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Abstract: Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons from the
substantia nigra (SN) that project to the dorsal striatum (caudate-putamen). To better understand
the molecular mechanisms underlying PD, we performed combined lipid profiling and RNA
sequencing of SN and putamen samples from PD patients and age-matched controls. SN lipid
analysis pointed to a neuroinflammatory component and included elevated levels of the endosomal
lipid Bis (Monoacylglycero)Phosphate 42:8, while two of the three depleted putamen lipids were
saturated sphingomyelin species. Remarkably, we observed gender-related differences in the SN and
putamen lipid profiles. Transcriptome analysis revealed that the top-enriched pathways among the
354 differentially expressed genes (DEGs) in the SN were “protein folding” and “neurotransmitter
transport”, and among the 261 DEGs from putamen “synapse organization”. Furthermore, we identified
pathways, e.g., “glutamate signaling”, and genes, encoding, e.g., an angiotensin receptor subtype or a
proprotein convertase, that have not been previously linked to PD. The identification of 33 genes that
were common among the SN and putamen DEGs, which included theα-synuclein paralogβ-synuclein,
may contribute to the understanding of general PD mechanisms. Thus, our proof-of-concept data
highlights new genes, pathways and lipids that have not been explored before in the context of PD.

Keywords: Parkinson’s disease; RNA sequencing; transcriptomics; lipidomics; substantia nigra;
putamen; postmortem human brain

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease, after Alzheimer’s
disease. PD is rare in individuals less than 50 years old, but its prevalence increases with age, reaching
up to 4% in older-age groups [1]. Clinically, PD presents with motor symptoms, e.g., rigidity,
bradykinesia, tremor and postural instability [2], and non-motor symptoms, e.g., depression, hyposmia,
constipation and sleep disorders [3]. The neuropathology of PD is characterized by the formation of
Lewy bodies (abnormal intracellular aggregates containing metals, lipids and proteins like α-synuclein),
a progressive loss of dopaminergic neurons that project from the substantia nigra (SN) to the dorsal
part of the striatum (which consists of the caudate nucleus and putamen), and microgliosis [4].

Current knowledge of the molecular mechanisms underlying these pathological hallmarks has
been derived from studies on 27 monogenic familial forms of PD [5], which represent only 5–10%
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of the cases, and from toxin-induced PD cellular and animal models (e.g., use of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine, rotenone or 6-hydroxydopamine) [6–9]. The most salient mechanisms
described up to now include mitochondrial dysfunction and oxidative stress, unfolded protein response,
protein aggregation, lysosomal dysfunction and neuroinflammation [10]. Unfortunately, the existing
data has not resulted in the development of disease-modifying treatments for PD.

Recent studies have pointed towards a key role for lipids in PD [11–13]. Based on their chemical
and biochemical properties lipids can be classified into eight different classes, namely fatty acyls,
glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, saccharolipids and polyketides [14].
Lipids are mainly known for their role in energy storage [15], but they are also involved in cellular
signaling and transport [16,17]. Furthermore, lipids are the main constituents of cellular membranes [18],
and form part of membrane rafts and anchors [19,20]. As such, an abnormal lipid composition has
been linked to the molecular mechanisms underlying PD, i.e., protein aggregation [21], mitophagy [22]
and immune processes [23].

Unbiased post mortem lipid profiling of brain tissue samples from PD patients and control
individuals [24] could be a rich source of hypothesis-generating findings and key to further
understanding of PD etiology. Of note, the lipidome is less susceptible to postmortem changes than the
water-soluble metabolome and therefore the lipid composition of brain sections may offer a reliable
representation of PD-related alterations in lipid homeostasis in vivo. Furthermore, genome-wide mRNA
expression profiling, also known as transcriptomics, is one of the most-used -omics techniques and
may be employed to shed light on how specific lipid changes are coupled to transcriptional regulation.
Studies analyzing the PD brain transcriptome have mostly involved the use of microarrays [25].
Microarrays are more cost-effective than RNA sequencing (RNA-seq) [26], but the latter methodology
is superior at detecting splicing events, and novel and/or low-abundance transcripts [27].

Here we perform lipid as well as RNA-seq analyses to determine the lipid and transcriptome
profiles, respectively, of SN and putamen samples from the same PD patients and controls. Additionally,
we compare our genome-wide mRNA expression findings to previous PD/control SN and putamen
transcriptomic results to draw more robust conclusions about differential mRNA expression profiles in
these PD brain regions.

2. Materials and Methods

2.1. Human Samples

Snap-frozen post-mortem human brain samples were obtained from the Netherlands Brain Bank
(NBB; Project 870; Table 1) and all material and data collected by the NBB were obtained on the basis of
written informed consent. The average age for control and PD individuals was 78.3 and 77.9 years
old, respectively. The average postmortem delay (time interval from death to sample-freezing) for
control and PD individuals was 6.49 and 5.53 h, respectively. The cerebrospinal fluid pH for control
and PD individuals was 6.54 and 6.43, respectively. None of the three variables were significantly
different between the groups (i.e., age: PD and controls (p-value > 0.999), male and female controls
(p-value = 0.224), male and female PD (p-value = 0.386), males PD and controls (p-value = 0.892)
and female PD and controls (p-value = 0.800); postmortem delay: PD and controls (p-value = 0.184),
male and female controls (p-value = 0.191), male and female PD (p-value = 0.829), males PD and
controls (p-value = 0.474) and female PD and controls (p-value = 0.200) and pH: PD and controls
(p-value = 0.134), male and female controls (p-value = NA), male and female PD (p-value = 0.476),
males PD and controls (p-value = 0.474) and female PD and controls (p-value = NA)). The cases reported
here have not been genetically analyzed for familial mutations (5–10% of Parkinson cases are thought
to be familial; [28]). All procedures were in accordance with the consensus criteria established by the
Netherlands Brain Bank. Tissue blocks were cold grinded in liquid nitrogen to obtain a homogenous
sample for both RNA and lipid extraction.
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Table 1. Clinical information on the post-mortem human brain samples.

Diagnosis Age Gender PMD pH CSF Braak Stage Cause of Death

Control 78 M 8:25 6.56 0 Cardiac arrhythmia
Control 69 F 8:30 0 Myocardial infarction
Control 69 F 6:15 6.59 0 Cardiogenic shock
Control 84 M 7:05 5.90 0 Exacerbation of COPD
Control 73 F 6:40 0 Respiratory failure
Control 84 M 5:35 6.98 0 Heart failure
Control 82 M 5:10 6.75 0 Pneumonia
Control 85 F 7:05 0 Renal insufficiency
Control 79 M 5.45 6.38 0 Euthanasia
Control 80 M 4:25 6.59 0 Euthanasia

PD 86 F 4:08 6.32 5 Cachexia and dehydration
PD 86 M 7:25 6.26 4 Cardiac arrest
PD 74 M 4:35 6.58 6 Respiratory insufficiency
PD 68 F 4:05 6 Euthanasia
PD 77 M 3:10 6.28 6 Aspiration pneumonia
PD 86 M 4:10 6.91 6 Euthanasia
PD 84 M 4:50 6.41 3 Cachexia
PD 76 M 9:15 6.33 6 Ileus
PD 77 F 6:05 3.20 5 Stroke
PD 65 F 7:35 6.55 6 Cachexia and dehydration

The table includes the diagnosis (control or Parkinson’s disease (PD)), age at death, gender (male (M) or female (F)),
post-mortem delay (PMD), pH of the cerebrospinal fluid (CSF), Braak stage and cause of death.

2.2. Lipid Profiling

Lipid profiling concerned a validated method for reproducible and high-throughput lipid analysis
as described in [29–31]. Briefly, pellets of grinded tissue samples were mixed with UPLC-grade
chloroform: methanol 1:1 (v/v) and, after 20 min, samples were centrifuged at 2000× g and the
supernatant was used directly for LC–MS analysis. To this end, 10 µL was injected on a hydrophilic
interaction liquid chromatography (HILIC) column (2.6µm HILIC 100 Å, 50 mm× 4.6 mm, Phenomenex,
Torrance, CA, USA), and eluted with a gradient from ACN/Acetone (9:1, v/v) to ACN/H2O (7:3, v/v)
with 10 mM ammonium formate, and both with 0.1% formic acid. Flow rate was 1 mL/min. The column
outlet of the LC was either connected to a heated electrospray ionization source of an LTQ-XL mass
spectrometer or a Fusion mass spectrometer (both from ThermoFisher Scientific, Waltham, MA, USA).
Full scan spectra were collected from m/z 450–950 at a scan speed of 3 scans/s in both the positive and
negative ionization mode (LTQ-XL). On the Fusion mass spectrometer full spectra were collected in
the negative ionization mode from m/z 400 to 1600 at a resolution of 120,000. Parallel data dependent
MS2 was done in the linear ion trap at 30% HCD collision energy. Retention times of lipid classes were
verified by comparison to authentic standards and response factors of lipid classes were calculated.
Care was taken to ensure that lipid concentrations did not exceed the linear response range of
the instrument.

2.3. RNA-Sequencing Analysis

RNA was extracted using the RNeasy Lipid Tissue Mini Kit (Qiagen, Cat No./ID: 74804, Venlo,
The Netherlands). Total RNA samples were spectrophotometrically analyzed, and their 260/280 ration
was typically above 1.9. RNA-seq directionality library preparation and sequencing with Poly(A)
selection was performed by HudsonAlpha Genomic Services Laboratory (Huntsville, AL, USA).
Samples underwent sequencing on the HiSeq v4 (PE, 50 bp, 25 M reads), per standard protocols.
Sixteen samples were run over two lanes (3.125 M reads/sample). Data is deposited under the accession
number GSE136666.

Quality control from raw data was performed with the FASTQC tool (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/, Babraham Institute, Cambridge, UK). Overall, data had enough
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quality to follow with transcriptome alignment. Reads mapping and quantification was performed
with the Salmon pipeline [32], which consists of a lightweight-mapping model, an online phase that
estimates initial expression levels and model parameters, and an offline phase that refines expression
estimates. Next, samples with less than 10 reads across samples were filtered out. Quality controls,
including sample distances and principal component analysis, performed after variance stabilizing
transformation, concluded that all samples could be included for the differential expression analysis.
Differential expression analysis was performed with the DESeq2 v1.22.2 Bioconductor’s package [33,34].
Finally, clusterProfiler [35] was used to analyze and visualize functional profiles.

2.4. Compilation of Transcriptomic Studies

The terms used to browse the GEO DataSets database included “Parkinson’s disease” and
“Substantia Nigra” or “Putamen”. GEO DataSets was applied to screen the studies compiled by [25].
Thirteen studies on human postmortem SN and/or putamen samples were found (Table 2) and they
were used for the validation of our data, except for the study that distinguished between medial and
lateral SN (GSE8397) was excluded.

Table 2. Summary of publicly available transcriptomic studies on human postmortem substantia nigra
(SN) and/or putamen from PD patients and controls.

Accession
Number Tissue Control PD

Patient Platform Inclusion

GSE7621 SN 9 16 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array Yes

GSE42966 SN 6 9 Agilent-014850 Whole Human Genome
Microarray 4x44K G4112F Yes

GSE43490 SN 5 8 Agilent-014850 Whole Human Genome
Microarray 4x44K G4112F

No (only
overexpressed

genes)

GSE49036 SN 8 15 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array Yes

GSE20164 SN 5 6 [HG-U133A] Affymetrix Human Genome
U133A Array Yes

GSE20163 SN 9 8 [HG-U133A] Affymetrix Human Genome
U133A Array Yes

GSE20292 SN 18 11 [HG-U133A] Affymetrix Human Genome
U133A Array No (no DEGs)

GSE20333 SN 6 6 [HG-Focus] Affymetrix Human
HG-Focus Target Array Yes

GSE8397
SNm 7 9 [HG-U133A] Affymetrix Human Genome

U133A Array; [HG-U133B] Affymetrix
Human Genome U133B Array

No (two
different SN

tissues (medial
and lateral))

SNl 8 15

GSE54282
SN 3 3 [HuGene-1_0-st] Affymetrix Human

Gene 1.0 ST Array
[HuGene10stv1_Hs_ENTREZG_15.0.0]

Yes

Put 6 6 Yes

GSE77666 Put 12 12 NanoString nCounter gene expression
system Yes

GSE23290 Put 5 5 [HuEx-1_0-st] Affymetrix Human Exon
1.0 ST Array Yes

GSE20291 Put 20 15 [HG-U133A] Affymetrix Human Genome
U133A Array No (no DEGs)

Data includes GEO Data Sets accession number, tissue, number of controls and PD patients, platform used and
inclusion or exclusion criteria. The analysis and visualization of functional profiles was done with clusterProfiler
[35]. Finally, we performed protein–protein interaction network analysis of the common differentially expressed
genes (DEGs) with STRING, using only the highest confidence interaction score [36].
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2.5. Gene Set Enrichment Analysis

The bioconductor limma parametric multivariate rotation gene set test (ROAST) [37] was applied to
evaluate gene sets associated with the metabolism and/or cellular signaling pathways of the lipid classes
deregulated in the SN and putamen. The terms “phosphatidylcholine”, “phosphatidylethanolamine”,
“phosphatidylserine”, “phosphatidylinositol” and “sphingomyelin” were searched at AmiGO [38]
and Harmonizome [39]. From the results obtained, the gene sets with (1) only the lipid class name,
(2) metabolism, biosynthesis and catabolism or (3) binding information, and containing at least
3 genes, were included in the analysis. Additionally, the specific lipid species were searched in the
Human Metabolome Database [40] and retrieved the related proteins, which were also included in the
analysis. More precise statistical results were obtained by running the analysis with 10,000 random
rotations, and significance values were corrected for multiple testing using the Benjamini–Hochberg
false discovery rate method.

2.6. Experimental Design and Statistical Analyses

In this exploratory proof-of-concept study, twenty post-mortem human SN samples (10 controls
and 10 PD patients) and 18 post-mortem striatum samples (9 controls and 9 PD patients), from the same
individuals, were analyzed. Age, postmortem interval and cerebrospinal fluid pH differences between
groups were assessed by the non-parametric Mann–Whitney U test. Lipid data analysis was performed
by combining a univariate analysis and an ensemble learning method, together with a Receiver
Operating Characteristic (ROC) analysis to select optimal findings. The univariate analysis included
multiple comparisons of all lipids and a selection of those with a p-value < 0.05. Random forests,
an ensemble learning method, were used to identify lipids relevant for disease/gender classification.
Similar to a previous study [41], the classification at each node in a tree was done with 100 randomly
selected metabolites and the forest consisted of 5000 trees. The process was repeated 50 times, and the
model with the highest area under the curve (AUC) was kept. Lipids with a mean decreased accuracy
>2 were considered relevant. A ROC analysis was performed on all the lipids considered relevant by
either method, and an AUC > 0.8 and p-value < 0.05 was established as the threshold for important
lipids to distinguish between conditions. Lipids that fulfilled at least two out of the three criteria were
considered as associated with the disease/gender.

For RNA-seq analysis, pools of two and three RNA samples of the same gender and condition were
made for the SN and putamen samples, respectively. Differential expression analysis was performed
with the DESeq2 v1.22.2 Bioconductor’s package [33,34]. Since this analysis represents an exploratory
study, we chose not to use multiple testing adjustments, as supported by several authors [42], but apply
a threshold for effect size. Hence, genes with a p-value < 0.01 and > 0.5849-log2FC were considered
as significant.

Regarding the reanalysis of published transcriptomics data, all included datasets were analyzed
using GEO2R [43] to obtain a homogeneous analysis. Genes with p-value < 0.01 and log2FC < −0.5849
or log2FC > 0.5849 were considered differentially expressed genes (DEGs). To convert the obtained
identifiers to gene symbols when these were not available from the GEO2R analysis, g:Profiler (version
e95_eg42_p13_f6e58b9, University of Tartu, Tartu, Estonia) was used [44]. Two studies did not report
any DEGs and one study had only upregulated DEGs, and the three studied were therefore excluded.

3. Results

3.1. Lipid Profiling

The lipid compositions of the SN and putamen samples from PD patients and
controls were analyzed by LC–MS. We identified 269 phospholipids of the following classes:
Bis (Monoacylglycero)Phosphate (BMP), phosphatidylcholine (PC), phosphatidylethanolamine (PE),
phosphatidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylserine (PS), and the sphingolipid
sphingomyelin (SM; Spreadsheet S1). Hierarchical clustering showed a clear separation of the lipid
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patterns between the samples from the two brain regions, but not a clear division between the samples
based on pathology or gender (Figure 1a). In the SN, we found five lipid species that have different
abundances between PD patients and controls, namely BMP 42:8, PC 36:3, PE A36:2, PI 42:10 and PS
36:3 (Figure 1b–f), while three differentially expressed lipid species were identified in the putamen,
i.e., PI 34:2, SM d18:1;14:0 and SM d18:1;16:0 (Figure 1g–i).
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Figure 1. Lipid profiling of the SN and putamen from PD patients compared to controls. (a) Hierarchical
clustering of the samples based on the different abundances of lipid species. Percentage of abundance of lipid
species that differ between PD patients and controls, according to at least two of the three selection criteria,
in (b–f) SN and (g–i) putamen, and between male and female controls, and also in (j) SN and (k) putamen
of male PD patients compared to controls, or in (l) putamen of female PD patients compared to controls.
Percentage of abundance of a lipid that (m) has different abundances in both males and female controls,
and male and female PD patients, together with a difference in female PD patients compared to controls,
and that is lower in females than in males, both in controls and PD patients, in (n) SN and (o) putamen.
BMP, Bis(Monoacylglycero)Phosphate; PC, phosphatidylcholine; PE, phosphatidylethanolamine;
PI, phosphatidylinositol; PS, phosphatidylserine and SM, sphingomyelin, where d18:1 indicates the
common sphingosine base c.f. standard nomenclature [45]. Sample values are plotted individually.
‘A indicates that the sn-1 position is linked via an ether linkage. Numbers (X:Y) represent the number
of carbons (X) and double bonds (Y). # Differences between control and PD samples, within one gender;
* differences between male and female samples, within one condition.

Since sex hormones have been found to modulate brain lipid levels [46], we performed the
analyses separately for males and females (Spreadsheet S1). Interestingly, a number of lipid species
displayed different abundances in female and male controls, including PC 36:4 in the SN (Figure 1j),
and PI 34:1 and PS 38:3 in the putamen (Figure 1k,l), while these differences were not present in PD
patients. Additionally, some lipid species had distinct levels in female and male controls and PD,
e.g., PE A38:4 in the putamen (Figure 1m), whereas PS A38:4 levels were lower in females than in
males, regardless of the condition and in both brain regions (Figure 1n,o).

3.2. Transcriptomic Profiling

We performed RNA-seq analysis of SN and putamen samples from PD patients and age-matched
controls. Hierarchical clustering showed a clear separation of the transcriptomic profiles between the
samples from the two brain regions, as well as between the male and female samples (Figure 2a).
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Figure 2. Transcriptomic analysis of the SN and putamen from PD patients compared to controls.
(a) Hierarchical clustering of the samples based on the transcriptomic results; biological pathways
enriched in (b) all, (c) upregulated and (d) downregulated DEGs found in our RNA-seq analysis of
SN and in (e) all, (f) upregulated and (g) downregulated DEGs from the overlap between previous
microarray mRNA expression profiling studies on SN from PD patients and controls (GSE7621,
GSE42966, GSE49036, GSE20164, GSE20163, GSE20333 and GSE54282), including also the present study;
interaction networks of proteins encoded by genes (h) downregulated or (i) upregulated in at least
two of the eight studies included in the overlap analysis. Protein–protein networks were obtained
with STRING [31]. Only the highest confidence associations were included. Non-connecting nodes
were removed.

3.2.1. DEGs in the SN of PD Patients and Controls

We then performed a restrictive analysis of the RNA-seq data (adjusted p-value < 0.05 and
>0.5849-log2FC) and identified 39 upregulated and 41 downregulated transcripts (Spreadsheet S2).
Among the DEGs encoding these transcripts, 7 represented unknown genes (no gene symbol associated),
2 were uncharacterized transcripts (LOC) and 3 were genes for long intergenic non-protein coding RNAs
(lincRNAs). The top 5 upregulated DEGs were OR7C1 (log2FC = 2.05), MTRNR2L8 (log2FC = 1.94),
processed pseudogene MTCYBP18 (ENSG00000244921, log2FC = 1.94), PCDH20 (log2FC = 1.61) and
KLF5 (log2FC = 1.50), while the top 5 downregulated DEGs were TPH2 (log2FC =−1.98), LOC101929445
(log2FC = −1.96), ADRA1D (log2FC = −1.63), IL1B (log2FC = −1.62) and DOK7 (log2FC = −1.58).

Next, we performed a less-restrictive RNA-seq data analysis (p-value < 0.01 and > 0.5849-log2FC)
to determine which biological pathways were enriched in the dataset. This analysis yielded 354 DEGs
in the SN of PD patients compared to controls, of which 152 were upregulated and 202 downregulated
(Spreadsheet S2). To understand the biological significance of this outcome, we analyzed on the basis of
gene ontology (GO) terms which biological pathways were enriched in the 354 DEGs as well as in the up-
and down-regulated DEGs separately (Spreadsheet S2). The top-three pathways in the all-DEGs analysis
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were “signal release” (GO:0023061), “neurotransmitter transport” (GO:0006836) and “amine transport”
(GO:0015837; Figure 2b). The pathways “response to heat” (including GO:0009408 and GO:1900034)
and “chaperone-mediated protein folding” (GO:0061077) represented the top significantly enriched
pathways in the upregulated genes (Figure 2c), while the biological pathways related to “regulation of
neurotransmitter levels” (GO:0001505), “signal release” (GO:0023061) and “neurotransmitter transport”
(GO:0006836) were the top significantly enriched ones among the downregulated DEGs (Figure 2d).

Subsequently, we validated our results by comparison with the results of the only other RNA-seq
study on PD and control SN [47]. We found that 9.8% of the DEGs identified in our study were
also listed as differentially expressed in [47]. However, while 47% of the overlapping genes were
differentially expressed in the same direction, the remaining 53% were differentially expressed in the
opposite direction, questioning the validity of the overlap. We then aimed to validate our results and
obtain more robust outcomes by comparing the publicly available transcriptomic studies performed
with microarrays, homogeneously analyzed with GEO2R, and our data. Interestingly, our data partially
overlaps with the results of these previous studies (Table 3). We found that 311 DEGs (112 upregulated
and 199 downregulated) were present in the same direction in at least two datasets (overlapping genes;
Spreadsheet S3). The top biological pathways enriched in the 311 DEGs, and also in the downregulated
DEGs, were associated with “synapse organization” (e.g., GO:0050808), while the top pathways
enriched in the upregulated DEGs were “regulation of cellular response to heat” (GO:1900034) and
“chaperone-mediated protein folding” (GO:0061077; Figure 2e–g).

Table 3. Overlap between transcriptomic studies on the SN from PD patients.

GSE7621 GSE42966 GSE49036 GSE20164 GSE54282 GSE20163 GSE20333 Our Data

DEGs 932 64 872 242 24 432 133 304
Overlap 223 (24%) 18 (28%) 229 (26%) 77 (32%) 2 (8%) 114 (26%) 19 (14%) 72 (24%)

Same
direction 206 (92%) 14 (78%) 218 (95%) 71 (92%) 1 (50%) 103 (90%) 12 (63%) 66 (92%)

The table includes the accession numbers of the studies used, the number of differentially expressed genes with
p-value < 0.01 and log2FC < −0.5849 or log2FC > −0.5849 (DEGs), the number of DEGs overlapping between
all studies (overlap), and the number of overlapping DEGs that are either upregulated or downregulated in
the same direction in all studies where they appear as DEGs. Percentages of overlapping genes from the total
DEGs, and percentages of overlapping genes in the same direction from the total number of overlapping genes,
can be found between brackets in the rows “Overlap” and “Same direction”, respectively.

Next, we analyzed the interactions between the proteins encoded by the 311 DEGs found in at
least two studies (overlap). One of the largest clusters of proteins encoded by the downregulated
DEGs (Figure 2h), which includes some of the DEGs common in four out of eight studies, such as
TH, DDC, DRD2, KCNJ6 (also known as GIRK2), SLC18A2 (VMAT2) and SLC6A3 (DAT), was related
to dopamine synthesis and transport, providing confidence in the effectiveness of our approach.
This pertinent cluster was also associated with other proteins linked to the G-protein-coupled receptor
signaling (e.g., GNG3). Additional protein clusters linked to downregulated DEGs were associated
with GDNF-RET signaling (e.g., RET), and neural development (e.g., SLIT1). The protein–protein
interaction networks of upregulated DEGs (Figure 2i) consisted of six main protein clusters associated
with multiple cellular processes, including protein folding (e.g., HSPA1A), the aldo-keto reductase
family (e.g., AKR1C1), cell migration and extracellular matrix (e.g., ITGB1), DNA (damage) (e.g., ATM)
and ubiquitination (e.g., RNF130).

3.2.2. DEGs in the Putamen of PD Patients and Controls

We identified 15 DEGs (5 upregulated and 10 downregulated genes) in the putamen of PD
patients compared to controls when using restrictive parameters for RNA-seq data analysis (adjusted
p-value < 0.05 and > 0.5849-log2FC). Two of these DEGs encoded unknown transcripts (no gene
symbol associated) and 1 lincRNAs RNA, respectively. The five upregulated DEGs produced to
two unknown transcripts (ENSG00000244921, log2FC = 2.22, and ENSG00000257767, log2FC = 1.41)
and transcripts for MYOT (log2FC = 0.97), ZNF646 (log2FC = 0.74) and HIP1BP3 (log2FC = 0.60),
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while the top five downregulated DEGs were for SLC30A3 (log2FC = −2.26), DUSP2 (log2FC = −2.10),
PPL (log2FC = −1.68), GRM2 (log2FC = −1.67) and GNG2 (log2FC = −1.58).

Next, we identified 261 DEGs in the putamen of PD patients compared to controls with the
less-restrictive analysis (p-value < 0.01 and > 0.5849-log2FC), of which 68 were upregulated and
193 downregulated (Spreadsheet S4). The top three pathways enriched in these putamen DEGs were
“synapse organization” (GO:0050808), “cartilage development” (GO:0051216) and “prostaglandin
transport” (GO:0015732). There were no biological pathways enriched in the upregulated DEGs,
while the downregulated ones were involved in “synapse organization” (GO:0050808), “cartilage
development” (GO:0051216) and “synapse assembly” (GO:0007416; Spreadsheet S4).

There are less transcriptomic studies on putamen than SN from PD patients and controls, and most
of them have resulted in the identification of only a very low number of DEGs. Moreover, essentially
no overlap between the DEGs has resulted from these studies (Table 4). We therefore performed no
further analysis on these datasets.

Table 4. Overlap between microarray studies on the putamen from PD patients.

GSE54282 GSE77666 GSE23290 Our Data

DEGs 56 4 2481 232
Overlap 7 (12%) 3 (75%) 35 (1.4%) 25 (11%)

Same direction 7 (100%) 1 (33%) 21 (60%) 13 (52%)

The table includes the accession numbers of the studies used, the number of differentially expressed genes with
p-value < 0.01 and log2FC < −0.5849 or log2FC > 0.5849 (DEGs), the number of DEGs overlapping between all
studies (overlap), and the number of overlapping DEGs that are either upregulated or downregulated in the
same direction in all studies where they appear as DEGs. Percentages of overlapping genes from the total DEGs,
and percentages of overlapping genes in the same direction from the total number of overlapping genes, can be
found between brackets in the rows “Overlap” and “Same direction”, respectively.

3.2.3. DEGs Common between SN and Putamen

Finally, we analyzed the overlap between SN and putamen mRNA expression profiles to find
possible global mechanisms underlying PD. As mentioned above, since there was no robust overlap
between previous transcriptomic studies on the putamen, we could only use our own data and found
33 DEGs common between the SN and putamen profiles (Table 5).

Table 5. DEGs found both in the SN and putamen from PD patients and controls.

ENSEMBL Gene Symbol Protein Name Protein Function

Upregulated

ENSG00000089041 P2RX7 P2X purinoceptor 7 ATP receptor that acts as a ligand-gated
ion channel

ENSG00000119699 TGFB3 Transforming growth
factor beta-3 proprotein Embryogenesis and cell differentiation

ENSG00000120729 MYOT Myotilin Myofibril assembly and stability

ENSG00000125551 PLGLB2 Plasminogen-like protein
B2 Unknown

ENSG00000127530 OR7C1 Olfactory receptor 7C1 Odorant receptor

ENSG00000159842 ABR Active breakpoint cluster
region-related protein

GTPase-activating protein for RAC and
CDC42

ENSG00000168209 DDIT4 DNA damage-inducible
transcript 4 protein

Regulates cell growth, proliferation and
survival in response to cellular energy

levels and cellular stress
ENSG00000180015 NA

ENSG00000186352 ANKRD37
Ankyrin repeat

domain-containing
protein 37

Unknown

ENSG00000188269 OR7A5 Olfactory receptor 7A5 Odorant receptor
ENSG00000214313 AZGP1P1 Pseudogene
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Table 5. Cont.

ENSEMBL Gene Symbol Protein Name Protein Function

ENSG00000234769 NA
ENSG00000244921 NA
ENSG00000255823 MTRNR2L8 Humanin-like 8 Unknown
ENSG00000272755 NA

Downregulated
ENSG00000074317 SNCB Beta-synuclein Regulator of SNCA
ENSG00000078401 EDN1 Endothelin-1 Vasoconstrictor peptide

ENSG00000099957 P2RX6 P2X purinoceptor 6 ATP receptor that acts as a ligand-gated
ion channel

ENSG00000103199 ZNF500 Zinc finger protein 500 Transcriptional regulation
ENSG00000137267 TUBB2A Tubulin beta-2A chain Major constituent of microtubules

ENSG00000148803 FUOM Fucose mutarotase Interconversion between alpha- and
beta-L-fructose

ENSG00000155367 PPM1J Protein phosphatase 1J Serine/threonine protein phosphatase

ENSG00000164082 GRM2 Metabotropic glutamate
receptor 2 Glutamate receptor

ENSG00000167306 MYO5B Unconventional
myosin-Vb Vesicular trafficking

ENSG00000171532 NEUROD2 Neurogenic
differentiation factor 2

Transcriptional regulation, implicated
in neuronal determination

ENSG00000172794 RAB37 Ras-related protein
Rab-37 GTPase that regulates vesicle trafficking

ENSG00000174807 CD248 Endosialin Angiogenesis
ENSG00000185567 AHNAK2 Protein AHNAK2 Calcium signaling

ENSG00000196972 SMIM10L2B Small integral membrane
protein 10-like protein 2B Unknown

ENSG00000198563 DDX39B Spliceosome RNA
helicase DDX39B

mRNA export from the nucleus to the
cytoplasm; spliceosome assembly

ENSG00000234944 LOC101929445 Non protein
coding—LINC02623

ENSG00000272789 NA

ENSG00000277400 MAFIP MaFF-interacting protein Coactivator of MAFF transcriptional
activity

Up- and down-regulated DEGs found both in the SN and putamen samples, in the same direction. The table
includes the ENSEMBL identification, gene symbol (when available), protein name (UniProt) and short summary of
the protein function. Protein functions that are not certain are in italics.

3.3. Integration of the Lipid and Transcriptomic Profiling Data

Since the lipid and transcriptomic profiling data were obtained from the same samples, we analyzed
if gene sets linked to the deregulated lipids (i.e., BMP 42:8, PC 36:3, PE A36:2, PI 42:10 and PS 36:3 in
the SN, and PI 34:2, SM d18:1;14:0 and SM d18:1;16:0 in the putamen) were differentially expressed.
Accordingly, we performed the targeted gene set enrichment ROAST test, a hypothesis-driven
analysis (Table 6). A weak association (p-value < 0.05 and FDR-adjusted p-value < 0.25) between
the upregulated SN transcripts and the dataset “phosphatidylcholines” (GeneRIF), and between the
deregulated SN transcripts and the datasets “phosphatidylcholine biosynthetic process” (GO:0006656)
and “phosphatidylcholine catabolic process” (GO:0034638) were found. No (weak) association
between the deregulated transcripts from the SN and phosphatidylinositol-related gene sets was
observed. Furthermore, a weak association between the deregulated SN transcripts and the datasets
“phosphatidylethanolamine biosynthetic process” (GO:0006646) and “phosphatidylethanolamine
biosynthesis” (HumanCyc Pathways) were found. Additionally, a weak association between the
upregulated SN transcripts and “phosphatidylserine binding” (GO:0001786), and between the
deregulated SN transcripts and the dataset “phosphatidylserine catabolic process” (GO:0006660)
were found. A weak association between downregulated transcripts in the putamen and the datasets
“phosphatidylinositol binding” (GO:0035091) and “Sphingomyelin Metabolism/Ceramide salvage”
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(HumanCyc Pathways) was also found. Unfortunately, retrieval of gene sets associated with the poorly
characterized lipid BMP 42:8 was not possible.

Table 6. Statistical summary of the gene set enrichment analysis of the lipid metabolism genes in the
SN and putamen from PD patients and controls.

Name Source NGenes Direction p
Value FDR p

Value.Mixed FDR.Mixed

SN

Phosphatidylcholines GeneRIF Biological Term
Annotations 5 Up 0.034 0.246 0.095 0.151

Phosphatidylcholine
Biosynthesis HumanCyc Pathways 6 Down 0.070 0.246 0.114 0.151

Phosphatidylcholine Human Metabolome
Database 81 Up 0.074 0.246 0.124 0.151

Phosphatidylcholines CTD Gene-Chemical
Interactions 36 Up 0.084 0.246 0.189 0.206

Phosphatidylcholines dbGAP Gene-Trait
Associations 3 Up 0.124 0.246 0.126 0.151

Phosphatidylcholine
Biosynthesis Pathway Biocarta Pathways 3 Down 0.134 0.246 0.056 0.151

GO:0031210 phosphatidylcholine binding 30 Up 0.144 0.246 0.111 0.151

GO:0046470 phosphatidylcholine
metabolic process 14 Up 0.414 0.622 0.060 0.151

Phosphatidylcholinespecific GeneRIF Biological Term
Annotations 5 Up 0.693 0.866 0.538 0.538

GO:0034638 phosphatidylcholine
catabolic process 5 Up 0.734 0.866 0.026 0.151

GO:0006656 phosphatidylcholine
biosynthetic process 45 Down 0.794 0.866 0.025 0.151

Phosphatidylcholine GeneRIF Biological Term
Annotations 31 Down 0.949 0.949 0.123 0.151

GO:0008429 phosphatidylethanolamine
binding 11 Up 0.096 0.390 0.254 0.355

Phosphatidylethanolamine CTD Gene-Chemical
Interactions 4 Up 0.130 0.390 0.480 0.480

Phosphatidylethanolamine Human Metabolome
Database 45 Up 0.344 0.687 0.272 0.355

GO:0006646 phosphatidylethanolamine
biosynthetic process 15 Down 0.577 0.704 0.025 0.120

Phosphatidylethanolamine
Biosynthesis HumanCyc Pathways 5 Down 0.587 0.704 0.040 0.120

Phosphatidylethanolamine GeneRIF Biological Term
Annotations 13 Up 0.822 0.822 0.296 0.355

GO:0001786 phosphatidylserine binding 58 Up 0.046 0.457 0.064 0.214

Phosphatidylserines CTD Gene-Chemical
Interactions 9 Up 0.104 0.519 0.483 0.591

Phosphatidylserineexpressing GeneRIF Biological Term
Annotations 4 Up 0.308 0.955 0.532 0.591

Phosphatidylserine DrugBank Drug Targets 10 Up 0.416 0.955 0.059 0.214

Phosphatidylserine GeneRIF Biological Term
Annotations 75 Up 0.611 0.955 0.202 0.337

GO:0006659 phosphatidylserine
biosynthetic process 5 Down 0.752 0.955 0.125 0.256

GO:0006658 phosphatidylserine metabolic
process 5 Down 0.777 0.955 0.514 0.591

Phosphatidylserine Human Metabolome
Database 45 Up 0.816 0.955 0.128 0.256

GO:0006660 phosphatidylserine catabolic
process 8 Up 0.940 0.955 0.006 0.060

Phosphatidylserinebinding GeneRIF Biological Term
Annotations 3 Up 0.955 0.955 0.988 0.988

Phosphatidylinositolbinding GeneRIF Biological Term
Annotations 4 Up 0.032 0.380 0.521 0.556

Phosphatidylinositols CTD Gene-Chemical
Interactions 17 Up 0.134 0.493 0.052 0.304

Phosphatidylinositol4 GeneRIF Biological Term
Annotations 3 Up 0.158 0.493 0.166 0.304

GO:0035091 phosphatidylinositol binding 99 Down 0.164 0.493 0.174 0.304
Phosphatidylinositol

Signaling System KEGG Pathways 72 Up 0.344 0.675 0.406 0.541

Phosphatidylinositol GeneRIF Biological Term
Annotations 331 Up 0.407 0.675 0.105 0.304
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Table 6. Cont.

Name Source NGenes Direction p
Value FDR p

Value.Mixed FDR.Mixed

GO:0046488 phosphatidylinositol
metabolic process 24 Up 0.479 0.675 0.203 0.304

GO:0006661 phosphatidylinositol
biosynthetic process 78 Up 0.559 0.675 0.198 0.304

GO:0046854 phosphatidylinositol
phosphorylation 53 Down 0.641 0.675 0.147 0.304

GO:0046856 phosphatidylinositol
dephosphorylation 23 Up 0.648 0.675 0.557 0.557

Phosphatidylinositol3 GeneRIF Biological Term
Annotations 24 Down 0.655 0.675 0.523 0.556

Phosphatidylinositol Human Metabolome
Database 85 Up 0.676 0.676 0.183 0.304

Putamen

GO:0035091 phosphatidylinositol binding 99 Down 0.010 0.124 0.500 0.883

Phosphatidylinositols CTD Gene-Chemical
Interactions 17 Up 0.049 0.296 0.279 0.883

Phosphatidylinositol Human Metabolome
Database 85 Down 0.179 0.715 0.813 0.883

GO:0046854 phosphatidylinositol
phosphorylation 53 Down 0.624 0.981 0.582 0.883

GO:0046856 phosphatidylinositol
dephosphorylation 23 Down 0.723 0.981 0.883 0.883

GO:0046488 phosphatidylinositol
metabolic process 24 Down 0.727 0.981 0.710 0.883

Phosphatidylinositolbinding GeneRIF Biological Term
Annotations 78 Down 0.748 0.981 0.726 0.883

GO:0006661 phosphatidylinositol
biosynthetic process 4 Down 0.756 0.981 0.645 0.883

Phosphatidylinositol3 GeneRIF Biological Term
Annotations 24 Down 0.759 0.981 0.749 0.883

Phosphatidylinositol GeneRIF Biological Term
Annotations 331 Down 0.919 0.981 0.495 0.883

Phosphatidylinositol4 GeneRIF Biological Term
Annotations 3 Up 0.975 0.981 0.410 0.883

Phosphatidylinositol
Signaling System KEGG Pathways 72 Down 0.981 0.981 0.631 0.883

Sphingomyelin
Metabolism/Ceramide

Salvage
HumanCyc Pathways 8 Down 0.028 0.220 0.104 0.623

Sphingomyelins dbGAP Gene-Trait
Associations 3 Up 0.134 0.393 0.402 0.623

GO:0006685 sphingomyelin catabolic
process 7 Down 0.147 0.393 0.167 0.623

Sphingomyelin Human Metabolome
Database 52 Down 0.232 0.464 0.764 0.764

Sphingomyelins CTD Gene-Chemical
Interactions 4 Down 0.334 0.535 0.467 0.623

GO:0006686 sphingomyelin biosynthetic
process 6 Down 0.443 0.590 0.291 0.623

GO:0006684 sphingomyelin metabolic
process 4 Down 0.556 0.635 0.716 0.764

Sphingomyelin GeneRIF Biological Term
Annotations 29 Up 0.900 0.900 0.339 0.623

Summary of results for the gene set enrichment tests of lipid metabolism genes. The table depicts the name of the
pathway (Name), its source (Source) and the number of transcripts present in our dataset (NGenes). The results
are shown with the controls (i.e., ‘Up’ refers to the gene set being increased in Parkinson’s disease (PD) patients
compared to controls, and ‘Down’ the opposite). The hypothesis of ‘Mixed’ refers to the gene set including DEGs in
both directions. FDR, false discovery rate; Mixed, non-directional analysis.

4. Discussion

The data presented here represent the first lipid and transcriptome analyses performed on PD
and control SN as well as putamen samples from the same individuals. We conducted a transcriptome
analysis by RNA-seq rather than microarrays in order to identify not only annotated transcripts, but also
currently unannotated sequences for future re-evaluation (50/354 SN DEGs and 29/261 putamen DEGs
represent not-annotated transcripts) [26]. Additionally, we analyzed our data together with publicly



Cells 2020, 9, 1966 13 of 22

available transcriptome datasets to draw more robust conclusions about the relevance of gene functions
and pathways for PD.

Lipidomics likely represents the most informative -omics technology complementary to RNA-seq.
In this context, it is indeed important to realize that lipids are structural and bioactive molecules
essential for multiple brain processes such as myelination, synaptic signal transduction and acting as
second-messenger precursors and, relative to water-soluble metabolites, generally have a much slower
turnover and are thus less prone to post-mortem degradation. Previously, neuropathological lipidomic
studies have been conducted on primary visual cortex [48], primary motor cortex [49], hippocampus [50]
and cerebellum [51] from PD and/or Lewy body disease individuals. Our exploratory lipid profiling
involved the analysis of seven classes of lipids and showed several lipid species modulated in the
SN and putamen of PD patients compared to age-matched controls. Two other studies have been
performed on the lipid profile of the SN [52,53] and one on the putamen [51] of PD patients, but they
have reported only differences in lipid classes rather than lipid species and focused on sphingolipid and
gangliosides, respectively, hindering a comparative analysis. The differences we found in the putamen
include PI 34:2 and two saturated SM species, namely SM d18:1;14:0 and SM d18:1;16:0. Unfortunately,
the limited current knowledge of putamen lipids does not allow a functional interpretation of the
putamen lipid changes we detected. Lipids BMP 42:8 and PI 42:10, both with increased abundance in
the SN of PD patients compared to controls, are thought to have arachidonic acid (20:4) as one of the
two side chains, while the three decreased lipid species, PC 36:3, PE A36:2 and PS 36:3, are likely to have
linoleic acid (18:1) as one of their two side chains. Although such specific changes in lipid composition
are difficult to directly link to distinct enzymatic activities in specific metabolic conversion steps, it is
tempting to speculate on their wider biological implications. The presence of the five differentially
expressed SN lipid species could point towards a neuroinflammatory component in disease etiology,
since increased arachidonic acid has been demonstrated in acute neuroinflammation [54], while linoleic
acid is one of the sources of arachidonic acid [55]. A neuroinflammatory involvement is also in line
with the findings of our transcriptomic analysis revealing DEGs associated with the transport of
prostaglandins, which regulate neuroinflammatory pathways. Lipid BMP 42:8 belongs to a lipid class
highly enriched in lysosomal membranes [56] and is key for the proper functioning of lysosomal
hydrolases [57]. Interestingly, BMP accumulation also occurs in macrophages from patients with
Gaucher disease [58], a rare genetic disorder characterized by deposition of the lipid glucocerebroside
in macrophages and that highly increases the life-time risk to develop PD [59]. Nevertheless, we realize
that it is difficult to draw functional conclusions concerning individual lipids since the number of
samples employed in this proof-of-concept study is relatively small and only the roles of lipid classes
have been characterized.

Even though our sample size was small, it is important to note that we found gender-related
differences in the abundance of lipids both in PD patients and controls. This observation is consistent
with the gender-related differences that have been found in the SN lipid profiles of PD patients [53]
and the “female pregnancy” pathway detected in our transcriptional analysis. Current data indicates
that gender differences exist not only in PD incidence and prevalence [60], but also in its clinical
manifestation [61–63], with estrogens as a possible mediator for these differences [64], although the
underlying molecular mechanisms are unknown. Since estrogens are steroid hormones and thus lipids
modulating lipid metabolism in the brain [65], and gender dimorphism has been observed in the
fatty acid profiles of control mouse brains [66] as well as in our data, brain lipidome modulation by
sex hormones may be one of the underlying protective mechanisms in PD. Clearly, the possible link
between sex hormones, brain lipids and PD deserves further attention.

In our exploratory transcriptomic study, the top upregulated DEG in the SN was ORC7C1,
which encodes an odorant receptor. Mesencephalic dopaminergic neurons express olfactory receptors
and they respond to odorant-like molecules in mice [67]. Several odorant receptors have been found to
be downregulated in the frontal cortex of PD patients [68], but the difference in the directionality of
expression (up- or down-regulation) could be brain region related. The fact that the top upregulated
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DEG as well as the 7th upregulated DEG (i.e., OR7A5) represent odorant receptors highlights the
importance of a poorly studied group of receptors that could modulate the cell behavior and fate via
binding of small molecules and, thus, could play a crucial role in PD. The relationship between the
upregulated MTRNR2L8 and the mitochondrial MT-RNR2 is at present unclear [69] and its role in PD
has not been analyzed yet. The protocadherin encoded by PCDH20, which is thought to be involved in
the establishment and function of specific cell–cell connections in the brain, has been found to be also
upregulated in a meta-analysis of transcriptomic studies from SN of PD patients [70]. Nevertheless,
the role of this protein has thus far not been studied in the context of PD. The transcription factor
KLF5 binds to GC box promoter elements and activates their transcription, mediating multiple cellular
processes, such as proliferation, migration and differentiation, among others [71], but its significance
for PD is currently unknown.

The top-downregulated DEG in the SN is TPH2, which encodes the rate-limiting enzyme in the
synthesis of serotonin. Interestingly, serotoninergic neurons are progressively lost in PD, which is
implicated both in motor and non-motor manifestations of PD [72]. Moreover, polymorphisms in
TPH2 are associated with addictive behaviors [73] and depression [74] in PD patients. Additionally,
Tph2 KO mice, which have serotonin deficiency, present with systemic oxidative stress and lipidomic
abnormalities [75], and swallowing dysfunction [76]. The alpha-D1 adrenergic receptor encoded
by ADRA1D is also downregulated in the hippocampus of Alzheimer’s disease and dementia with
Lewy bodies patients [77], and noradrenergic impairment is present in PD patients as well [78].
Both findings highlight the importance of neurotransmitters other than dopamine in the pathology
of PD. It is therefore imperative to do further studies into their role to obtain a better understanding
of the complexity of disease. The observed downregulated expression of IL1B is in contrast with
earlier findings showing increased IL1B expression in striatum [79] and cerebrospinal fluid [80] of
PD patients. However, the complex effects of IL1B seem to depend on the time, place and level of
IL1B expression, e.g., infusion of IL1B in the striatum of rats 5 days before 6-OHDA injection had a
protective effect [81]. Finally, DOK7 encodes a protein involved in neuromuscular synaptogenesis,
but its role in PD pathogenesis remains to be established.

PD is characterized by the loss of dopaminergic neurons from the SN [4], which reaches a reduction
of at least 70% by the time the disease is diagnosed. Thus, our top finding of decreased expression of
genes associated with neurotransmitter levels, and dopamine synthesis and transport in postmortem
PD SN samples is likely linked to the decreased number of dopaminergic neurons and fibers in the
SN and putamen, respectively. One of these was the PD-associated RET gene [82], encoding a GDNF
receptor required for the preventive and compensatory mechanisms linked to dopaminergic system
degeneration that is triggered by the neurotrophic factor [83,84]. Remarkably, RET and some of its
interaction partners (GFRA1, DOK4 and DOK6) are downregulated in multiple SN transcriptomic
studies, highlighting the importance of the process of dopaminergic neurodegeneration in PD brains.
The two most-enriched upregulated pathways were “cellular response to heat” and “protein folding”,
which have an overlap of 80% among their DEGs. Since misfolded proteins are a hallmark of PD [85],
upregulation of genes associated with these pathways, such as the molecular chaperone HSPA1A,
may represent a compensatory cellular mechanism to handle the accumulation of misfolded proteins.
Furthermore, we confirmed other previously reported PD mechanisms, such as a dysfunction of protein
folding. Interestingly, other SN DEGs comprise novel PD-related pathways that may provide a better
understanding of the disease pathology, including “positive regulation of acute inflammatory response”
(GO:0002675), “female pregnancy” (GO:0007565) and “G-protein-coupled glutamate receptor signaling
pathway” (GO:0007216).

The overlap of our RNA-seq data with results from earlier microarray studies on postmortem
PD and control SN confirms the importance of the degeneration of dopaminergic neurons in this
brain region, since 10 out of the 12 DEGs that were found in at least half of the studies are associated
with dopaminergic neurons or PD (ALDH1A1, DDC, DLK1, DRD2, GAP43, KCNJ6, SLC18A2, SLC6A3,
SV2C and TH). The other two genes are AGTR1, the angiotensin II receptor subtype AT1, which has
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been shown to be downregulated in 5 out of the 8 SN studies, and the neuroendocrine proprotein
convertase 1, PCSK1, which was downregulated in 4 out of the 8 SN studies. AGTR1 and PCSK1 do
not have a known role in dopaminergic neurons or PD and are therefore interesting candidates for
future functional studies. The reason for the restricted overlap between the results of our study and
those of the only other PD/control SN RNS-seq analysis is at present unclear.

The top upregulated protein-encoding transcript in the putamen is MYOT, which codes for a
component of a complex of actin cross-linking proteins. Transcript levels of MYOT have been found to
be upregulated and downregulated in the SN and blood of PD patients, respectively [86]. Furthermore,
PD patients present a higher prevalence of MYOT autoantibodies than controls [87]. Thus, MYOT may
play distinct roles in the pathology of PD, but the nature of its involvement has not been elucidated.
Neither have the function of the transcription factor ZNF646 or its link to PD been widely studied.
The upregulated gene HP1BP3 mediates chromatin condensation and modulates cognitive aging [88],
but not in known association with PD.

The top downregulated transcript in the putamen is SLC30A3, which encodes a protein involved
in the accumulation of zinc in synaptic vesicles, rather than in the cytosol. Decreased levels of the
protein have been observed in the (pre)frontal cortex of DLB and PDD patients [89,90] and is thus
associated with dementia. Moreover, PD patients present changes in the cellular distribution of zinc in
the SN [91] and treatment of midbrain primary cultures with MPP+ leads to zinc ion accumulation [92].
These findings highlight the relevance of bivalent metal ions in the pathology of PD and encourage
further studies in this direction. The second most downregulated transcript was DUP2, a phosphatase
involved in the negative regulation of ERK1 and ERK2. Members of the ERK family of proteins are
known to control cellular proliferation and differentiation, but association of this function with PD
has not yet been found. Similarly, GNG2 encodes a gamma subunit of heterotrimeric G proteins,
which are involved in cellular responses to external signals, but the significance of this function
for PD still needs to be clarified. PPL codes for a component of desmosomes and is thus involved
in filament binding. Although PPL has not been associated with PD, genetic variants of another
Plakin family member, MACF1, lead to decreased expression and confer risk for PD [93]. Finally,
GRM2 encodes a metabotropic glutamate receptor and, interestingly, glutamate-induced excitotoxicity
has been suggested to result in the loss of dopaminergic cells in PD [94]. Moreover, activation of
both metabotropic glutamate receptors 2 and 3, which have inhibitory functions, gives rise to striatal
protection in PD rodent models [95]. Hence, this finding can be considered further support for the
involvement of multiple neurotransmitter systems in PD.

Analysis of data from various transcriptomic studies on putamen showed no overlapping genes.
While SN is considered to be one of the primary sites of degeneration in PD, the neurodegeneration in
the dorsal striatum may be mainly a consequence of the depletion of dopaminergic innervation [96].
Thus, the lack of overlap among putamen DEGs could point to more heterogeneous pathology in the
putamen than in the SN. We found an enrichment of downregulated putamen genes that play a role
in the control of neurotransmitter levels and transport, which may well be associated with the loss
of dopaminergic innervation [96]. Furthermore, we observed DEGs associated with prostaglandin
transport, which may argue for a neuroinflammatory response in this brain region [97]. Indeed,
neuroinflammatory events may play a role in nearly all known neurodegenerative diseases [98].

Interestingly, we found 33 genes that were differentially expressed in both the PD SN and putamen,
hinting at mechanisms shared by the two brain regions. The use of pathway analysis software nor the
findings from extensive literature searches led to the identification of a specific pathway within the set
of 33 genes. Of note is the downregulation of β-synuclein, the paralog of α-synuclein, that inhibits the
assembly [99], aggregation [100] and toxicity [101,102] of α-synuclein. Since α-synuclein aggregation
is one of the neuropathological hallmarks of PD [103], β-synuclein upregulation may represent a
potential target to ameliorate the disease. Hence, overexpression of β-synuclein in cellular and animal
PD models would be central to better understand its role in the disease. Other potentially interesting
examples of the set of common SN and putamen DEGs include DDIT4, which mediates apoptosis in
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cellular PD-models [104], and P2RX7, the antagonist of which is neuroprotective in cellular and animal
models for PD [105]. Additionally, SNPs in the common genes encoding EDN1 and MYO5B have been
associated with multiple systems atrophy (which presents with parkinsonism [106]) and loss of the
sense of smell (an early non-motor PD-symptom [107]), respectively. Therefore, functional studies on
the genes that are differentially expressed in both brain regions, e.g., by manipulating their expression
in cellular and animal PD models, may provide clues for further understanding of the pathobiological
complexity of PD.

The parallel analysis of the lipid and transcriptomic profiles of the same samples allowed us
to integrate the two datasets. In this connection, one has to realize that the characterization of lipid
species is limited, while the proteins involved in the metabolism of lipid classes have been well
studied. Yet, targeted gene set enrichment analysis revealed that gene sets associated with the lipid
classes differentially expressed in the SN and putamen were deregulated in the respective brain
region. Thus, the lipidome and the transcriptome appear to be tightly connected, and transcriptomic
changes leading to differences in the lipid profile may be one of the molecular mechanisms underlying
neurodegeneration in PD. Still, additional studies involving multiple -omics approaches are necessary to
allow a better characterization of the role of lipids in PD. Such studies will be of particular interest since
several familial PD genes, such as LRRK2 [108], PINK1 [109], DJ1 [110], ATP13A2 [111], PLA2G6 [112]
and ATXN2 [113], are known to modulate various lipid metabolism pathways.

This study has several limitations. First, relative to control samples, the SN samples from PD
patients are characterized by an extensive loss of dopaminergic neurons and gliosis, which hinders
making a distinction between lipid/mRNA changes caused by the disease-generated differences in the
composition of cellular populations or by the molecular mechanisms leading to neurodegeneration
(i.e., the “consequence” or the “cause”). Second, our lipid analysis was focused on phospholipids and
sphingolipids, and did not include other lipid classes that could be relevant for PD, such as sterols and
glycolipids [24]. Third, we pooled samples for RNA-seq analysis, which hampered a gender-dependent
analysis as performed with the lipid profiling, although the hierarchical clustering showed a clear
separation by gender. Moreover, the pooling of samples might have masked minor differences in
mRNA expression levels due to a small sample size and thus less statistical power.

5. Conclusions

We here reported the first combined lipid and transcriptomic analyses of SN and putamen samples
from the same PD patient and control individual. This exploratory proof-of-concept study allowed us
to unravel changes in the PD brain lipid profile, some of which were gender dependent and should be
studied further to evaluate their relevance. Additionally, we confirmed molecular pathways associated
with PD and identified several potentially interesting novel genes and pathways that may help to
better understand PD pathology.
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