct targeting numerous proteins engaged in insulin signaling

pathway; so, their dysregulation contributes to DM. In this review, we presented some major

miRNAs engaged in the insulin production and secretion.
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Introduction
Insulin, as an endocrine hormone, serves as a mediator in glucose metabolism

and energy storage. This spherical miniprotein hormone (5.8 kDa) is derived

from the intermolecular disulfide bridge (CysA7-CysB7 and CysA20-CysB19)

between peptide chains of the A-chain (Ins-A, 21 amino acid residues) that

contains an intramolecular disulfide bridge (CysA6-CysA11) and B-chain (Ins-B,

30 amino acid residues).1 Pancreatic islets in mammals are rich in beta-cells and

are assumed as the only source of circulating insulin.2 Freshly synthesized

insulin in beta-cells is initially produced as the prohormone proinsulin. Later,

it is converted into mature insulin by the prohormone convertase action (PC1,

PC2, encoded by Pcsk1 and Pcsk2, respectively) during shuttling by the secre-

tory pathway.1 Active insulin is kept in condensed core secretory granules

(5–10,000 per cell),3 while each of these granules contains 300,000 or more

molecules of insulin.2 According to the literature, changes in insulin secretion

are one of the main reasons for the beginning of diabetes mellitus (DM).4 In the

current research, we introduced the major pathways involved in insulin granule

fusion, focused on most important miRNAs that contributed to insulin produc-

tion and secretion, and finally discussed miRNA-therapy as a novel approach to

alleviate diseases such as DM.

Proteins Involved in Docking and Fusion
High-affinity interaction between SNAREs, as highly conserved proteins, which are

soluble N-ethylmaleimide-sensitive factor attachment protein receptor, has a significant

effect on insulin granule docking, priming, and fusion. These proteins include synapto-

brevin-2 (VAMP), stx-1, and SNAP-25 (25-kDa synaptosomal-associated protein): Stx-
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1 and SNAP25 are plasma membrane proteins and are named

t-SNAREs (target SNAREs); VAMP exists in the vesicle or

granule membrane and is often called v-SNAREs (vesicle

SNAREs), in this protein as a homologous SNARE motif is

composed of 60–70 amino acids. The four SNARE motifs

(stx-1 has one SNARE motif, VAMP has a separate SNARE

motif, while SNAP 25 has two SNARE motives) combine

together to establish a ternary complex that has a significant

effect on insulin granules’ fusion with the plasma membrane.5

The cAMP Role in Insulin Granule

Exocytosis
The regulator activity of cAMP in various cellular func-

tions of various cell types has changed cAMP into an

important universal intracellular messenger.6 The cAMP

generation from ATP is catalyzed by adenylyl cyclases

(ACs) and 10 members of this enzyme family have been

identified while their expressions in islet cell were

proved.7 In insulin secretion, it has been long known that

cAMP action is mediated by protein kinase A (PKA)8 of

proteins associated with the secretory process through

phosphorylation.

ATP-Sensitive Potassium Channel
The ATP-sensitive potassium channel (KATP channel) is

a metabolic sensor, which is able to couple a cell’s meta-

bolic status with electrical activity and adjusts various

cellular functions. In pancreatic beta-cells, KATP channels

regulate the secretion of insulin.9 With regard to structure,

KATP channels, as large hetero-octameric complexes

include four regulatory sulphonylurea receptors (SURx)

and four pore-forming (Kir6.x) (via cytoplasmic domains

bind to ATP) subunits, which are encoded by ABCC8 and

KCNJ11, respectively.10,11 Considering the KATP channel

activity, the membrane is held at a hyperpolarized level

that results in voltage-gated Ca2+ channels’ closure.12

A rise in the serum glucose triggers the pancreatic beta-

cell to uptake glucose through glucose transporter GLUT2.

Later, glucose converts into ATP via subsequent

mechanisms.10 By binding to Kir6.2, ATP closes the

KATP channel; this closure can be facilitated by Epac2,

which binds with the channel’s SUR1 subunit.13,14 As

a result, a membrane depolarization is created that opens

channels of the voltage-gated Ca2+ and initiates the beta-

cell electrical activity as well as Ca2+ influx. Subsequently,

increase in [Ca2+] stimulates the insulin release.12

G Protein-Coupled Receptor (GPCR)
G protein-coupled receptors (GPCR), as versatile, seven-

transmembrane-domain proteins, are responsible for regulat-

ing various intracellular signaling arrays cascade in response

to hormones, neurotransmitters, and ions.15 In this regard,

G proteins include heterotrimer proteins consisting of the α,

β, and γ subunits. Although G proteins differ basically in

amino acid with regard to their sequence of the α-subunit,

such as Gs, Gi, and Gq, many of them can couple with the

GPCRs. Gs makes the adenylate cyclase active and increases

production of cAMP and activates protein kinase A (PKA)

and the Epac (exchange proteins that are activated by cAMP

directly) family of cAMP-regulated guanine nucleotide

exchange factors. Both PKA and Epac contain multiple

downstream effectors in insulin secretion. Gi is responsible

for inhibiting the adenylate cyclase and stimulating the mito-

gen-activated protein kinase (MAPK). In order to produce

inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG),

Gq stimulates PLC-β. Finally, IP3 stimulates the Ca2+

release from the endoplasmic reticulum, while DAG makes

protein kinase C active.16

MicroRNAs are introduced as a class of gene expres-

sion negative regulators involved in developing endocrine

pancreas and regulating insulin secretion.17

Biogenesis and Maturation of miRNA
The miRNA genes, transcribed by RNA polymerase II (Pol

II), are controlled by RNA Pol II-associated transcription

factors and epigenetic regulators. In this regard, long pri-

mary transcript (pri-miRNA) that span over 1kb has a local

hairpin structure, which contains miRNA sequences.18 The

nuclear RNase III Drosha and DGCR8 create a complex:

Microprocessor. This Microprocessor copies the stem–loop

and initiates the maturation process in order to release

a small hairpin-shaped RNA of ~65 nucleotides in length

(pre-miRNA).19 After this export, pre-miRNA is cleaved

next to the terminal loop by Dicer and liberates a small

RNA duplex consisting of a passenger and guide strand.20

Subsequently, this RNA duplex forms the effector complex

of RNA-induced silencing complex (RISC) after loading

onto an AGO protein.21 Following the above-mentioned

process, the pre-RISC (in which AGO proteins are asso-

ciated with RNA duplexes) eliminates the passenger strand

quickly and generates a mature RISC that performs gene

silencing (Figure 1).22 Following miRNA duplex loading,

the pre-RISC (in which AGO proteins associate with RNA

duplexes) quickly removes the passenger strand to generate
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a mature RISC that performs gene silencing.23 In this

review, we tried to introduce better miRNAs involved in

insulin secretion and production (Table 1), Figure 2.

miR-7
MiR-7, as an intronicmiRNA, ismapped to the initial intron of

heterogenous ribonuclear protein K gene on chromosome 9.24

MiR-7 has been evolutionarily conserved and has recently

emerged as a prototypical neuroendocrine miRNA. Among

the neurons and neuroendocrine organs most significantly

enriched in miR-7 the endocrine pancreas, pituitary, and adre-

nal glands can be mentioned.25,26

The mTOR, as a serine/threonine kinase, acts as a growth

regulator as well as nutrient sensor. It exists as part of two

functionally and biochemically distinct complexes: mTOR

complex1 (mTORC1) and mTOR complex 2 (mTORC2).27

The mTORC2 was found to mediate the phosphorylation of

Akt/PKB at ser47. Phosphorylation Akt at ser 473 activates

Akt for further phosphorylation in catalytic domain at Thr

308. Akt and 3-phosphoinositide –dependent protein kinase-

1 (PDK1) trigger full activation of Akt, which is very impor-

tant for glucose uptake.28 Furthermore, it was found that

miR-7 down-regulated Akt, mTOR, and P70S6K transcrip-

tion, which are considered as the major components of PI3K/

Akt pathway.29

miR-9
MiR-9 is produced bymapping three genes of miR-9-1, miR-

9-2, andmiR-9-3 in the human genome to chromosomes 1, 5,

Figure 1 Biogenesis and maturation of miRNA. miRNA genes are transcribed by RNA polymerase II, then long primary transcript (pri-miRNA) under cleavage by Drosha/

DGCR8 complex to form a small hairpin-shaped RNA of ~65 nucleotides in length (pre-miRNA). After this, pre-miRNA is transmitted to the cytoplasm with the help of the

XPO5/RanGTP complexes. Pre-miRNA is cleaved by Dicer next to the terminal loop. RNA duplex created by Dicer is subsequently loaded onto RISC complex and the

passenger strand is removed. This complex can bind to their target mRNAs and lead to translational repression, mRNA degradation and even mRNA upregulation.

Table 1 Selected miRNAs Involved in Insulin Secretion

miRNA Target Chromosome Location

miR-7 Akt, mTOR, and P70S6K Chromosome 924

miR-9 OC-2, Sirt1 Chromosome 1, 5, 1530

miR-29 p85α, Stx-1a Chromosome 1,742

miR-34a Sirt1 Chromosome 1, 1149

miR-124a Foxa2 Chromosome 14, 3,250,51

miR-143 ORP8 Chromosome 557

miR-153 SNAP-25 and VAMP-2 Chromosome 2,762

miR-187 HIPK3 Chromosome 1865

miR-204 GLP1R Chromosome 966

miR-375 Pdx-1, Mtpn, NeuroD1 Chromosome 271
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and 15, respectively.30 MiR-9 mediate insulin exocytosis in

insulin-producing cells through direct targeting Onecut-2

(OC-2) mRNA. As a result, decreased expression of the

OC-2 can increase the Granuphilin levels, as its target gene.

Additionally, it is well known that Granuphilin acts as

a negative regulator of insulin secretion.31

The sirtuins family of proteins are NAD-dependent

protein deacetylases involved in numerous physiological

processes, such as apoptosis, cell growth, stress response,

and energy metabolism.32–34 This family has been found to

have seven members involving Sirt 1-7. Mammalian Sirt1

is widely expressed in mammalian tissues and functions as

a nuclear protein. As its main characteristic, mammalian

Sirt1 can deacetylate histones’ co-regulators in a NAD-

dependent manner and transcription factors.35–38 As

a member of the mitochondrial inner membrane proteins,

UCP2 has been implicated to promote proton leakage

across the mitochondrial. In this way, UCP2 through

decreasing ATP synthesis reduces insulin secretion. It is

also of great importance that Sirt1 binds to the UCP2

promoter and abolishes UCP2 transcriptional activation.

In this manner, Sirt1 regulates insulin secretion.39

Furthermore, recent investigations have introduced mir-9

as a key factor in modulating Sirt1 expression in the living

organism. As Saunders et al40 reported, mir-9 targets Sirt1

in embryonic stem cells of rats. However, the intensive

investigation conducted by Ramachandran et al41 showed

that the above-mentioned process (mir-9 targeting of Sirt1)

is a significant physiological process in insulin-secreting

cells.

miR-29
The miR-29 family includes four mature members including

miR-29a, miR-29b1, miR-29b2, and miR-29c. These mem-

bers are encoded by two gene clusters of miR-29b2/miR-29c

(mapped on chromosome 1q32) and miR-29b1/miR-29a

(mapped on chromosome 7q32).42 Heterodimer-type (Class

I) PI3Ks consists of a regulatory subunit that is at least

encoded by three distinct genes (85α, p85β, p55γ) and

a p110 catalytic subunit.43 The p85α is the most frequently

expressed regulatory isoform of PI3K, which encodes two

minor alternative splicing isoforms of p55a and p50a

additionally.44 It also binds to tyrosine-phosphorylated pro-

teins, like Insulin Receptor Substrate-1 (IRS-1), and activates

PI3K activity of the pll0 subunit in insulin signaling.45 The

miR-29 targets p85α directly and affects insulin signaling.

Furthermore, miR-29 develops gluconeogenesis by aiming at

hepatic p85α and enhancing expression of the phosphoenol-

pyruvate carboxykinase (PEPCK).46

As we mentioned previously, syntaxin-1a (Stx-1a) is an

important factor in insulin granule fusion with the plasma

membrane. An experimental study conducted by Bagge

Figure 2 A summary of the major miRNAs involved in production and secretion of insulin and their interaction with targets.
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et al47 over INS-1E cells disclosed that miR-29a targeted

the Stx-1a transcript directly and decreased Stx-1a mRNA

and protein levels.

miR-34a
Among the mammalians, the family of miR-34 includes

three processed miRNAs that reside in two various genes

of miR-34a and miR-34b/c, which are located on 1p36 and

11q23, respectively.48 The researchers found that miR-34a

affects the hepatic insulin signaling by targeting Sirtuin 1

(SIRT1).49

miR-124a
MiR-124a family, which is mainly expressed in the brain and

pancreas, includes three processed miRNAs, which are

encoded by three various genes of miR-124a1, miR-124a2,

and miR-124a3, which are located on chromosome 14, chro-

mosome 3, and chromosome 2, respectively.50,51 Forkhead

box A2 (FOXA2)/Hepatocyte Nuclear Factor 3β (HNF3β) is
a member of the forkhead box family and belongs to the liver

transcription factors including FOXA1 and FOXA3 (or

HNF3α, HNF3γ).52 We should also consider these factors’

conserved DNA binding domain and binding (as monomers)

to the DNA elements that are homologous with the consensus

sequence 5′- T(G/A)TTT(A/G)(C/T)T-3′.53,54 Different levels

of FOXA2 expression (high and low) are observed in the liver

and other tissues, respectively.55 FOXA2, as a transcriptional

activator of Pdx-1, Sur1, preproinsulin, and Kir6.2 has been

implicated in pancreatic beta-cell. So, FOXA2 protein over-

production triggers the up-regulation of Kir6.2, Pdx-1, Sur-1,

and preproinsulin mRNA expression.51,56 Recent investiga-

tions demonstrated that miR-124a2 had a crucial effect on

insulin secretion by targeting at Foxa2 gene, which regulates

insulin secretion.17

miR-143
The miR-143 has a highly conserved sequence belongs to the

miR-143/145 family. It was also found that miR-143 was

mapped to chromosome 5.57 The oxysterol-binding protein

(OSBP) as well as OSBP-related proteins (ORPs) form a large

family of genes that include sterol/lipid transportations and

regulatory activities.58 ORP8 is located on the endoplasmic

reticulum (ER) by its C-terminal transmembrane span and is

bound to 25-hydroxycholesterol, which has changed it into

a new ER oxysterol-binding protein. According to the litera-

ture, ORP8 was most highly expressed in the liver, macro-

phages, spleen, kidney, and brain and functioned in insulin

signaling.59 Moreover, PIP2 concentration was considered as

a phospholipase C (PLC) substrate that hydrolyzes PIP2 to

PIP3 and is modulated by ORP8. As a result of binding IP3 to

IP3R in the ER, Ca2+ releases to the cytosol.60 A recent study

showed that miR-143 plays an important role in insulin secre-

tion by targeting oxysterol-binding-protein-related protein 8

(ORP8).61

miR-153
Two copies of miR-153 have been known: A) miR-153-1,

which is mapped to a highly conserved region in the intron

19 of IA-2 on chromosome 2 and B) miR-153-2, which

resides in a highly conserved intronic region between exon

19 and 20 of IA-2β on chromosome 7. As mentioned

previously, SNAP-25 and VAMP-2 are required for insulin

granule fusion. Recent investigations disclosed that miR-

153 played a crucial role in insulin secretion by targeting

SNAP-25 and VAMP-2 directly.62

miR-187
Homeodomain-interacting protein kinases (HIPK1, HIPK2,

HIPK3) can interact with the homeobox transcription fac-

tors Nkx-1.2.63 HIPK3 acts as a novel positive regulator of

pdx-1 abundance through phosphorylation of pdx-1 (posi-

tive regulator of insulin biosynthesis).64 It is also a direct

target of miR-187 with down-regulated expression levels in

pancreatic islets of patients with type 2 diabetes.65

miR-204
MiR-204, as a highly beta-cell-enriched microRNA, is

localized within large intron 6 of TRPM3 and mapped to

chromosome 9q21.12.66 Glucagon-like peptide 1 receptor

(GLP1R), as a GPCR, is composed of seven transmem-

brane domains.67 Increased dosage of GLP1R was

reported in pancreatic beta-cells. It also has an important

effect on the GLP-1, as the main incretin created in intest-

inal L-cells and pancreatic islet alpha cells.68,69 Food-

stimulated GLP-1 secretion and its binding to the GLP1R

triggers glucose-induced beta-cell insulin secretion via

elevation of cAMP concentration.70 Jo et al discovered

that the 3ʹUTR of GLP1R was a direct target for miR-

204 in the beta-cell-derived rat INS-1 cell line as well as

the primary mouse and human islets; thereby, the expres-

sion was down-regulated. In this manner, miR-204 acts as

a negative regulator in insulin secretion.70

miR-375
Structural organization of MiR-375 gene on human chromo-

some 2 shows an intergenic spacer between CRYBA2 and
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CCDC108 genes.71 Pdx-1 is a homeodomain protein

with a critical role in pancreatic β-cell function and

development.72,73 Furthermore, insulin transcription activa-

tion resulted from Pdx-1, which is bound to the conserved

AT-rich A3 box (−201/-196 bp). However, this protein acts as
a repressor in other gene contexts.74 At low glucose concen-

trations (1–2mM) in β cells, the nuclear periphery is the main

location of Pdx-1. Following the insulin secretion stimula-

tion, Pdx-1 shuttles into the nucleus as a consequence of its

phosphorylation. Atypical protein kinase C isoforms, p38/

stress-activated protein kinase, glycogen synthase kinase 3

(GSK3), phosphatidylinositol 3-kinase (PI3K), Per-Arnt-Sim

(PAS) kinase, and mitogen-activated protein kinase (MAPK)

are among the main signaling pathways that adjust shuttling

of the nucleo-cytoplasmic and adjust the Pdx-1 transactiva-

tion potential.75 Furthermore, it was disclosed that the Pdx-1

interaction with different transcriptional coregulators was

mediated by glucose. Additionally, it was approved that

expression of insulin gene under low and non-insulin stimu-

lating glucose concentrations decreased by association of

Pdx-1 with the histone deacetylases HDAC-1 and HDAC-

2.76 Furthermore, Pdx-1 SUMOylation regulates its localiza-

tion and stability. It is also associated with increased activity

of insulin promoter.77 In addition, SUMOylation of Pdx-1

increases its nuclear localization as well as its protein stabi-

lity and is correlated with an increase in insulin promoter

activity.78 Finally, Pdx-1 is composed of at least two sites of

O-GlcNAcylation, which promote its DNA activity of

binding.79,80 A research indicated that miR-375 regulated

insulin secretion by targeting Pdx-1.81

Myotrophin with ankyrin repeats mediates the protein–

protein interactions in other proteins. Myotrophin func-

tions to remodel F-actin filaments and secretory granules

exocytosis.82 Furthermore, the literature found that miR-

375 targets myotrophin mRNA.83

NeuroD1/Beta2 is a basic helix-loop-helix (bHLH)

transcription factor that binds with the ubiquitously

expressed E-box proteins at the conserved insulin E1

(−100/-91bp) site in a complex.84 O-GlcNAcylation of

NeuroD185 as a crucial factor for its translocation to the

nucleus is mediated by high glucose levels. It was dis-

closed that miR-375 targets NeuroD1 mRNA.81

Conclusion
Insulin secretion plays an important role in preventing

hyper- and hypo-glycemic states and its defect develops

diabetes mellitus. The miRNAs, which have a significant

impact on various disease processes, emerged as important

players of gene regulation. Deregulated expression of

miRNA has been widely implicated in the insulin-secreting

pancreatic beta-cell of patients with type-2 diabetes. As

a result, impaired insulin secretion is a major factor in

disease progression. So, a more in-depth understanding of

the interplay between miRNAs and protein involved in

insulin production and secretion may afford valuable

insights and novel therapeutic strategies to treat diabetes.
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