
Retrospective Clinical Research Report

Prediction model
that combines with
multidisciplinary analysis
for clinical evaluation
of malignancy risk
of solid breast nodules

Bin Dong1,*, Qiaohong Hu2,*, Hongfeng He2

and Ying Liu2

Abstract

Objective: Few studies have systematically developed predictive models for clinical evaluation of

the malignancy risk of solid breast nodules. We performed a retrospective review of female

patients who underwent breast surgery or puncture, aiming to establish a predictive model for

evaluating the clinical malignancy risk of solid breast nodules.

Method: Multivariable logistic regression was used to identify independent variables and estab-

lish a predictive model based on a model group (207 nodules). The regression model was further

validated using a validation group (112 nodules).

Results: We identified six independent risk factors (X3, boundary; X4, margin; X6, resistive

index; X7, S/L ratio; X9, increase of maximum sectional area; and X14, microcalcification) using

multivariate analysis. The combined predictive formula for our model was: Z¼�5.937þ
1.435X3þ 1.820X4þ 1.760X6þ 2.312X7þ 3.018X9þ 2.494X14. The accuracy, sensitivity, specif-

icity, missed diagnosis rate, misdiagnosis rate, negative likelihood ratio, and positive likelihood

ratio of the model were 88.39%, 90.00%, 87.80%, 10.00%, 12.20%, 7.38, and 0.11, respectively.

Conclusion: This predictive model is simple, practical, and effective for evaluation of the malig-

nancy risk of solid breast nodules in clinical settings.

1Zhejiang Chinese Medical University, Hangzhou,

Zhejiang, China
2Department of ultrasonography, Zhejiang Provincial

People’s Hospital & People’s Hospital of Hangzhou

Medical College, Hangzhou, Zhejiang, China

*These authors contributed equally to this work.

Corresponding author:

Ying Liu, Department of ultrasonography, Zhejiang

Provincial People’s Hospital & People’s Hospital of

Hangzhou Medical College, No. 158 Shangtang Road,

Hangzhou, Zhejiang 310014, China.

Email: sag1002@126.com

Journal of International Medical Research

49(4) 1–11

! The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/03000605211004681

journals.sagepub.com/home/imr

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative

Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits

non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed

as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0002-5675-0623
mailto:sag1002@126.com
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/03000605211004681
journals.sagepub.com/home/imr


Keywords

Breast cancer, nodules, logistic regression, risk, interdisciplinary, predictive model

Date received: 9 November 2020; accepted: 1 March 2021

Introduction

The incidence of breast nodules is high
worldwide, but optimal strategies for clini-
cal assessment and treatment remain con-
troversial.1 The consensus of many studies
has been that 20% to 30% of breast nod-
ules will ultimately develop into cancer.2

Early diagnosis and intervention is crucial
for improving the prognosis of patients
with breast cancer. Therefore, differentiat-
ing malignant nodules from benign lesions
is of critical importance.

Only 1% to 2% of detected nodules are
determined to be cancerous. However,
the discovery of breast nodules often
causes patients to worry because clinical
evaluation of malignancy without
pathological assessment is uncertain, and
performing biopsies on some nodules can
be difficult.3 A bulletin published by
the American College of Obstetricians
and Gynecologists on Diagnosis and
Management of Benign Breast Disorders4

suggests that biopsy should be performed
for women aged>30 years with low-risk
nodules (Breast Imaging Reporting and
Database System [BI-RADS] score 1–3) if
cancerous properties are suspected based
on imaging examination. However, BI-
RADS grading of some nodules can be
ambiguous.

Ultrasound is the most widely used
imaging examination in the diagnosis of
breast diseases.5 The rate of early identifi-
cation has markedly improved6 with the
application of novel ultrasonic techniques
including contrast-enhanced ultrasound7,8

and ultrasound elastography.9,10

Irregular spiculate or foliar margins, S/L
ratio> 1, hypoechoic mass, microcalcifica-
tion, and arterial flow with resistive index
(RI)> 0.7 are considered typical ultrasonic
manifestations associated with malignant
nodules.11–13 Mammography is an effective
and clinically recognised method for early
detection of microcalcification.14 Magnetic
resonance imaging (MRI) can detect micro-
vessels around early lesions. Mortality rates
associated with breast cancer have been sig-
nificantly reduced by early identification of
malignant nodules using these imaging
techniques.15,16 However, each technique
has limitations and may not be accurate
when applied independently. Thus, a com-
bination of these technologies may improve
diagnostic accuracy.

Studies17,18 have pointed out that age
should be considered a risk factor for the
occurrence of breast cancer because
patients over 40 years old have higher inci-
dence. Currently, cancer antigen 15-3
(CA153) produced by breast cancer cells
is the most specific biomarker.19,20

Carcinoembryonic antigen (CEA), another
specific marker, has been implicated as a
diagnostic and prognostic indicator in
breast cancer for nearly 30 years.19–21

Additionally, family history is also an
important risk factor.22,23 Thus, multidisci-
plinary analysis to evaluate malignancy risk
of breast nodules can increase the accuracy
of diagnosis.

In the present study, we established a
logistic regression model based on multidis-
ciplinary analysis of data from imaging,
serological, and clinical diagnostic
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techniques to predict the malignancy risk of

breast nodules.

Methods

Patients

This was a retrospective study based on

clinical data obtained from female patients

aged 20 to 78 years admitted to Zhejiang

Provincial People’s Hospital with solid

breast nodules from January 2016 to June

2019. Ethical approval for this study was

obtained from the Institutional Review

Board of Zhejiang Provincial People’s

Hospital. As a retrospective study of

anonymised imaging and clinical data,

the requirement for informed consent

was waived.
The inclusion criteria were as follows: 1)

solid breast nodules were detected via ultra-

sound examination in our department using

a GE Logiq E9 instrument (GE, Boston,

MA, USA); 2) clinical information (ultra-

sonic, serological, clinical and mammogra-

phy data) was complete; 3) patients

underwent breast surgery or puncture in

our hospital; and 4) pathological results

were available. The exclusion criteria were:

1) nodules with unclear ultrasonic images or

incomplete patient information; and 2) nod-

ules without pathological results.

Variable Acquisition

The variables in the model were grouped as

shown in Table 1. Ultrasonic variables were

grouped as follows: a) nodule size (maxi-

mum diameter); b) internal echo (hypere-

cho, isoecho, or hypoecho); c) boundary

(well-defined or poorly-defined); d) margin

(regular or irregular); e) colour Doppler

flow imaging (without blood flow, dotted

blood flow, or abundant blood flow); f)

RI >0.7 or <0.7; g) S/L ratio >1.0 or

<1.0; h) elastography score (1–5); and i)

Table 1. Variable name and assignment of values.

Variable

Variable

name Assignment

Malignant nodule Y Yes, Y¼ 1; no, Y¼ 0

Nodule size (maximum

diameter), mm

X1 Continuous variable

Internal echo X2 Hyperecho/isoecho, X2¼ 0; hypoecho, X2¼ 1

Boundary X3 Well-defined, X3¼ 0; ill-defined, X3¼ 1

Margin X4 Regular, X4¼ 0; irregular, X4¼ 1

CDFI X5 Without flow/ dotted flow, X5¼ 0;

abundant blood flow, X5¼ 1

RI X6 <0.7, X6¼ 0; >0.7, X6¼ 1

S/L ratio X7 <1, X7¼ 0; >1, X7¼ 1

Elastography score X8 Score 1–2, X8¼ 0; score 3–5, X8¼ 1

Increase in maximum

sectional area

X9 Yes, X9¼ 1; no, X9¼ 0

CA153, mg/L X10 Continuous variable

CEA, mg/L X11 Continuous variable

Age> 40 years X12 No, X12¼ 0; yes, X12¼ 1

Family history X13 No, X13¼ 0; yes, X13¼ 1

Microcalcification X14 No, X14¼ 0; yes, X14¼ 1

CA153, cancer antigen 15-3; CDFI, colour Doppler flow imaging; CEA, carcinoembryonic antigen; RI, resistive index.
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increase or no increase in the maximum
sectional area of the nodule using
contrast-enhanced ultrasound (Figure 1).
Serological variables included levels of the
tumour markers CA153 and CEA (mg/L).
Clinical variables included age (>40 years
or<40 years) and family history of breast
cancer (present or absent). Mammography
variables included microcalcification fea-
tures based on molybdenum target mam-
mography (present or absent) (Figure 2).

Variable Assignment

Table 1 shows the method of variable
assignment. Pathological diagnosis (benign
or malignant) of solid breast nodules was

used as the dependent variable, and the
above 13 multidisciplinary variables were
used as independent variables. All variables
except nodule size, RI, L/R ratio, CA153,
and CEA were categorical variables.

To reduce bias, the X2, X3, X4, X5 and
X8 ultrasound variables were assessed inde-
pendently by two physicians with more
than 5 years of experience in ultrasound
diagnosis of breast diseases. Kappa values
were calculated and variables with poor
consistency were eliminated.

Data Processing and Statistical Analysis

To estimate malignancy risk, 207 nodules
were randomly selected from the 319

Figure 1. Contrast-enhanced ultrasonography of a solid breast nodule. (a) Using two-dimensional ultra-
sonography, the size of the nodule was 12.2 mm by 5.7 mm. (b) Using contrast-enhanced ultrasonography,
the size of the nodule was 14.9 mm by 6.6 mm, and thus the maximum sectional area increased.
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nodules and were defined as the model

group. The remaining 112 nodules were

defined as the validation group. The

model was evaluated based on various per-

formance measures (accuracy, sensitivity,

specificity, Jorden index, missed diagnosis
rate, negative likelihood ratio, and positive

likelihood ratio).
To reduce bias, two ultrasound physi-

cians with more than 5 years of experience

performing thyroid ultrasounds measured

ultrasonic variables. Kappa analysis was
performed on subjective variables (X2, X3,

X4, X5, and X8). Variables with poor con-

sistency were eliminated. Variables in the

benign and malignant groups were first

investigated by univariate analysis.

Variables showing no significant difference

were excluded, and logistic regression

analysis was performed using the remaining

variables.
To establish the predictive model, multi-

variable logistic regression was performed on

the 207 nodules in themodel group. The odds

ratio (OR) of each variable was calculated

using the formula Z¼Logit(P)¼ ln

[P/(1�P)]¼b0þb1X1þ b2X2þ ��� þ b14X14,

where OR¼ eb; b is the regression coefficient.

The predictive probability of malignancy was

determined using P-values (inclusion criteria:

P< 0.05; exclusion criteria: P> 0.1).

Variables with no ability to differentiate

benign from malignant nodules were

eliminated.
To validate the predictive model, values

of regression parameters were estimated

using likelihood ratio tests. The goodness

of fit of the entire model was evaluated

Figure 2. Microcalcification of a solid breast nodule. (a) Microcalcifications shown by ultrasonography.
(b) Microcalcifications shown by mammography.
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using the Hosmer–Lemeshow (H-L) test.

Predictions of malignant and benign solid

breast nodules were made using thresholds

of P� 0.05 and P< 0.05, respectively. This

criterion was used as the standard in subse-

quent large-sample validation experiments.

Prevalence rates in the validation group

were calculated and validated by patholog-

ical assessment. The diagnostic efficiency of

the model was verified against the valida-

tion group using the performance indices

mentioned above.
To further assess the diagnostic value of

the model, diagnostic efficiency of each var-

iable was evaluated via receiver operating

characteristics curve (ROC) analysis. The

model was compared with the gold stan-

dard, pathological assessment.

Results

Patients

A total of 319 female patients aged 20 to 78

years (mean� standard deviation [SD]:

41.46�12.967 years) admitted to Zhejiang

Provincial People’s Hospital with solid

breast nodules from January 2016 to June

2019 were enrolled in the study. Among 319

nodules with lengths ranging between 3.5

and 84.0 mm (mean�SD: 19.50� 14.77

mm), 232 and 87 nodules were determined

as benign and malignant, respectively,

based on further pathological

examinations.

Kappa Analysis

Table 2 shows the Kappa values for the X2,
X3, X4, X5, and X8 ultrasound variables.
All were �0.75, indicating high consistency.

Univariate Analysis (Independent Sample
T-Test and Chi-Square Test)

Table 3 shows the univariate statistical
analysis of all 13 variables. The X1, X2

and X8 variables did not reach statistical
significance and were removed. We
analysed the remaining 10 variables
using multivariable logistic regression to
further identify variables of clinical
significance.

Establishment of Predictive Model

Table 4 shows the independent variables
(including X3, X4, X6, X7, X9, and X14)
that were ultimately included in the
model. The combined predictive formula
of the model was as follows: Z¼
�5.937þ 1.435X3þ 1.820X4þ 1.760X6þ
2.312X7þ 3.018X9þ 2.494X14;P¼ ez/1þ ez,
where P denotes the morbidity rate and e
represents the natural logarithm (2.72).

Validation of Predictive Model

The H-L test yielded a P-value of 0.574,
indicating a good fitting effect with a high
coefficient of determination (R2¼ 0.801).
This suggested that the model had high pre-
dictive accuracy. Malignant and benign
nodules were identified using thresholds of
P� 0.5 and P< 0.5 values, respectively. In

Table 2. Consistency analysis of subjective variables.

Variable X2 X3 X4 X5 X8

Kappa value* 0.787 0.749 0.836 0.768 0.756

P <0.001 <0.001 <0.001 <0.001 <0.001

*Kappa values >0.75 were considered to indicate substantial consistency, values of 0.40–0.75 indicated moderate con-

sistency, and values <0.40 indicated poor consistency. For the identity of variables and variable name assignment, refer to

Table 1.

6 Journal of International Medical Research



the validation group, 30 malignant and 82

benign nodules were identified by patholog-
ical assessment. In addition, 37 malignant

and 75 benign nodules were subjected to
prediction using the model. The model cor-

rectly predicted 27 malignant nodules while
missing three, and correctly diagnosed 72

benign nodules while misdiagnosing 10.

The accuracy, sensitivity, missed diagnosis
rate, specificity, misdiagnosis rate, positive

likelihood ratio, and negative likelihood
ratio of the model were 88.39%, 90.00%,

10.00%, 87.80%, 12.20%, 7.38, and 0.11,
respectively.

Table 3. Univariate statistical analysis.

Malignant nodules (57) Benign nodules (150) t/v2 P

X1, mm 22.53� 13.89 18.35� 14.88 �1.836 0.068

X2, n (%)

0 9 (15.79) 30 (20.00) 0.479 0.489

1 48 (84.21) 120 (80.00)

X3, n (%)

0 18 (31.58) 132 (88.00) 65.895 <0.001

1 39 (68.42) 18 (12.00)

X4, n (%)

0 18 (31.58) 105 (70.00) 25.287 <0.001

1 39 (68.42) 45 (30.00)

X5, n (%)

0 21 (36.84) 96 (64.00) 12.397 <0.001

1 36 (63.16) 54 (36.00)

X6, n (%)

0 6 (10.53) 114 (76.00) 72.672 <0.001

1 51 (89.47) 36 (24.00)

X7, n (%)

0 12 (21.05) 129 (86.00) 80.223 <0.001

1 45 (78.95) 21 (14.00)

X8, n (%)

0 21 (36.84) 78 (52.00) 3.803 0.051

1 36 (63.16) 72 (48.00)

X9, n (%)

0 18 (12.00) 147 (98.00) 112.672 <0.001

1 39 (88.00) 3 (2.00)

X10, mg/L 9.132� 12.93 4.250� 6.04 �1.582 0.129

X11, mg/L 4.58� 5.49 2.82� 3.50 �1.579 0.119

X12, n (%)

0 12 (21.05) 66 (44.00) 9.262 0.002

1 45 (78.95) 84 (56.00)

X13, n (%)

0 45 (78.95) 141 (94.00) 10.267 <0.001

1 12 (21.05) 9 (6.00)

X14, n (%)

0 12 (21.05) 135 (90.00) 95.390 <0.001

1 45 (78.95) 15 (10.00)

Data are presented as n (%) or mean� standard deviation. P-values are derived from t-tests or chi-square tests. For the

identity of variables and variable name assignment, refer to Table 1.
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Evaluation of Diagnostic Efficiency

The results of ROC curve analysis of the

model and each selected variable are sum-

marised in Figure 3. The area under the

curve values for the X3, X4, X5, X6, X7,
and X13 variables and for the whole model
were 0.782, 0.692, 0.636, 0.827, 0.825, 0.845,
and 0.954, respectively. These datas indicat-
ed that the diagnostic accuracy of the

Table 4. Results of logistic regression.

Variable B* SE Wald df P Exp(B)§

X3 1.435 0.658 4.753 1 0.029 4.198

X4 1.820 0.702 6.712 1 0.010 6.171

X6 1.760 0.606 8.429 1 0.004 5.812

X7 2.312 0.569 16.524 1 <0.001 10.091

X9 3.018 0.733 16.946 1 <0.001 20.443

X14 2.494 0.683 13.323 1 <0.001 12.112

Constant �5.937 0.738 64.720 1 <0.001 0.003

*B is the coefficient
§Exp(B) is the odds ratio of the corresponding variable.

df, degrees of freedom; SE, standard error. For the identity of variables and variable name assignment, refer to Table 1.

Figure 3. Receiver operator curve analysis of the whole predictive model the selected model variables.
Pre-1 represents the whole model. The areas under the curve for X3, X4, X6, X7, X9, X14, and the whole
model were 0.782, 0.692, 0.827, 0.825, 0.832, 0.845, and 0.971, respectively. For the identity of variables and
variable name assignment, refer to Table 1.
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overall model was higher than that of each

single variable.

Discussion

The morbidity and mortality of breast

cancer has increased worldwide in recent

years.24 Breast cancer is one of the most

frequent malignant tumours in women.

Therefore, early detection and diagnosis is

crucial for effective treatment and satisfac-

tory prognosis. Previous studies investigat-

ing the early identification and diagnosis of

breast cancer25–27 did not assess multiple

variables. The clinical significance of com-

prehensive interdisciplinary and multivari-

ate diagnostic criteria for differential

diagnosis of benign and malignant breast

nodules has not been widely investigated.
In the present study, differences among

multiple variables were analysed using

logistic regression. According to previous

studies,19–21 ultrasound, mammography,

CA153 and CEA, age, and family history

are factors relevant for differential diagno-

sis. The objectivity and accuracy of predic-

tion improved when these parameters were

included. During the establishment of the

logistic regression model, variables without

predictive value were excluded to improve

stability of the model. Screening of succes-

sive regression models identified the follow-

ing significant predictors of malignancy:

unclear boundary, irregular shape, RI

>0.7, L/R >1, increased maximum section

area of nodules after contrast-enhanced

ultrasound (relative to two-dimensional

ultrasound), family history, and microcalci-

fication identified via mammography. All

regression coefficients were >0 and P

values were <0.05. These data above dem-

onstrated the critical value of previously

identified indicators for evaluating the

malignancy risk of breast nodules. A

nodule with more positive indicators

would be more likely to be malignant.

ORs for all variables in the model were

compared and the importance of previously

identified indicators for risk assessment was

assessed. Variable X14, microcalcification,

had the highest OR, representing higher

risk assessment value compared with other

variables. As shown by goodness-of-fit

tests, our predictive model exhibited high

accuracy and a good fitting effect. These

data demonstrate that comprehensive

assessment of multidisciplinary variables is

more effective for assessment of malignancy

risk in breast nodules compared with anal-

ysis of single variables.
At present, needle biopsy is the preferred

method for differential diagnosis of

breast nodules before surgery.28,29

However, invasive biopsy may cause com-

plications such as bleeding, infection, and

nerve damage, particularly in elderly or

sick patients.
Our regression model could identify

predictive indicators associated with

malignancy risk of solid breast nodules,

thereby improving the accuracy of differen-

tial diagnosis. The model may assist

physicians in making more accurate diagno-

ses, avoid unnecessary needle biopsy,

assist clinicians in formulating better treat-

ment decisions, and guide postoperative

follow-up.
Our study had several limitations. First,

several eliminated variables may still be

closely related to the occurrence and devel-

opment of breast cancer. Second, to inte-

grate patient information and to maintain

a large sample size, we had to remove

microvessels around early lesions in MRI

scans, serum ferritin, procalcitonin, and

other features potentially associated with

malignancy. Last, as a retrospective analy-

sis, the reliability of our conclusions

depended on the sample size. In future

work, we plan to further enlarge the

sample size to verify the clinical applicabil-

ity of this model.
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Conclusion

A predictive model for evaluation of the
malignancy risk of solid breast nodules
was established. Based on multivariable
logistic regression analysis, the model
included multiple indicators of malignant
nodules. This model may provide social
and economic benefits via improved accu-
racy of diagnosis.
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