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High grade serous epithelial ovarian cancer (HG-SOC) is one of the most devastating gyne-
cological cancers affecting women worldwide, with a poor survival rate despite clinical
treatment advances. HG-SOC commonly metastasizes within the peritoneal cavity, primar-
ily to the mesothelial cells of the omentum, which regulate an extracellular matrix rich in
collagens type I, III, and IV along with laminin, vitronectin, and fibronectin. Cancer cells
depend on their ability to penetrate and invade secondary tissue sites to spread, however
a detailed understanding of the molecular mechanisms underlying these processes remain
largely unknown. Given the high metastatic potential of HG-SOC and the associated poor
clinical outcome, it is extremely important to identify the pathways and the components
of which that are responsible for the progression of this disease. In vitro methods of reca-
pitulating human disease processes are the critical first step in such investigations. In this
context, establishment of an in vitro “tumor-like” micro-environment, such as 3D culture,
to study early disease and metastasis of human HG-SOC is an important and highly insight-
ful method. In recent years, many such methods have been established to investigate the
adhesion and invasion of human ovarian cancer cell lines.The aim of this review is to sum-
marize recent developments in ovarian cancer culture systems and their use to investigate
clinically relevant findings concerning the key players in driving human HG-SOC.

Keywords: high grade serous epithelial ovarian cancer, metastasis, culture models, 3D, synthetic scaffolds

High grade serous epithelial ovarian cancer (HG-SOC) is a devas-
tating disease and the most lethal of the gynecological malignan-
cies. Typically treatment consists of surgical debulking, followed
by platinum/taxol chemotherapy regimens (1, 2). Treatment fails
in up to 70% of patients, and patients with platinum resistant dis-
ease have a median survival of 6–12 months (1, 3). Some success
has been observed in clinical trials for the palliative management
of ascites accumulation using targeted antibody treatment (4), and
while this symptom based therapy is clinically important, disease
modifying/halting treatments are lacking. Other treatments have
shown varied success, including those that target tumor angiogen-
esis such as bevacizumab alone or in combination with platinum
agents and gemcitabine. Many other approaches have been taken
including tyrosine kinase inhibitors, angiopoietin inhibitors, his-
tone deacetylase inhibition, and EGF receptor targeting (5). The
role of immune cells and interactions with tumor stroma are under
intense investigation and may improve the future prospects for
immunotherapy based regimes (5). However, response to treat-
ment varies between patients and therefore, the development
of personalized care through discovery of predictive molecu-
lar or protein markers becomes imperative for effective disease
treatment.

Modeling HG-SOC as closely as possible to human disease to
facilitate clinically relevant treatment testing is the “holy-grail”
in research. A plethora of immortalized ovarian cancer cells and
in vitro and in vivo model systems that utilize these cell lines
have been described. Early disease events are arguably the most

therapeutically relevant targets of preventative treatments and
here, we discuss recently used model systems to identify pathways
involved in the development of invasive malignancy.

ESTABLISHED EPITHELIAL OVARIAN CANCER CELL LINES AS
MODEL SYSTEMS: A CONTROVERSIAL CHOICE
High grade serous epithelial ovarian cancer has long been thought
to arise from the epithelial layer surrounding the ovary (6, 7).
However, studies point to a different site of origin, the secre-
tory cells of the fallopian tube fimbria. This highlights the lack
of understanding of the histogenesis and molecular signature of
this heterogeneous disease (8–14). Anglesio et al. suggested that
the biomarker and molecular signatures of ovarian cancer cell
lines may be a more accurate and relevant way of grouping “his-
totypes” over previously determined histological subtypes (15).
However, discrepancies between the molecular profile of ovarian
cancer cell lines and the tumor types they model have been iden-
tified. In fact, these profiles show more similarity between the cell
lines themselves, despite differing tissues of origin (8, 16). Further,
these reports have raised doubt on the use of a number highly
cited ovarian cancer cell lines as models of clinically relevant HG-
SOC, in particular A2780 and SKOV3 (8, 15). Cancer cell lines
derived from patients who have undergone treatment will repre-
sent a population of cells that is intrinsically different from that
of the original tumor due to the development of resistance. How-
ever, it has been suggested that cell lines derived from untreated
tumors are enriched for resistant cells with up-regulation of multi
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drug resistance associated genes via activation of stress responses
during the primary culture process (16).

Immortalized normal ovarian epithelial cells and normal fal-
lopian epithelial cells are increasingly being used to model early
stages of cancer development (10, 11, 17–21). While the use of
primary cancer cell cultures avoids issues associated with mul-
tiple passages (16), this is a labor intensive method, and dif-
ferences between individual primary cultures leading to lack of
reproducibility, may be a significant confounder. Immortalized
cell lines offer the advantage of increased stable survival over
longer periods in culture and can be manipulated to include many
genetic alterations to mimic the disease of interest. Studies using
immortalized cells derived from non-transformed normal human
fallopian epithelial secretory cells, along with the induction of rel-
evant genetic alterations, have been shown to successfully model
human high grade serous cancer biology (10, 11, 19). The use of
virally induced immortalization of cells is common; however this
may also induce unappreciated effects on tumor development and
virally induced tumor initiation is irrelevant to the pathogenesis
of ovarian cancer. Non-viral methods using shRNA technology
have also successfully targeted relevant genetic factors resulting in
transformed cells (11).

Along with the method of cell line derivation, site of origin,
and continuous passaging, culture conditions (monolayer, various
3D culture models, organ-like culture models) are also significant
effectors of the characteristics of established ovarian cancer cell
lines (8, 15, 16, 22). These issues are inherently difficult to address
and there is likely no ideal way to completely control for all these
changes. To date, particular HG-SOC cell lines have not been
reported as being more relevant to 3D culture compared to 2D
culture systems. SKOV3 and A2780 are the most commonly cited
but may not be the best representations of HG-SOC with their use
in 3D likely reflecting their popularity in 2D systems. Therefore
at this stage there are no specific criteria for cell line selection for
3D systems and progression from 2D to 3D experiments with the
same cell line can be a useful strategy. However, consistent use at a
low passage number, of an appropriate cell line to model HG-SOC
(via histological and molecular markers) is extremely important.

IN VITRO CULTURE MODEL SYSTEMS OF HGSEOC
2D VERSUS 3D CULTURE METHODS
Although it is well known that culturing cancer cell lines can
drastically alter their genetic characteristics over multiple passages
immortalized cancer cell lines remain the gold standard in cancer
research and pre-clinical drug testing (22). This is largely because
these cell lines display a consistent and relatively homogeneous
phenotype over long periods of time, notwithstanding reports of
minor side populations with cancer stem-like characteristics in
some cell lines (23, 24). Evidence is accumulating that culturing
these cells in 3D matrices is far more representative of disease
than traditional 2D systems, as they provide structurally similar
conditions for cell growth encompassing the ability to manipu-
late oxygen and growth factor/cytokine gradients as well as the
material properties of the matrix (22, 25–30).

Common methods for assessing ovarian cancer cell prolifera-
tion/migration/invasion have included 2D culture growth studies,
“scratch”wound healing assays, and penetration through transwell

inserts. Scratch wound assays are relatively easy to set up, and
very cheap to run and there are now many options for track-
ing and quantitating cell growth and migration, including the
MetaMorph™ and Incucyte™ real-time Imaging systems (31).
Migration assays through transwell inserts are more expensive
and do not allow for real-time monitoring. Microfluidic assays
have the advantage that cells can be grown in controlled chemo-
tactic gradients (31). However, these systems have not to date been
utilized widely for ovarian cancer cell culture studies. Cell spread-
ing assays, in which a plastic culture surface is coated with various
extracellular matrix (ECM) components (fibronectin or collagen
type I) and cells are allowed to spread under serum free conditions
for a short period of time, have been used to assess migration of
ovarian cancer cells (32). While these methods may provide some
useful information regarding the characteristics of certain cancer
cell lines and their responses to stimuli (drug treatment, signaling
molecules), they lack a 3D micro-environment to accurately mimic
pathophysiological conditions. 3D environments containing rele-
vant structural proteins (collagens, laminin, elastin) (Figure 1A),
as well as defined tissue organization appropriate to site of tumor
growth in vivo, are important considerations for recapitulating
tumor cell behavior (Figure 1B).

Spread of ovarian cancer cells is complex with cells respond-
ing to stimuli from neighboring cells and ECM components and
their ability to invade connective tissue is crucial for successful
metastasis. In the absence of a requirement for ECM interactions
and matrix degradation, 2D systems primarily evaluate the motil-
ity of cells, rather than a true invasive barrier removal (29). Care
must also be taken when interpreting results based on incomplete
3D representations of a bona fide tumor/metastatic site ECM. For
example, only a partial understanding of the involvement of pro-
teases/MMPs in the spread and invasion of ovarian cancer cells
can be drawn from experiments using matrices that lack structural
properties of a relevant ECM. For example, matrigel is substan-
tially less cross-linked and differs in overall composition compared
to many tissues (29, 31, 33).

Omental models have been used, in which a primary culture of
fibroblasts is grown in 2D with a confluent layer of mesothelial cells
grown on top before fluorescently labeled ovarian cancer calls are
seeded on a final layer to form a “mock” peritoneal environment.
Invasion is typically measured by fluorescent microscopy after the
cell layers are cultured in transwell inserts placed over growth
promoting media. (26, 34–36). These models provide a more accu-
rate representation of the tissue structure encountered by tumor
cells, by supplying a barrier to test “metastatic” invasion of cells
in presence of other cells such as fibroblasts that are important
to disease processes. However, primary tumor development and
the “metastatic cascade” are highly complex processes, and the 2D
platforms that are currently used do not typify pathways involved,
likely contributing to the unsuccessful translation of findings into
in vivo systems and eventual failure of many treatments under
clinical trial (37).

NATURAL VERSUS SYNTHETIC 3D PLATFORMS
The importance of recapitulating tumor ECM in model systems
was highlighted by Infanger and others in their review (25). These
authors stated that interactions between tumor cells and their
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Fuller and Howell Culture models for cancer matrix remodeling

FIGURE 1 | (A) Schematic representation of the structure and components of the common peritoneal site of ovarian cancer metastasis. (B) Schematic
representation of a cluster of adherent ovarian cancer cells invading, proliferating, and destroying basement membrane ECM tissue architecture.

surrounding micro-environment are as pivotal to tumorigenic-
ity as oncogenic mutation (25). Normal homeostatic process and
tissue structural properties control the dormancy required after
malignant transformation of epithelial cells and when these path-
ways fail, along with the presence of certain genetic mutations,
cells grow uncontrollably and tumors develop (25). Currently,
there is a definite lack of studies that evaluate the combined
effect of cell–cell, cell–ECM interactions as well as biochemical,
biomechanical, and the specific processes that occur during the
metastatic processes of ovarian cancer (25, 38).

Hydrogels, such as Matrigel, are commonly used for
in vitro studies of ovarian cancer cell growth and invasion
(29, 32, 39). Other substrates such as collagen gels (40),

polyhydroxyethylmethacrylate coated plastics (22), algimatrix,
and geltrex are also used to model ECM (16). Natural alter-
natives include human amniotic membranes (HAM) and chick
chorioallantoic membranes (CAM). 3D culture systems incorpo-
rating amniotic membranes have been used to assess the spreading
and invasive capacities of ovarian cancer cells. These offer the
advantage of a physiologically relevant tissue barrier for assess-
ment of cell behavior (41–43). Limitations of these materials are
the batch to batch variation, presence of confounding growth fac-
tors and other biological components whose effects on culturing
experiments are not well known (25, 44). Other non-biological
considerations in these model systems, which to date have been
largely ignored, are the tissue structural properties as well as
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gradients of oxygen tension and effects from external physical
stimuli (compression, shear stress) (25, 41).

Semi-synthetic matrices such as polyethylene glycol (PEG),
hyaluronan, alginate-based, and peptide-based (Puramatrix™)
hydrogels are amenable to experimental determination of matrix
stiffness and integration of different binding sites and protease
cleavage sites (31, 45). Matrix stiffness has been shown to influ-
ence endothelial cell behavior independently of matrix molecular
composition, highlighting the relevance of matrix material prop-
erties in tumor modeling (46). PEG based hydrogels have been
used to investigate the role of proteases in the migration of fibrob-
lasts (47) and more recently to investigate cell–ECM interactions
and drug resistance of epithelial ovarian cancer cells (48).

Semi-synthetic or synthetic matrices offer the greatest levels
of experimental reproducibility due to the control that investi-
gators have in the makeup of the ECM. The study by Loessner
et al. is, to date, the most relevant study using a synthetic 3D scaf-
fold to comprehensively investigate ovarian cancer cell growth and
response to drugs in an anisotropic biomimetic hydrogel (48). This
method enables combination of designed binding sites, protease
substrates, other proteins including growth factors and an easily
adjustable matrix stiffness. Cells seeded uniformly in the liquid
scaffold precursor are exposed to similar levels of biomechanical
and biochemical stimuli in all directions (48).

While these models are highly relevant, the addition of other
cell types found in the cancer micro-environment (stromal cells,
immune cells) would make these models more complete. The
immune response has been shown to be clinically relevant in ovar-
ian cancer. Traditionally, immune–cancer cell interactions have
been studied in 2D cultures by the addition of immune compo-
nents or immune stimulatory factors. The establishment of a phys-
iologically relevant tumor micro-environment would enable all
cells present (cancer, stromal, immune) to phenotypically resem-
ble those found in disease (49–52). This would create a unique
and powerful in vitro situation for testing the effects of differ-
ent immune components and inflammatory responses relevant to
disease. For example, TNF-β is known to effect ECM stability, and
could therefore influence the capacity of tumor cells to migrate
and invade (53). A biologically relevant in vitro representation of
a tumor is also central for accurately testing drug efficacy, as the
interaction of different cell types contributes to the drug response
(54). Various 3D models (spheroid cultures, scaffold based 3D cul-
tures, organotypic cultures) would be amenable to the addition of
immune factors/cytokines, and although not yet in development,
3D co-culture of many cell types found in ovarian cancer including
immune cells should be possible (55, 56).

Heterotypic culture to simulate the micro-environment of
ovarian cancer has been shown to be a promising and repre-
sentative method for investigating stromal–epithelial interactions
during disease (57). It has been suggested that modeling ovarian
cancer by using 3D cultures of fallopian tube secretory epithe-
lial cells would be more relevant to early stage HG-SOC (58).
Combining synthetic matrices, in heterotypic culture with the
relevant cells that drive the initiation processes of disease to inves-
tigate potential therapeutic targets, would be ideal. A collaborative
effort between the NIH, FDA, and the Defense Advanced Research
Projects Agency has been instigated to develop and refine methods

for functional organ microphysiological systems aimed at drug
screening (59). These may also have potential for use in cancer
biology. For example, a human liver-like model has been devel-
oped to study breast cancer metastases (60). It is possible that such
models may, in the future, be adapted to investigate metastases
to the liver in ovarian cancer. Table 1 summarizes some of the
factors to consider when choosing a method to model cancer cell
growth.

3D modeling of early stage ovarian cancer, which the afore-
mentioned systems aim to achieve, may be the most relevant for
identifying potential targets for disease modifying therapies. The
second stage of disease involves the spread of ovarian cancer cells
from the primary tumor into the peritoneal space. Experiments
to capture the behavior of ovarian cancer cells during metas-
tasis focus on anchorage-independent models of cell migration
(68–71). Multicellular aggregate, or spheroid formation is criti-
cal for shedding of cancer cells from the primary tumor, and it
has recently been shown that the culture of ovarian cancer cells as
spheroids in a biomimetic ECM, recapitulates the metastatic niche
(72). Further, the biomechanical environment of the peritoneal
space plays an important role on cancer cell behavior and spread,
and so incorporation of physiological fluid mechanics are appro-
priate in these systems (41, 69). While the development of oxygen
tension gradients limits the size of the multicellular spheroids in
culture; it mimics the structure of solid tumors and the potential
development of necrotic cores (73, 74). This representation of the
physiological micro-environment is relevant and appropriate for
the screening of drugs, as penetration into the tumor/spheroid is
very different to 2D systems and consequently, the response will
also be very different (75). A recent study by Jaeger et al. describes
the development of a 3D culture system incorporating an oxygen
permeable polymer and micro pillars, to mimic gas delivery via
vessels (76). This system offers the potential of larger growth of
organotypic models and more realistically represents vascularized
tumors in vivo.

Tissue chips are a relatively new area of research aimed at incor-
porating as many components as possible to recapitulate the living
tissue and study biological responses to many factors in concert
(77, 78). Tissue chips allow the modeling of organ systems in a
highly functional and controlled manner. They can incorporate
many components relevant to tumor biology such as various 3D
matrix components and hydrogels. These systems have the poten-
tial as tools for measuring metastatic potential, response to various
growth stimulators or inhibitors, immune interactions, and drug
responses. However, optimization of parameters such as endpoint
data collection is still required in order to use these systems for
complex tumor modeling (77, 78).

CONCLUSION AND FUTURE PERSPECTIVES
Many advances have been made in recent years in the development
of representative 3D models to mimic ovarian cancer relevant to
human HG-SOC. However, these systems are still limited and
none to date combine all factors, biomechanical, and biologi-
cal, to create a complete experimental culture system. This is
compounded by recent controversy regarding the molecular char-
acterization of HG-SOC cell lines, with several that are commonly
used for research, being shown to be non-representative of this
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Table 1 | Summary of factors contributing to the choice of model system for ovarian cancer cell culture.

Natural/

synthetic

Control of ECM

composition

Relevance to

in vivo tumor

Comments/reference

COMPONENT/SYSTEM

Human amniotic membrane (HAM) Natural Low Medium Physiologically relevant/provides ECM barrier/batch to batch

variation high (42)

Chick chorioallantoic membrane (CAM) Natural Low Medium Physiologically relevant/provides ECM barrier/batch to batch

variation high (43)

Collagen gel (acid extracted type 1

collagen from rat tail)

Synthetic Medium Low Variable ECM stiffness/invasion assessment (binding

sites/matrix interaction) (61, 62)

Matrigel (derived from mouse EHS cell

secretions; laminin, collagen IV,

enactin, various growth factors)

Synthetic Medium Low Widely used (migration and invasion)/batch variation

high/irrelevant matrix composition/properties (29, 31, 33)

Alginate/peptide-based (inert

polysaccharide, β-d-mannuronic acid,

α-l-guluronic acid, calcium ions)

Synthetic High Medium Variable ECM stiffness/defined components/binding

sites/matrix interaction (63, 64)

PEG (various cross-linked polyethylene

glycol hydrogels) coasted plastics

Synthetic High Medium Variable ECM stiffness/defined components/binding

sites/matrix interaction/enzymatically degradable (31, 65)

Heterotypic/organotypic culture Synthetic High High Relevant micro-environment/cell interaction/combine with

synthetic ECM (64, 66)

Spheroid culture Synthetic High Medium Biologically relevant/cell–cell interactions/combine with

synthetic ECM (31, 58, 67)

grade of ovarian cancer. It has become clear that when modeling
the micro-environment, it is particularly important to create an
ECM that closely mimics that relevant to ovarian cancer, and so
considerations of the origin of the cell line are important. For
example, an ECM relevant to a primary tumor derived cell line
may be different from that of a cell line derived from ascites. Like-
wise, generation of an appropriate ECM for early disease modeling
may have different requirements for epithelial cells derived from
the fallopian tube to those derived from the ovarian surface. Only
through a comprehensive understanding of physiological tumor
behavior will it be possible to identify key players in tumor progres-
sion, whether these are ECM proteins (MMPs, TIMPs), immune
regulators or cytokines or upstream genetic changes in the cancer
cells themselves.

While the sophisticated 3D culture models developed in the last
few years have circumvented many problems associated with tradi-
tional methods, the use of these systems is still in its infancy in part
due to the complex nature, cost, and specialized equipment that is
often required. Thus these methods are not yet amenable for high-
throughput experimentation and pre-clinical testing. However,
technological progress in the coming years will hopefully reduce
these limitations and see the widespread use of high-throughput
screening using 3D culture systems that accurately recapitulate the
tumor micro-environment.

REFERENCES
1. Saladino E, Fleres F, Irato S, Famulari C, Macrí A. The role of cytoreductive

surgery and hyperthermic intraperitoneal chemotherapy in the treatment of

ovarian cancer relapse. Updates Surg (2013) 65(4):265–70. doi:10.1007/s13304-
013-0229-9

2. van Altena AM, van den Akker PA, de Hullu JA, Ottevanger PB, Aalders AL,
Gerritse R, et al. Efficacy of a regional network for ovarian cancer care. Obstet
Gynecol (2013) 122(3):668–75. doi:10.1097/AOG.0b013e3182a054ee

3. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, et al.
Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med (2006)
354(1):34–43. doi:10.1056/NEJMoa052985

4. Eskander RN, Tewari KS. Epithelial cell-adhesion molecule-directed trifunc-
tional antibody immunotherapy for symptom management of advanced ovarian
cancer. Clin Pharmacol (2013) 5(Suppl 1):55–61. doi:10.2147/CPAA.S45885

5. Baumann KH, Wagner U, du Bois A. The changing landscape of therapeu-
tic strategies for recurrent ovarian cancer. Future Oncol (2012) 8(9):1135–47.
doi:10.2217/fon.12.112

6. Jiang F, Saunders BO, Haller E, Livingston S, Nicosia SV, Bai W. Conditionally
immortal ovarian cell lines for investigating the influence of ovarian stroma on
the estrogen sensitivity and tumorigenicity of ovarian surface epithelial cells.
In vitro Cell Dev Biol Anim (2003) 39(7):304–12. doi:10.1290/1543-706X(2003)
039<0304:CIOCLF>2.0.CO;2

7. Nicosia SV, Nicosia RF. Neoplasms of ovarian mesothelium. In: Azar HA, Azar
HA, editors. Pathology of Human Neoplasms. New York: Raven Press (1988).
p. 435–86.

8. Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as
tumour models by comparison of genomic profiles. Nat Commun (2013) 4:2126.
doi:10.1038/ncomms3126

9. Jones PM, Drapkin R. Modeling high-grade serous carcinoma: how converging
insights into pathogenesis and genetics are driving better experimental plat-
forms. Front Oncol (2013) 3:217. doi:10.3389/fonc.2013.00217

10. Karst AM, Drapkin R. Primary culture and immortalization of human fallop-
ian tube secretory epithelial cells. Nat Protoc (2012) 7(9):1755–64. doi:10.1038/
nprot.2012.097

11. Karst AM, Levanon K, Drapkin R. Modeling high-grade serous ovarian carcino-
genesis from the fallopian tube. Proc Natl Acad Sci U S A (2011) 108(18):7547–52.
doi:10.1073/pnas.1017300108

www.frontiersin.org March 2014 | Volume 4 | Article 57 | 5

http://dx.doi.org/10.1007/s13304-013-0229-9
http://dx.doi.org/10.1007/s13304-013-0229-9
http://dx.doi.org/10.1097/AOG.0b013e3182a054ee
http://dx.doi.org/10.1056/NEJMoa052985
http://dx.doi.org/10.2147/CPAA.S45885
http://dx.doi.org/10.2217/fon.12.112
http://dx.doi.org/10.1290/1543-706X(2003)039<0304:CIOCLF>2.0.CO;2
http://dx.doi.org/10.1290/1543-706X(2003)039<0304:CIOCLF>2.0.CO;2
http://dx.doi.org/10.1038/ncomms3126
http://dx.doi.org/10.3389/fonc.2013.00217
http://dx.doi.org/10.1038/nprot.2012.097
http://dx.doi.org/10.1038/nprot.2012.097
http://dx.doi.org/10.1073/pnas.1017300108
http://www.frontiersin.org
http://www.frontiersin.org/Women's_Cancer/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fuller and Howell Culture models for cancer matrix remodeling

12. Kim J, Coffey DM, Creighton CJ, Yu Z, Hawkins SM, Matzuk MM. High-grade
serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl
Acad Sci U S A (2012) 109(10):3921–6. doi:10.1073/pnas.1117135109

13. Kurman RJ, Shih Ie M. The origin and pathogenesis of epithelial ovarian
cancer: a proposed unifying theory. Am J Surg Pathol (2010) 34(3):433–43.
doi:10.1097/PAS.0b013e3181cf3d79

14. Rescigno P, Cerillo I, Ruocco R, Condello C, De Placido S, Pensabene M. New
hypothesis on pathogenesis of ovarian cancer lead to future tailored approaches.
Biomed Res Int (2013) 2013:852839. doi:10.1155/2013/852839

15. Anglesio MS, Wiegand KC, Melnyk N, Chow C, Salamanca C, Prentice LM, et al.
Type-specific cell line models for type-specific ovarian cancer research. PLoS
One (2013) 8(9):e72162. doi:10.1371/journal.pone.0072162

16. Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, et al. Redefin-
ing the relevance of established cancer cell lines to the study of mecha-
nisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci U S A (2011)
108(46):18708–13. doi:10.1073/pnas.1111840108

17. Archibald KM, Kulbe H, Kwong J, Chakravarty P, Temple J, Chaplin T, et al.
Sequential genetic change at the TP53 and chemokine receptor CXCR4 locus
during transformation of human ovarian surface epithelium. Oncogene (2012)
31(48):4987–95. doi:10.1038/onc.2011.653

18. Davies BR, Steele IA, Edmondson RJ, Zwolinski SA, Saretzki G, von Zglinicki T,
et al. Immortalisation of human ovarian surface epithelium with telomerase and
temperature-sensitive SV40 large T antigen. Exp Cell Res (2003) 288(2):390–402.
doi:10.1016/S0014-4827(03)00218-0

19. Fotheringham S, Levanon K, Drapkin R. Ex vivo culture of primary human
fallopian tube epithelial cells. J Vis Exp (2011) (51):e2728. doi:10.3791/2728

20. Lawrenson K, Sproul D, Grun B, Notaridou M, Benjamin E, Jacobs IJ, et al.
Modelling genetic and clinical heterogeneity in epithelial ovarian cancers. Car-
cinogenesis (2011) 32(10):1540–9. doi:10.1093/carcin/bgr140

21. Maeda T, Tashiro H, Katabuchi H, Begum M, Ohtake H, Kiyono T, et al. Estab-
lishment of an immortalised human ovarian surface epithelial cell line without
chromosomal instability. Br J Cancer (2005) 93(1):116–23. doi:10.1038/sj.bjc.
6602662

22. Lee JM, Mhawech-Fauceglia P, Lee N, Parsanian LC, Lin YG, Gayther SA,
et al. A three-dimensional microenvironment alters protein expression and
chemosensitivity of epithelial ovarian cancer cells in vitro. Lab Invest (2013)
93(5):528–42. doi:10.1038/labinvest.2013.41

23. Rizzo S, Hersey JM, Mellor P, Dai W, Santos-Silva A, Liber D, et al. Ovarian
cancer stem cell-like side populations are enriched following chemotherapy and
overexpress EZH2. Mol Cancer Ther (2011) 10(2):325–35. doi:10.1158/1535-
7163.MCT-10-0788

24. Zeimet AG, Reimer D, Sopper S, Boesch M, Martowicz A, Roessler J, et al.
Ovarian cancer stem cells. Neoplasma (2012) 59(6):747–55. doi:10.4149/neo_
2012_094

25. Infanger DW, Lynch ME, Fischbach C. Engineered culture models for studies of
tumor-microenvironment interactions. Annu Rev Biomed Eng (2013) 15:29–53.
doi:10.1146/annurev-bioeng-071811-150028

26. Kenny HA, Lengyel E. MMP-2 functions as an early response protein in ovarian
cancer metastasis. Cell Cycle (2009) 8(5):683–8. doi:10.4161/cc.8.5.7703

27. Kwon Y, Cukierman E, Godwin AK. Differential expressions of adhesive mole-
cules and proteases define mechanisms of ovarian tumor cell matrix penetra-
tion/invasion. PLoS One (2011) 6(4):e18872. doi:10.1371/journal.pone.0018872

28. Martell RE, Brooks DG, Wang Y, Wilcoxen K. Discovery of novel drugs for
promising targets. Clin Ther (2013) 35(9):1271–81. doi:10.1016/j.clinthera.
2013.08.005

29. Sodek KL, Brown TJ, Ringuette MJ. Collagen I but not Matrigel matrices pro-
vide an MMP-dependent barrier to ovarian cancer cell penetration. BMC Cancer
(2008) 8:223. doi:10.1186/1471-2407-8-223

30. Sodek KL, Murphy KJ, Brown TJ, Ringuette MJ. Cell-cell and cell-matrix
dynamics in intraperitoneal cancer metastasis. Cancer Metastasis Rev (2012)
31(1–2):397–414. doi:10.1007/s10555-012-9351-2

31. Pouliot N, Pearson HB, Burrows A. Investigating metastasis using in vitro
platforms. In: Madame Curie Bioscience Database [Internet]. (2013). Austin,
TX: Landes Bioscience; Available from: http://www.ncbi.nlm.nih.gov/books/
NBK100379/

32. Yagi H, Yotsumoto F, Miyamoto S. Heparin-binding epidermal growth factor-
like growth factor promotes transcoelomic metastasis in ovarian cancer through
epithelial-mesenchymal transition. Mol Cancer Ther (2008) 7(10):3441–51.
doi:10.1158/1535-7163.MCT-08-0417

33. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biolog-
ical activity. Semin Cancer Biol (2005) 15(5):378–86. doi:10.1016/j.semcancer.
2005.05.004

34. Cai J, Tang H, Xu L, Wang X, Yang C, Ruan S, et al. Fibroblasts in omentum acti-
vated by tumor cells promote ovarian cancer growth, adhesion and invasiveness.
Carcinogenesis (2012) 33(1):20–9. doi:10.1093/carcin/bgr230

35. Kenny HA, Kaur S, Coussens LM, Lengyel E. The initial steps of ovarian cancer
cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin.
J Clin Invest (2008) 118(4):1367–79. doi:10.1172/JCI33775

36. Kenny HA, Krausz T, Yamada SD, Lengyel E. Use of a novel 3D culture model
to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices
on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer
(2007) 121(7):1463–72. doi:10.1002/ijc.22874

37. Kusuma N, Anderson RL, Pouliot N. Laminin alpha5-derived peptides modu-
late the properties of metastatic breast tumour cells. Clin Exp Metastasis (2011)
28(8):909–21. doi:10.1007/s10585-011-9422-8

38. Bignotti E, Tassi RA, Calza S, Ravaggi A, Romani C, Rossi E, et al. Differen-
tial gene expression profiles between tumor biopsies and short-term primary
cultures of ovarian serous carcinomas: identification of novel molecular bio-
markers for early diagnosis and therapy. Gynecol Oncol (2006) 103(2):405–16.
doi:10.1016/j.ygyno.2006.03.056

39. Kaimal R, Aljumaily R, Tressel SL, Pradhan RV, Covic L, Kuliopulos A, et al.
Selective blockade of matrix metalloprotease-14 with a monoclonal antibody
abrogates invasion, angiogenesis, and tumor growth in ovarian cancer. Cancer
Res (2013) 73(8):2457–67. doi:10.1158/0008-5472.CAN-12-1426

40. Moss NM, Liu Y, Johnson JJ, Debiase P, Jones J, Hudson LG, et al. Epidermal
growth factor receptor-mediated membrane type 1 matrix metalloproteinase
endocytosis regulates the transition between invasive versus expansive growth
of ovarian carcinoma cells in three-dimensional collagen. Mol Cancer Res (2009)
7(6):809–20. doi:10.1158/1541-7786.MCR-08-0571

41. Avraham-Chakim L, Elad D, Zaretsky U, Kloog Y, Jaffa A, Grisaru D. Fluid-flow
induced wall shear stress and epithelial ovarian cancer peritoneal spreading.
PLoS One (2013) 8(4):e60965. doi:10.1371/journal.pone.0060965

42. Touboul C, Lis R, Al Farsi H, Raynaud CM, Warfa M, Althawadi H, et al. Mes-
enchymal stem cells enhance ovarian cancer cell infiltration through IL6 secre-
tion in an amniochorionic membrane based 3D model. J Transl Med (2013)
11:28. doi:10.1186/1479-5876-11-28

43. de Vrij J, Dautzenberg IJ, van den Hengel SK, Magnusson MK, Uil TG, Cramer
SJ, et al. A cathepsin-cleavage site between the adenovirus capsid protein IX
and a tumor-targeting ligand improves targeted transduction. Gene Ther (2012)
19(9):899–906. doi:10.1038/gt.2011.162

44. Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH. Iden-
tification of multiple active growth factors in basement membrane Matrigel
suggests caution in interpretation of cellular activity related to extracellu-
lar matrix components. Exp Cell Res (1992) 202(1):1–8. doi:10.1016/0014-
4827(92)90397-Q

45. Yang Z, Zhao X. A 3D model of ovarian cancer cell lines on peptide nanofiber
scaffold to explore the cell-scaffold interaction and chemotherapeutic resis-
tance of anticancer drugs. Int J Nanomedicine (2011) 6:303–10. doi:10.2147/
IJN.S15279

46. Mason BN, Starchenko A, Williams RM, Bonassar LJ, Reinhart-King CA. Tuning
three-dimensional collagen matrix stiffness independently of collagen concen-
tration modulates endothelial cell behavior. Acta Biomater (2013) 9(1):4635–44.
doi:10.1016/j.actbio.2012.08.007

47. Raeber GP, Lutolf MP, Hubbell JA. Molecularly engineered PEG hydrogels: a
novel model system for proteolytically mediated cell migration. Biophys J (2005)
89(2):1374–88. doi:10.1529/biophysj.104.050682

48. Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC.
Bioengineered 3D platform to explore cell-ECM interactions and drug resis-
tance of epithelial ovarian cancer cells. Biomaterials (2010) 31(32):8494–506.
doi:10.1016/j.biomaterials.2010.07.064

49. Azzazene D, Al Thawadi H, Al Farsi H, Besbes S, Geyl C, Mirshahi S, et al. Plasma
endothelial protein C receptor influences innate immune response in ovarian
cancer by decreasing the population of natural killer and TH17 helper cells. Int
J Oncol (2013) 43(4):1011–8. doi:10.3892/ijo.2013.2021

50. Giuntoli RL II, Webb TJ, Zoso A, Rogers O, Diaz-Montes TP, Bristow RE,
et al. Ovarian cancer-associated ascites demonstrates altered immune envi-
ronment: implications for antitumor immunity. Anticancer Res (2009) 29(8):
2875–84.

Frontiers in Oncology | Women’s Cancer March 2014 | Volume 4 | Article 57 | 6

http://dx.doi.org/10.1073/pnas.1117135109
http://dx.doi.org/10.1097/PAS.0b013e3181cf3d79
http://dx.doi.org/10.1155/2013/852839
http://dx.doi.org/10.1371/journal.pone.0072162
http://dx.doi.org/10.1073/pnas.1111840108
http://dx.doi.org/10.1038/onc.2011.653
http://dx.doi.org/10.1016/S0014-4827(03)00218-0
http://dx.doi.org/10.3791/2728
http://dx.doi.org/10.1093/carcin/bgr140
http://dx.doi.org/10.1038/sj.bjc.6602662
http://dx.doi.org/10.1038/sj.bjc.6602662
http://dx.doi.org/10.1038/labinvest.2013.41
http://dx.doi.org/10.1158/1535-7163.MCT-10-0788
http://dx.doi.org/10.1158/1535-7163.MCT-10-0788
http://dx.doi.org/10.4149/neo_2012_094
http://dx.doi.org/10.4149/neo_2012_094
http://dx.doi.org/10.1146/annurev-bioeng-071811-150028
http://dx.doi.org/10.4161/cc.8.5.7703
http://dx.doi.org/10.1371/journal.pone.0018872
http://dx.doi.org/10.1016/j.clinthera.2013.08.005
http://dx.doi.org/10.1016/j.clinthera.2013.08.005
http://dx.doi.org/10.1186/1471-2407-8-223
http://dx.doi.org/10.1007/s10555-012-9351-2
http://www.ncbi.nlm.nih.gov/books/NBK100379/
http://www.ncbi.nlm.nih.gov/books/NBK100379/
http://dx.doi.org/10.1158/1535-7163.MCT-08-0417
http://dx.doi.org/10.1016/j.semcancer.2005.05.004
http://dx.doi.org/10.1016/j.semcancer.2005.05.004
http://dx.doi.org/10.1093/carcin/bgr230
http://dx.doi.org/10.1172/JCI33775
http://dx.doi.org/10.1002/ijc.22874
http://dx.doi.org/10.1007/s10585-011-9422-8
http://dx.doi.org/10.1016/j.ygyno.2006.03.056
http://dx.doi.org/10.1158/0008-5472.CAN-12-1426
http://dx.doi.org/10.1158/1541-7786.MCR-08-0571
http://dx.doi.org/10.1371/journal.pone.0060965
http://dx.doi.org/10.1186/1479-5876-11-28
http://dx.doi.org/10.1038/gt.2011.162
http://dx.doi.org/10.1016/0014-4827(92)90397-Q
http://dx.doi.org/10.1016/0014-4827(92)90397-Q
http://dx.doi.org/10.2147/IJN.S15279
http://dx.doi.org/10.2147/IJN.S15279
http://dx.doi.org/10.1016/j.actbio.2012.08.007
http://dx.doi.org/10.1529/biophysj.104.050682
http://dx.doi.org/10.1016/j.biomaterials.2010.07.064
http://dx.doi.org/10.3892/ijo.2013.2021
http://www.frontiersin.org/Women's_Cancer
http://www.frontiersin.org/Women's_Cancer/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fuller and Howell Culture models for cancer matrix remodeling

51. Govindaraj C, Scalzo-Inguanti K, Madondo M, Hallo J, Flanagan K, Quinn
M, et al. Impaired Th1 immunity in ovarian cancer patients is mediated by
TNFR2+ Tregs within the tumor microenvironment. Clin Immunol (2013)
149(1):97–110. doi:10.1016/j.clim.2013.07.003

52. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G,
et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer.
N Engl J Med (2003) 348(3):203–13. doi:10.1056/NEJMoa020177

53. Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, et al. TGF-
beta modulates ovarian cancer invasion by upregulating CAF-derived ver-
sican in the tumor microenvironment. Cancer Res (2013) 73(16):5016–28.
doi:10.1158/0008-5472.CAN-13-0023

54. Celli JP, Rizvi I, Blanden AR, Massodi I, Glidden MD, Pogue BW, et al. An
imaging-based platform for high-content, quantitative evaluation of therapeutic
response in 3D tumour models. Sci Rep (2014) 4:3751. doi:10.1038/srep03751

55. Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D.
Cell (2007) 130(4):601–10. doi:10.1016/j.cell.2007.08.006

56. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-
Schughart LA. Multicellular tumor spheroids: an underestimated tool is
catching up again. J Biotechnol (2010) 148(1):3–15. doi:10.1016/j.jbiotec.2010.
01.012

57. Lawrenson K, Grun B, Gayther SA. Heterotypic three-dimensional in vitro mod-
eling of stromal-epithelial interactions during ovarian cancer initiation and pro-
gression. J Vis Exp (2012) (66):e4206. doi:10.3791/4206

58. Lawrenson K, Notaridou M, Lee N, Benjamin E, Jacobs IJ, Jones C, et al. In vitro
three-dimensional modeling of fallopian tube secretory epithelial cells. BMC
Cell Biol (2013) 14(1):43. doi:10.1186/1471-2121-14-43

59. Sutherland ML, Fabre KM, Tagle DA. The National Institutes of Health Micro-
physiological Systems Program focuses on a critical challenge in the drug dis-
covery pipeline. Stem Cell Res Ther (2013) 4(Suppl 1). doi:10.1186/scrt361

60. Wheeler SE, Borenstein JT, Clark AM, Ebrahimkhani MR, Fox IJ, Griffith L,
et al. All-human microphysical model of metastasis therapy. Stem Cell Res Ther
(2013) 4(Suppl 1). doi:10.1186/scrt372

61. Barbolina MV, Liu Y, Gurler H, Kim M, Kajdacsy-Balla AA, Rooper L, et al.
Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1
protein. J Biol Chem (2013) 288(1):141–51. doi:10.1074/jbc.M112.431411

62. Kennedy A, Dong H, Chen D, Chen WT. Elevation of seprase expression and
promotion of an invasive phenotype by collagenous matrices in ovarian tumor
cells. Int J Cancer (2009) 124(1):27–35. doi:10.1002/ijc.23871

63. Godugu C, Patel AR, Desai U, Andey T, Sams A, Singh M. AlgiMatrix based 3D
cell culture system as an in-vitro tumor model for anticancer studies. PLoS One
(2013) 8(1):e53708. doi:10.1371/journal.pone.0053708

64. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog
Polym Sci (2012) 37(1):106–26. doi:10.1016/j.progpolymsci.2011.06.003

65. Rizzi SC, Ehrbar M, Halstenberg S, Raeber GP, Schmoekel HG, Hagenmüller
H, et al. Recombinant protein-co-PEG networks as cell-adhesive and proteolyt-
ically degradable hydrogel matrixes. Part II: biofunctional characteristics. Bio-
macromolecules (2006) 7(11):3019–29. doi:10.1021/bm060504a

66. Kenny HA, Dogan S, Zillhardt M, K Mitra A, Yamada SD, Krausz T, et al. Organ-
otypic models of metastasis: a three-dimensional culture mimicking the human
peritoneum and omentum for the study of the early steps of ovarian cancer
metastasis. Cancer Treat Res (2009) 149:335–51. doi:10.1007/978-0-387-98094-
2_16

67. Carduner L, Picot CR, Leroy-Dudal J, Blay L, Kellouche S, Carreiras F. Cell
cycle arrest or survival signaling through alphav integrins, activation of PKC

and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids. Exp Cell Res
(2014) 320(2):329–42. doi:10.1016/j.yexcr.2013.11.011

68. Dong Y, Stephens C, Walpole C, Swedberg JE, Boyle GM, Parsons PG, et al. Pacli-
taxel resistance and multicellular spheroid formation are induced by kallikrein-
related peptidase 4 in serous ovarian cancer cells in an ascites mimicking
microenvironment. PLoS One (2013) 8(2):e57056. doi:10.1371/journal.pone.
0057056

69. Grun B, Benjamin E, Sinclair J, Timms JF, Jacobs IJ, Gayther SA, et al. Three-
dimensional in vitro cell biology models of ovarian and endometrial cancer. Cell
Prolif (2009) 42(2):219–28. doi:10.1111/j.1365-2184.2008.00579.x
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