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Photo-excited charge carriers suppress
sub-terahertz phonon mode in silicon
at room temperature
Bolin Liao1,w, A.A. Maznev2, Keith A. Nelson2 & Gang Chen1

There is a growing interest in the mode-by-mode understanding of electron and phonon

transport for improving energy conversion technologies, such as thermoelectrics and

photovoltaics. Whereas remarkable progress has been made in probing phonon–phonon

interactions, it has been a challenge to directly measure electron–phonon interactions at the

single-mode level, especially their effect on phonon transport above cryogenic temperatures.

Here we use three-pulse photoacoustic spectroscopy to investigate the damping of a single

sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature.

Building on conventional pump–probe photoacoustic spectroscopy, we introduce an

additional laser pulse to optically generate charge carriers, and carefully design temporal

sequence of the three pulses to unambiguously quantify the scattering rate of a

single-phonon mode due to the electron–phonon interaction. Our results confirm predictions

from first-principles simulations and indicate the importance of the often-neglected effect of

electron–phonon interaction on phonon transport in doped semiconductors.
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T
he ability to understand microscopic transport and
interaction of energy carriers ‘mode by mode’ holds
promise of reshaping energy–material research at the

most fundamental level. First-principles simulations partially
provide this ability1–3, although they have hitherto been limited
to relatively simple material systems. On the experimental side,
recent developments in ultrafast photoacoustic spectroscopy4–6,
inelastic neutron scattering7 and quasiballistic phonon mean-
free-path spectroscopy8–10 enabled progress in probing
phonon–phonon interaction strength of individual phonon
modes or the distribution of phonon modes with respect to
phonon–phonon-interaction-limited mean free paths. These
tools can provide guidance for designing nanostructured
thermoelectric materials11. The same level of insight is also
desirable for electron–phonon interaction, which is among the
most important interactions of (quasi)particles in condensed
matter physics and material science. Electron–phonon interaction
is the major contributor to electrical resistance in most inorganic
metals and semiconductors12 above cryogenic temperatures, plays
the central role in the microscopic theory of superconductivity13

and forms the basis of polaron formation and transport in
conjugated polymers14. Given its paramount importance,
numerous experimental techniques have been developed to
probe the electron–phonon interaction in various materials
directly or indirectly, with most of them examining the effect
of electron–phonon interaction on electrons. For example,
the collective effect of the interactions among all phonons
and electrons that participate in transport can be inferred from
electrical transport experiments12,15. Alternatively, the average
electron–phonon coupling strength can be directly measured
by investigating the timescale of equilibration of electrons and
phonons in ultrafast optical pump–probe experiments16,17. In
addition, the angle-resolved photoemission spectroscopy can
directly map out the electronic band structure near the
material surface, and the linewidths of the electronic states
provide specific information of the interaction strength between a
single-electron state with all phonon modes18,19.

On the other hand, the effect of electron–phonon interaction on
phonons has been less studied, both theoretically and experi-
mentally. Previous measurements on metals usually apply a high
magnetic field to ‘freeze out’ the electrons and then measure the
change of thermal conductivity20. In most cases the change is small
due to the small energy scale of magnetic fields, and most
measurements were done at cryogenic temperatures. An alternative
way to probe the phonon-specific information of electron–phonon
interaction in metals is through superconducting tunnelling
spectroscopy21. From superconducting tunnelling spectroscopy
the Éliashberg function22 a2F(o) can be extracted, which reflects
the interaction strength of electrons near the Fermi surface with
phonons with a specific frequency o. However, it is limited to
superconductors and cannot resolve individual phonon modes.
Similarly, inelastic neutron scattering was used to measure
and compare phonon linewidths of metals in the normal and
superconducting states23, the difference between which gives
the phonon damping due to electron–phonon interaction in the
normal state. The change of phonon damping in metals across
the superconductor transition has also been studied by ultrasonic
attenuation experiments24–27 in the megahertz frequency range.

Early experiments on semiconductors mostly focused on
the effect of carriers introduced by doping on the thermal
conductivity28,29. One difficulty of these experiments is to
separate the contributions to phonon scattering from carriers
themselves and from the impurities introduced by doping.
The same difficulty stands in inelastic neutron-scattering
measurements30 and ultrasonic attenuation experiments31 of
doped semiconductors. An alternative way of introducing carriers

is by electrostatic gating. Owing to the short screening length
(typically a few nanometres in semiconductors), the induced
carriers are confined in a thin layer and cannot effectively
scatter phonons because of the short interaction time. And
thus, measurements of phonon damping due to electrostatically
induced carriers have only been carried out at cryogenic
temperatures32,33.

The recent advancement of thermoelectrics has revived the
interest to the effect of the electron–phonon interaction on phonon
transport, since most thermoelectric materials are heavily
doped semiconductors with carrier concentrations in the range
of 1019–1021 cm� 3, and the electron–phonon interaction can
potentially be an important factor in scattering phonons in this
regime. Liao et al.34 have shown through first-principles
calculations that the lattice thermal conductivity of silicon at
room temperature can be reduced by 45% due to the electron–
phonon interaction at a carrier concentration of 1021 cm� 3.
Furthermore, the calculations in ref. 34 have resolved the effect of
electron–phonon interaction on each individual phonon mode.
However, an experimental verification of these findings has been
lacking.

In this article, we use a three-pulse femtosecond photoacoustic
technique to quantify the effect of the electron–phonon
interaction on the lifetime of a single-coherent phonon mode in
a silicon membrane at room temperature and achieve good
agreement between experimental results and first-principles
calculations for the phonon lifetime as a function of the
carrier concentration. Building on conventional femtosecond
photoacoustic spectroscopy4,5,35, we introduce an extra excitation
beam to optically generate electron–hole pairs, and carefully
design the temporal sequence of the three pulses to add extra
damping due to electron–phonon interaction to the second
acoustic arrival (the echo of the first pulse after a round trip
inside the membrane) while not affecting the first arrival.
By comparing the magnitudes of the first and the second
arrivals of the acoustic pulse, the effect of electron–phonon
interaction on phonon damping can be unambiguously
quantified. With this design, we completely rule out the effect
of phonon-impurity scattering, as free charge carriers are
introduced optically rather than by doping. Furthermore, we
optically excite carriers uniformly through the thickness of the
sample, so that the phonon mode has enough time to interact
with the carriers, which allows a sufficiently strong effect to be
measured at room temperature. Thus, our method overcomes
the previously stated difficulties that have prevented direct
quantification of the effect of electron–phonon interaction on
phonon transport, and our measurement results show good
agreement with the first-principles calculations of ref. 34.
In particular, we find that beyond a carrier concentration of
2� 1019 cm� 3, the electron–phonon scattering provides the
dominant mechanism of the phonon decay.

Results
Experimental set-up. In conventional ultrafast photoacoustic
spectroscopy4,6,35,36, an acoustic strain pulse is launched in a thin
sample by an ultrafast optical pump pulse. This optical pump
pulse is absorbed through electronic transitions, and then an
acoustic strain pulse is released by relaxation of the strain
generated either by photo-excited carriers or thermal expansion.
Subsequently, this acoustic strain pulse travels back and forth
inside the thin sample and is recorded by an ultrafast optical
probe pulse. The optical response in the probe pulse is generated
through the photoelastic response of the material to the
strain pulse35. If the probe penetration depth is relatively large
(on the order of the wavelength in the medium or larger), the
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transient reflectivity signal is typically dominated by high-
frequency Brillouin oscillations, resulting from the interference
of light reflected from the sample surface and from the strain
pulse36–38. This process is illustrated in Fig. 1b. The Brillouin
oscillations typically lead to a narrowband signal with a peak
frequency (Brillouin frequency fB) determined by the longitudinal
sound speed vL, the refractive index n of the sample and the probe
wavelength l as fB¼ (2nvL)/l. In silicon with a 390 nm probe
beam, the Brillouin frequency is B250 GHz. By comparing the
amplitudes of the frequency components of the acoustic pulse at
different propagation lengths, the acoustic damping due to losses
during the propagation inside the membrane can be quantified.
A typical signal of the first two echoes of the acoustic pulse
(hereafter we refer to the recorded arrivals of the acoustic
pulse at the specific sample surface as ‘echoes’, although
technically the first arrival is not an echo) is shown in Fig. 1c.
In the conventional pump–probe set-up, the phonon damping is
caused by phonon–phonon interaction in the bulk of the sample
and scattering by surface roughness4,36.

To measure the phonon damping caused by free charge
carriers, we introduce another optical pulse to generate carriers
inside the sample. We choose to use 780 nm optical pulses with a

1.7 mm-thick silicon membrane sample. At 780 nm, the optical
penetration depth of silicon is B8mm, so that the carriers
are generated nearly uniformly within the membrane. For pump
and probe pulses, we choose 390 nm wavelength, at which the
penetration depth is only B60 nm.

Key components of the experimental set-up are illustrated in
Fig. 1a. Details of the set-up are described in Methods. Briefly, we
focus three pulsed laser beams on the same spot of a silicon
membrane: 390 nm pump; 390 nm probe; and an additional
780 nm excitation beam to generate carriers. Since we use a
pulsed laser to generate carriers, the timing of the three pulses is
crucial. We design the pulse sequence such that the 780 nm
excitation pulse arrives right after the first echo is recorded by the
390 nm probe, marked by the arrow in Fig. 1c. At delay time
t¼ 0 ps, the 390 nm pump pulse hits the front side of the sample,
and launches an acoustic strain pulse. It takes B210 ps for
the strain pulse to traverse the 1.7 mm-thick membrane and be
recorded by the 390 nm probe beam on the backside of
the sample. After that, this acoustic strain pulse is reflected from
the sample surface and starts the second round trip inside the
membrane. In our design, the 780 nm pulse arrives at t¼ 260 ps,
right after the first arrival of the acoustic pulse is recorded. The
780 nm pulse generates free electron–hole pairs uniformly inside
the membrane. Since silicon is an indirect-gap semiconductor, the
recombination time is relatively long. Therefore, the generated
electron–hole pairs remain in the membrane for up to a few
nanoseconds, and will damp the acoustic strain pulse during its
second round trip. At t¼ 620 ps, the second echo is recorded by
the probe beam when the strain pulse reaches the backside of the
membrane again. The decay of the phonon mode at the Brillouin
frequency (250 GHz) can now be quantified by comparing the
magnitude of spectral peaks at 250 GHz in Fourier transforms of
the first and second echoes. Furthermore, the contribution to the
phonon damping from the photo-excited carriers can be isolated
from phonon–phonon scattering and boundary loss by
comparing the total attenuation with and without the 780 nm
excitation beam. One important advantage of this design is that
only the ratio, not the absolute amplitudes, of the two pulses
matters, so that the fluctuations of the laser power and pointing
on longer timescales do not affect the measurement. Technical
considerations of the material heating caused by the excitation
beam and the carriers generated by the 390 nm pump beam are
given in Discussion.

Figure 2 shows the response of the silicon membrane to the
780 nm excitation beam alone, without the 390 nm pump beam.
One can see that higher power leads to larger change in the
reflectance signal at 260 ps when the excitation pulse arrives,
indicating a higher carrier concentration. The decay of the signal
with time indicates the carrier recombination process. The
recombination process is faster for higher carrier concentration,
as expected, but the lifetime is still sufficiently long to ensure
that the carrier concentration does not drop significantly within
the measurement window (indicated by the dashed lines,
260–620 ps). The oscillations on the decay curves represent the
lowest-order thickness resonance of the membrane at 2.5 GHz,
corresponding to the B390 ps acoustic round-trip time, which is
far separated from the 250 GHz Brillouin oscillation. The decay
curves drop below the baseline for higher excitation power due to
the reflectance change of silicon caused by the slight temperature
rise. It is known that the strain caused by the carrier generation
and by heating in silicon has opposite signs39.

Measurement and data analysis. Figure 1c shows the first and
second acoustic pulses with both the 390 nm pump beam
and 6 mW of 780 nm excitation beam. The slower transient due
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to carrier generation can be observed after the arrival of the
780 nm excitation pulse. It is clearly seen that the fast Brillouin
oscillations in the second echo are suppressed by the 780 nm
excitation beam, a clear evidence of phonon damping by the
photo-excited electron–hole pairs, whereas those in the first echo
are not affected by the presence of the 780 nm excitation beam,
ruling out the effect of steady-state temperature rise on phonon
damping. Figure 3a shows the recorded first and second echoes
for different powers of the 780 nm excitation. One can see that the
fast Brillouin oscillations in the second echo get increasingly
suppressed and eventually disappear at higher 780 nm powers.

To quantify the phonon lifetime due to electron–phonon
interaction, Fourier transforms of the first and second echoes are

carried out as shown in Fig. 3b. As expected, the amplitude of the
frequency component at 250 GHz of the second echo is clearly
suppressed by the 780 nm excitation, even down to the noise level
when 14 mW of 780 nm excitation beam is used. Measurements
beyond this power are thus not possible.

To calculate the 250 GHz phonon-scattering rate (reciprocal of
the lifetime) due to the electron–phonon interaction, we
separate the additional contribution of phonon attenuation from
electron–phonon interaction by comparing the overall
attenuations with and without the excitation beam. The details
of the calculation, and the estimation of carrier concentration
generated by the 780 nm excitation pulse are given in Methods.
To eliminate the error caused by laser fluctuations, we did
reference measurements without the 780 nm excitation before
and after each measurement with the 780 nm excitation, and
repeated the measurements multiple times.

The 250 GHz phonon-scattering rate due to the electron–
phonon interaction is plotted in Fig. 4. The reported data were
measured on five different locations of the membrane, and each
data point represented average of 10–30 measurements. The error
bars are the s.d.’s of the measurement results that are averaged.
Also plotted in Fig. 4 is the theoretical prediction based on the
following equation derived from Fermi’s golden rule34:

1
tep

qn
¼ 2pm�ð Þ1=2D2

A

kBTð Þ3=2gdrvs

exp � m�v2
s

2kBT

� �
noqn; ð1Þ

where tep
qn is the lifetime due to electron–phonon interaction of a

specific phonon with wavevector q and branch index v, m* the
density-of-state effective mass of the carriers, DA the acoustic
deformation potential, r the mass density of the material, gd

the number of equivalent carrier pockets, vs the sound velocity,
n the carrier concentration and oqv the angular frequency of the
phonon mode. A similar expression for longitudinal optical
phonons is also given in ref. 34. These expressions can be
directly used in Callaway-type models for estimating the thermal
conductivity. The contributions from the electrons and holes are
calculated separately and directly summed with the assumption
that the phonon scattering due to electrons and holes is
independent. This assumption is valid in silicon at room
temperature given its low exciton-binding energy40. The
deformation potential values we used in this work are the
acoustic deformation potential for electrons DA,e¼ 5.2 eV and for
holes DA,h¼ 4.8 eV. With these values, equation (1) agrees with
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first-principles simulations in ref. 34 in the small wavevector
regime. (The values given in ref. 34 were underestimated by a
factor of two due to a missing numerical factor when fitting the
simulation results. This error does not affect the simulation
result itself.) Given the approximations made in data processing
and possible errors in estimating the carrier concentrations
(see Methods), the agreement between experiment and theory is
reasonable.

Discussion
There are several technical considerations. First, the heating
caused by the 780 nm beam needs to be minimized. Given the
single-pulse energy of 80 nJ at 10 mW, and the volumetric
specific heat of silicon B1.6� 106 JK� 1 m� 3, the instantaneous
temperature rise due to absorption of a 780 nm pulse can be
estimated to be B4 K. This is significantly smaller than the
Debye temperature of silicon (645 K) and thus has negligible
effect on phonon damping. The limited heat dissipation
capability, however, of the silicon membrane also leads to an
accumulated steady-state temperature rise. We estimate this
temperature rise in a COMSOL simulation to be B15 K at the
maximum power (B15 mW) we use in the experiment
(Supplementary Fig. 1). This temperature rise is still not expected
to have observable effect on phonon damping, which is also
verified by the experimental fact that the amplitude of the first
echo is not affected by the presence of the 780 nm excitation
(Fig. 3a).

Second, the 390 nm pump pulse also generates carriers. We
note that Pascual-Winter et al.41 suggested that the carriers
generated by the pump could affect the measured intrinsic
phonon lifetime in a GaAs-AlAs superlattice at 15 K, although
room temperature measurements on the same material system5

did not show this effect. In our case the contribution of the
carriers generated by the 390 nm pump to the phonon damping is
subtracted out when we compare the total damping with
and without the 780 nm excitation. However, we do not want
the carriers generated by the 390 nm pump to dominate those

generated by the 780 nm excitation. The typical power of the
390 nm pump beam we use in the experiment is 13 mW, B60%
of which is reflected by the membrane. Owing to the shallow
absorption length (B60 nm) at 390 nm, an extremely high
(B5� 1020 cm� 3) carrier concentration is initially generated
within the thin 60 nm layer. At this carrier concentration, Auger
recombination is strong and the recombination time is below
100 ps (ref. 42). Therefore, the carrier concentration will drop
significantly before the acoustic pulse reaches the backside of the
membrane for the first time, and further reduced by the diffusion
of the carriers. With an average hole diffusivity of 10 cm2 s� 1 in
silicon (ref. 43) (electron diffusivity is B30 cm2 s� 1; here we
use the hole value because holes are more effective in scattering
phonons34), the carriers will diffuse out to a layer of B300 nm in
200 ps, and given a recombination time of 100 ps, the carrier
concentration is estimated to drop below 1� 1018 cm� 3. To test
this conclusion, we measured the 250 GHz phonon lifetime
without the 780 nm excitation beam with different 390 nm pump
power from 6 to 15 mW at the same location on the membrane,
and did not see any systematic reduction of the phonon lifetime
with increasing pump power at 390 nm (Supplementary Table 1).

It should be noted that although in our experiment the effect of
the carriers produced by the pump pulse used to generate
coherent phonons is found to be negligible, it may not be
negligible in other experiments, where measurements of the
acoustic phonon damping in semiconductors are accompanied by
the photogeneration of free carriers. For example, Cuffe et al.44

studied the lifetimes of the lowest-order dilatational thickness
resonances in ultrathin silicon membranes using tightly
focused (1.75 mm spot size) 800 nm pump pulses and they
found that the measured lifetime is shorter than model
predictions including phonon–phonon and phonon–boundary
scatterings. Our results suggest that the additional phonon
damping due to carriers generated by the pump may have
contributed to their measurements.

It can be seen in Fig. 4 that the measured scattering rate
is lower than the theoretical prediction for lower carrier
concentrations. We note that the photo-excited electrons also
scatter off thermal phonons. The lifetime (not recombination
time) of electrons near the band edges due to electron–phonon
interaction is B100 fs according to previous first-principles
calculations45, which is significantly shorter than the period of
the phonon mode studied (4 ps). When applying Fermi’s golden
rule, it is implicitly assumed that the participating particles
maintain their phases throughout the scattering process.
In this case the electrons do not maintain their phases for a
sufficiently long time (the phonon period) due to other
scattering processes, and strictly speaking, this assumption of
Fermi’s golden rule is not fully satisfied. In the opposite
limiting case, when the electron lifetime is much shorter than a
phonon period, phonon damping due to free carriers can be
analysed31 by considering the relaxation of the carrier
distribution in the strain field imposed by the phonon, the
approach originally due to Akhiezer46. This relaxation-type
theory31 also predicts a linear dependence of the phonon
decay rate on the carrier concentration. We note, however,
that Akhiezer’s approach requires the electron mean free path to
be much smaller than the acoustic phonon wavelength, a
requirement that is not quite met in our case, with the
acoustic wavelength being as small as 34 nm. A comprehensive
theory that would bridge Akhiezer’s approach with that based
on Fermi’s golden rule34 is currently lacking and will be part of
our future pursuit. However, the fact that experimental results
come close to the predictions of ref. 34 indicate that the
latter approach may yield reasonable results outside the domain
of its formal validity.
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In summary, we have measured the lifetime of 250 GHz
coherent longitudinal acoustic phonons due to scattering by
photo-excited electrons and holes at room temperature. We have
found that at carrier concentration beyond 2� 1019 cm� 3,
scattering by charge carriers provides a dominant channel for
the phonon decay. Our measurement lends support to theoretical
predictions based on first-principles calculations, and
indicates the important role played by electron–phonon interac-
tion in phonon transport. It should be noted that although our
measurement is dynamic, the measured electron-scattering
properties of phonons should be equivalent to those in a
doped semiconductor at thermal equilibrium, due to the
fact that the photo-excited carriers have cooled down to a
quasi-Fermi-Dirac distribution47 with the same temperature as
the lattice during the time window of our measurement.

The impact of this work is not limited to energy materials,
such as thermoelectrics or photovoltaics. In any system where
electron–phonon interactions play an important role, this
technique can be used to extract phonon-specific information
of electron–phonon interaction. An important case is the
superconductors, especially high-temperature superconductors,
to which we believe this experimental technique can be readily
applied48,49. This technique can be further advanced by tuning
the frequency of the coherent acoustic wavepackets50 and by
extending the method to transverse phonons51, which will allow
to measure the electron-scattering time of phonons with
different frequencies and polarizations. Combined with the
recent advances in the generation of coherent phonons
above 1 THz in frequency52, this technique can be a useful
tool for analysing phonon scattering at frequencies
comparable to those of heat-carrying thermal phonons at room
temperature.

Methods
Details on experimental set-up. We use an amplified Ti:sapphire laser system
producing 300 fs pulses at 780 nm at a repetition rate of 250 kHz. The output of the
laser system is split into a pump beam and a probe beam. The pump beam is
subsequently modulated by an acousto-optic modulator (AOM) at a modulation
frequency of 95 kHz. After passing through a frequency-doubling crystal
(bismuth borate), part of the 780 nm photons are converted into 390 nm photons,
and subsequently separated from the remaining 780 nm beam by a dichroic mirror.
The two beams are then focused onto the sample with lenses. The extra path of the
780 nm beam with respect to the 390 nm beam is B8 cm, corresponding to a delay
of B260 ps. Two thin-film polarizers are placed in the path of the 780 nm beam to
control its power without deflecting the beam. The diameters of both beams at the
sample plane (also the focal planes of the corresponding lenses) are measured with
a razor-blade beam profiler to be 60 mm at 1/e2 intensity level. The probe beam goes
through a delay stage and is frequency-doubled via a bismuth borate crystal.
The 390 nm probe is then focused onto the sample with a lens (beam diameter
20mm at 1/e2 intensity level). The reflected probe beam from the sample is directed
into a photodiode via a beam splitter, which is then read-out by a lock-in amplifier
at the modulation frequency of the AOM (95 kHz). The typical power for the
390 nm pump is 13 mW and for the 390 nm probe is 0.5 mW.

Estimation of carrier concentration. At 250 kHz repetition rate, 10 mW of
measured laser power translates to single-pulse energy of 80 nJ (a factor of two
takes into account the square-wave modulation of the AOM). The absorptance of
the membrane at 780 nm is measured to be 25–30% depending on location.
Given the photon energy of 1.59 eV at 780 nm, and the beam diameter of
60mm, the generated concentration of electron–hole pairs can be estimated
to be 1.8� 1019 cm� 3.

Calculating phonon-scattering rate. The damping of a coherent phonon mode
when photo-excited carriers are present can be described by

A2 ¼A1e exp � 1
2tep

Dt

� �
; ð2Þ

where A1 and A2 are the amplitudes of the first and second pulses, Dt¼ 360 ps is
the duration of the time window when charge carriers are excited and e is the
attenuation due to phonon–phonon interaction and boundary scattering. Here the
factor of two inside the exponent accounts for the fact that the energy of an

acoustic pulse is proportional to the square of its amplitude. From equation (2) the
scattering rate due to electron–phonon interaction gep can be calculated as

gep �
1
tep
¼ 2

Dt
ln

A1

A2

� �
� ln

A0
1

A0
2

� �� �
; ð3Þ

where A0
1 and A0

2 refer to the amplitudes of the two pulses without the 780 nm
excitation.

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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in vitreous silica measured by picosecond acoustics. Phys. Rev. B 77, 100201
(2008).

39. Stearns, R. G. & Kino, G. S. Effect of electronic strain on photoacoustic
generation in silicon. Appl. Phys. Lett. 47, 1048–1050 (1985).

40. Green, M. A. Improved value for the silicon free exciton binding energy.
AIP Adv. 3, 112104 (2013).

41. Florencia Pascual-Winter, M., Fainstein, A., Jusserand, B., Perrin, B. &
Lemaitre, A. Photocarrier-induced reduction of the lifetime of acoustic
phonons in semiconductor superlattices. Chin. J. Phys. 49, 250–258 (2011).

42. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007).
43. Sigmon, T. W. & Gibbons, J. F. Diffusivity of electrons and holes in silicon.

Appl. Phys. Lett. 15, 320–322 (1969).
44. Cuffe, J. et al. Lifetimes of confined acoustic phonons in ultrathin silicon

membranes. Phys. Rev. Lett. 110, 095503 (2013).
45. Qiu, B. et al. First-principles simulation of electron mean-free-path spectra and

thermoelectric properties in silicon. Europhys. Lett. 109, 57006 (2015).
46. Akhieser, A. On the absorption of sound in solids. J. Phys. (USSR) 1, 277

(1939).
47. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor

Nanostructures (Springer, 1999).

48. Song, Y. S., Lee, H. K. & Chung, N. S. Photoacoustic detection of the
superconducting transition in high Tc superconductors. J. Appl. Phys. 65,
2568–2571 (1989).

49. Aravind, M., Fung, P. C. W., Tang, S. Y. & Tam, H. L. Two-beam photoacoustic
phase measurement of the thermal diffusivity of a Gd-doped bulk YBCO
superconductor. Rev. Sci. Instrum. 67, 1564–1569 (1996).

50. Klieber, C. et al. Narrow-band acoustic attenuation measurements in
vitreous silica at frequencies between 20 and 400 GHz. Appl. Phys. Lett. 98,
211908–211911 (2011).

51. Matsuda, O., Wright, O. B., Hurley, D. H., Gusev, V. E. & Shimizu, K. Coherent
shear phonon generation and detection with ultrashort optical pulses. Phys.
Rev. Lett. 93, 095501 (2004).

52. Maznev, A. A. et al. Broadband terahertz ultrasonic transducer based on a
laser-driven piezoelectric semiconductor superlattice. Ultrasonics 52, 1–4
(2012).

Acknowledgements
We thank Hyun D. Shin for help with the laser system, and Jiawei Zhou and Yangying
Zhu for helpful discussions. This article is based on work supported by S3TEC, an Energy
Frontier Research Center funded by the U.S. Department of Energy, Office of Basic
Energy Sciences, under Award No. DE-FG02-09ER46577.

Author contributions
B.L., A.A.M. and G.C. conceived this project; B.L. and A.A.M. did the experiment. All
authors analysed the data, and B.L. and G.C. wrote the paper. All the authors read the
paper and made comments. K.A.N. and G.C. supervised this project.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Liao, B. et al. Photo-excited charge carriers suppress
sub-terahertz phonon mode in silicon at room temperature. Nat. Commun. 7, 13174
doi: 10.1038/ncomms13174 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13174 ARTICLE

NATURE COMMUNICATIONS | 7:13174 | DOI: 10.1038/ncomms13174 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Experimental set-up
	Measurement and data analysis

	Figure™1Overview of the experiment.(a) Schematic of the experimental set-up. Not shown are components of the set-up standard for ultrafast optical pump-probe experiments such as the laser, the optical delay line and so on. (b) Schematic showing the strain
	Figure™2The response with only the 780thinspnm excitation beam.The 780thinspnm excitation power is varied from 6 to 14thinspmW. The responses are caused by carrier generation, with different carrier concentrations and lifetimes at different excitation pow
	Figure™3The attenuation of the second acoustic echo due to photo-excited carriers.(a) The recorded profiles of the first and second echoes versus the power of the 780thinspnm excitation beam. The fast Brillouin oscillations in the second echo are suppress
	Discussion
	Figure™4Comparison between experiment and theory.The measured 250thinspGHz phonon-scattering rate due to electron-phonon interaction, compared with the theoretical prediction in ref. 34. The yellow dashed line labels the phonon attenuation level without t
	Methods
	Details on experimental set-up
	Estimation of carrier concentration
	Calculating phonon-scattering rate
	Data availability

	ZhouJ.LiaoB.ChenG.First-principles calculations of thermal, electrical, and thermoelectric transport properties of semiconductorsSemicond. Sci. Technol.310430012016LiW.CarreteJ. A.KatchoN.MingoN.ShengBTE: a solver of the Boltzmann transport equation for p
	We thank Hyun D. Shin for help with the laser system, and Jiawei Zhou and Yangying Zhu for helpful discussions. This article is based on work supported by S3TEC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic E
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




