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Abstract

To reveal the characteristics of climate change and the controlling factors for vegetation

dynamics in the Ordos, Inner Mongolia, China, 34 years (1982–2015) of regional climate

variables and vegetation dynamics were investigated. The results show that: Annual mean

air temperature (TMP) significantly increased with a linear slope of 0.473˚C/10yr. Annual

precipitation (PRE) had a non-significant positive trend nearly 5 times lower than the trend

of potential evapotranspiration (PET). The average Normalized Difference Vegetation Index

(NDVI) computed for the region was found to show a significant positive trend (6.131×10−4/

yr). However, all climate variables displayed non-significant correlations with NDVI at annual

scale. The reduction of desert and the increase of grassland over the past decades were

accountable for the increased NDVI. Principal components analysis revealed that the

regional climate change can be characterized as changes in temperature, humidity and the

availability of radiant energy. Based on principal components regression coefficients, NDVI

was mostly sensitive to humidity component, followed by growing season warmth (WMI).

Spatially, 93.1% of the pixels displayed positive trend and 61.8% of the pixels displayed sig-

nificant change over the past decades. Both principal regression analysis and partial corre-

lation analysis revealed that NDVI in eastern part of Ordos was sensitive to TMP, whereas,

NDVI in southern and western areas of Ordos displayed the high sensitivity to combined

effects of PRE and cloud coverage (CLD). Partial correlation analyses also revealed that

TMX was a surrogate for aridity, TMN was a representative of humidity, and temperature

variations below the threshold of 5˚C (CDI) were less important than WMI. We conclude that

regional climate change can be characterized by warming and increased aridity. The signifi-

cant positive trend of regional NDVI and the non-significant correlations between NDVI and

climate variables at annual scale suggests the hidden role of the human activities.
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1.Introduction

Vegetation is a critical component of the terrestrial biosphere and its growth activity plays an

important role in the global carbon and hydrological cycles [1]. Studies have shown that there

are clear relationships between climate data and Global Inventory Modeling and Mapping

Studies (GIMMS) satellite-derived normalized difference vegetation index (NDVI) vegetation

dynamics [2]. Additionally, feedbacks have been revealed between vegetation activity and the

carbon and hydrological cycles [3–7].

Most of these studies concentrated exclusively on empirical data such as observed tempera-

ture and precipitation. Generally, these studies do not consider derived climate variables such

as evapotranspiration [8], cloud cover [9], and warmth/coldness indices [10]. In addition, the

effects of asymmetrical climate change, which is characterized as a higher increase of mini-

mum temperatures and a smaller increase in maximum temperatures, on vegetation growth

have not been sufficiently investigated [11,12].

Traditionally, studies that have identified significant climate-vegetation relationship with linear

correlation analytical approach [13]. Limited consideration has been given to the co-linearity among

climate variables, which may results in pseudo driving factors for vegetation dynamics [14,15].

Moreover, it is challenging to differentiate between the climate and human causations on

vegetation dynamics. Urbanization, cropland expansion, demographic changes, and livestock

grazing activity have been found to impact climate-vegetation dynamics, especially within the

forest-steppe-desert transition zone where different trends and driving factors coexist [6,16,17].

Traditional linear correlation approaches provide an incomplete representation of variable-veg-

etation analysis, which may lead to biased conclusions on the scope of climate impacts on vege-

tation and thereby influence regional climate-vegetation modelling scenarios. For example, the

expansion of cropland in north-eastern Inner Mongolia misled our understanding about the cli-

mate-vegetation relationship [10]. A climate-vegetation study in southern Africa underesti-

mated the severity of land degradation using the linear regression method [18].

The Ordos Plateau of Inner Mongolia, China, is a typical forest-steppe-desert transition

zone. The ecosystem diversity and vegetation dynamics in this region are highly sensitive to

both climate change and anthropogenic influences [19]. These climate-vegetation relationships

are complicated with asymmetric climate change and human activities that take place over the

past three decades. These relationships are further complicated by numerous national and

local ecological restoration projects that had been implemented by the government since the

year 2000 [20,21]. Therefore, investigations on the climatic variations and human activities on

regional vegetation changes are critical to characterize the vegetation growth responses to cli-

mate change. As underlying causes are identified in a robust manner, further progress can be

made on the restoration and reconstruction policies of the Ordos Plateau ecosystems, which

could be expanded into the vicinity regions with similar climate settings.

In this study, climate datasets were compared to vegetation dynamics in the Ordos Plateau

over a 34-year period (1982–2015) to evaluate the regional climate-vegetation relationship.

This study aims to i) characterize the temporal patterns during the regional climate change, ii)

evaluate spatial patterns of vegetation-climate relationships, and iii) identify the controlling

factors that drive vegetation dynamics in the Ordos ecosystems.

Materials and methods

Study site

The Ordos region is located in the southern part of the Inner Mongolia Autonomous Region

(37˚410-40˚510N; 106˚420-111˚310E) and occupies approximately 87,400 km2 [22]. The area is
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bounded on the north by the Hobq Desert and the south by the Mu Us Sandy Land [22,23].

The major ecosystems are grassland, sandy land, cropland, meadows and forested land [22,24].

The study site experiences a temperate continental climate with high evaporative demand

during the growing season, which typically lasts from May to October. The mean annual tem-

perature is 5.3–8.7˚C with a high of 23.5˚C during the hottest month (July) and a low of

-11.5˚C during the coldest month (January). The total annual precipitation is 150–450 mm

with more than 70% of the total annual precipitation occurring from July to September. Gen-

erally, air temperature declines with elevation, whereas, precipitation decreases from east to

west across the region [13]. Geologically, the region is sub-divided into the northern Yellow

River alluvial plain, the eastern hilly region, the western arid plateau and the southern sandy

plain; these geological features influence the vegetation types and the strength of aridity.

Data collection

To capture the temporal dynamics of vegetation change in response to climate change, 34

years (1982–2015) of Normalized Difference Vegetation Index (NDVI) of Ordos were

obtained from the Global Inventory Monitoring and Modeling System (GIMMS) project

(https://ecocast.arc.nasa.gov/data/pub/gimms/, accessed at 10/Oct/2018). To account for the

issues of orbital drift, sensor degradation and radiation effect of volcanic eruption, GIMMS

NDVI3g data have been normalized to produce a non-stationary 1981–2012 AVHRR NDVI3g

time series [25]. The spatial resolution of the data was at 1/12˚ and pixels with low quality data

(flag value = 4–7) were removed from the analysis [26].

To reveal the characteristics of regional climate change, climate datasets (Table 1) were

obtained from the Climatic Research Unit (CRU: University of East Anglia Climatic Research

Unit, UK) data archives [27]. These CRU datasets contain homogenized monthly time series of

precipitation, daily maximum and minimum temperatures, cloud cover, and other variables, all

of which were gridded to 0.5x0.5 degree resolution. To match the spatial-temporal resolutions

of GIMMS ndvi3g and facilitate the calculation at pixel scale, the climate datasets (0.5˚×0.5˚ res-

olution) were disaggregated into 1/12˚ by bilinear interpolation of the neighboring pixels.

As warmth index (WMI) and coldness index (CDI) were effective indicotors for vegetation

growth and distribution limits [10,15,28], we followed You et al. [10] to established annual

anomalies of WMI and CDI at each pixel by counting the annual sum of positive and negative

differences between monthly means and 5˚C [29].

To obtain further information on vegetation trends, MODIS land cover product

(MCD12Q1) for 2001 and 2015 were collected from https://e4ftl01.cr.usgs.gov/MOTA/

MCD12Q1.006/. The definition of land use types followed the International Geosphere-

Table 1. Abbreviations and data sources for the climate variables and NDVI.

Abbreviation Variables Unit Source/Method

TMP Daily mean temperature ˚C CRU TS v4.01

TMN Daily minimum temperature ˚C CRU TS v4.01

TMX Daily maximum temperature ˚C CRU TS v4.01

WMI Warmth index ˚C�month (Kira, T., 1945)

CDI Coldness index ˚C�month (Kira, T., 1945)

PRE Precipitation mm CRU TS v4.01

PET Potential evapotranspiration mm CRU TS v3.23

VAP Vapour pressure hPa CRU TS v4.01

CLD Cloud coverage % CRU TS v4.01

NDVI Normalized Difference Vegetation Index - GIMMS ndvi3g

https://doi.org/10.1371/journal.pone.0264263.t001
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Biosphere Program (IGBP) land cover classification system, and the accuracy of the land cover

dataset has been validated by field observations [30].

Analytical methods

To reveal the long-term trends of climate variables and NDVI, both non-parametric trend

tests and linear trend tests were conducted [31,32]. To reduce the influence of autocorrelation

on trend detection, the datasets were pre-whitened (MK-TFPW) prior to applying the Mann-

Kendall trend test [33]. To reduce the influence of abnormal anomalies and outliers on the

results of the trend analyses, the non-parametric Sen [34] slope was also obtained by calculat-

ing the median slope between all pairwise combinations of points in time series of climate vari-

ables and NDVI. To reveal any significant change points within time series of climate variables

and NDVI, the Mann–Whitney–Pettit test was conducted [35]. Detailed time series analyses

and correlation analyses were presented by You et al. [10].

To remove the impact of co-linearity between the climate variables, principal components

regression (PCR) was used to identify the relative importance of each variable driving interan-

nual variations of NDVI [9,10,15]. In each pixel, we first extract 3 principal components from

the climate dataset, representing temperature, humidity and global radiation components.

Then, we established multi-linear regression model by using standardized NDVI as dependent

and using the loading scores of the 3 components as independents. Then, we multiplied the

loadings of each variable by the aforementioned multi-linear regression model coefficients and

summed these scores. This enabled us to estimate the relative importance of each variable in

driving the interannual variations of NDVI. For the annual means of regional climate variables

and NDVI values, we extract 6 principal components representing more than 99% of variance

of the climate dataset.

The partial correlation was conducted to reveal the correlation between X and Y on condi-

tion of the effect due to the third variable Z was eliminated (Eq 1). Suppose we are given three

variables X1, X2 and X3. Let r12 denote the correlation coefficient between the variables X1 and

X2. Then the partial correlation coefficient between X1 and X2 by controlling for the effect of

X3 is denoted by the symbol r12,3. It is given by the following formula:

r12;3 ¼
r12 � r13r23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � r2

13
Þð1 � r2

23
Þ

p ð1Þ

Results

Trend analyses

Regional climate change and vegetation dynamics for the Ordos region during the 1982–2015

study interval are displayed in Table 2 and Fig 1. Significant change points were detected dur-

ing the year 1996–1997 in all of the temperature-related and cloud cover variables (TMP,

TMX, TMN, WMI, CDI and CLD). Temperature-related variables displayed an increasing

inter-annual trend prior to the 1996 change point (TMP, TMX, WMI and CDI). These vari-

ables then displayed a negative trend after 1996. At decadal scales, TMP showed an increasing

slope (0.473˚C/10yr) (Fig 1A), but the increase was not significant. Prior to the change point,

TMN significantly increased (0.567˚C/10yr; p<0.01) (Fig 1B), while TMX increased but was

nonsignificant (0.473˚C/10yr) (Fig 1C). These two trend trajectories suggest that asymmetric

warming had occurred and that minimum temperatures were rising faster than maximum

temperatures.

PRE displayed a nonsignificant positive trend (5.5 mm/10yr; nonsig.) (Fig 1F). Conversely,

PET displayed a significant positive trend (29.4 mm/10yr; p<0.01) (Fig 1G), which suggests
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increased aridity took place in the region. As a consequence, VAP trends significantly

decreased (-0.205 hPa/10yr; p<0.01) with a significant change point in the year 2003 (Fig 1H).

The regional NDVI displayed a significant positive trend (6.131×10−3/10yr; p<0.05) with a sig-

nificant change point in the year 2006 (Fig 1J). Prior to the change point, NDVI declined from

1982–2006. After 2006, NDVI increased significantly.

Principal component analysis

For the inter-annual means of climate variables, principal component analysis shows the 1st

principal component of the 9 climate variables was highly correlated with TMP, TMN, TMX,

WMI, CDI and PET; all of which represent the temperature component (Table 3). The 2nd

principal component was highly correlated with PRE and VAP, which together represent the

humidity component. The 3rd principal component was highly correlated with CLD, which

representing the solar radiation component. Therefore, regional climate change can be sum-

marized as the changes in temperature, humidity and the availability of radiant energy.

For the inter-annual means of NDVI, the correlation analyses showed that all climate vari-

ables displayed non-significant correlations with NDVI (Table 3). This lack of correlation sug-

gests regional vegetation dynamics were not controlled by individual climate variables

exclusively. The principal regression coefficients (PRC) show that NDVI was mostly sensitive

to humidity component, followed by WMI. This sensitivity indicates humidity and growing

season warmth were important control factors on the inter-annual variation of NDVI.

Spatial distribution of NDVI trend

The majority of the pixels (93.1%) displayed a positive trend in NDVI during 1982–2015 (Fig

2A). Additionally, most of the pixels (61.8%) displayed a significant change in the trend of

NDVI over the past decades (Fig 2B). Principal regression analyses revealed that the change in

vegetation in the eastern part of Ordos was sensitive to TMP. In the southern and western

areas of Ordos, vegetation change was sensitive to the combined effects of PRE and CLD (Fig

2C). Overall, the R2 from principal regression analysis, residuals of climate-vegetation relation-

ship, was low, suggesting the weak link between climate and vegetation and the hidden role of

anthropogenic influences (Fig 2D).

Table 2. Time series analyses of climatic variables and NDVI over the past three decades (1982–2015).

Climate

Variables

MK-tau Pwmk tau Sen slope (10 yr-

1)

Linear slope (10 yr-

1)

Change point

year

Linear slope (1982-point,

10yr-1)

Linear slope (point-2015,

10yr-1)

TMP (˚C) 0.494�� 0.261� 0.472 0.473 1996�� 0.239 -0.036

TMN (˚C) 0.522�� 0.258� 0.582 0.567�� 1996�� 0.36 0.071

TMX (˚C) 0.390�� 0.250� 0.384 0.380�� 1996�� 0.12 -0.142

WMI (˚C�month) 0.490�� 0.170 3.033 3.196�� 1997�� 0.938 -0.637

CDI (˚C�month) 0.412�� 0.295� 2.894 2.931�� 1996�� 4.464� -0.31

PRE (mm) 0.030 -0.030 2.286 5.495 1987 -27.02 -2.092

PET (mm) 0.494�� 0.345�� 28.966 29.397�� 1996 2.205 15.95

VAP (hPa) -0.398�� -0.314� -0.2 -0.205�� 2003�� 0.033 -0.058

CLD (%) 0.348�� 0.216 0.145 1.697�� 1995�� -3.870�� -0.903

NDVI (×10−4) 0.269� 0.152 45.51 61.31�� 2006�� -21.01 323.1�

�. Correlation is significant at the 0.05 level (2-tailed).

��. Correlation is significant at the 0.01 level (2-tailed).

https://doi.org/10.1371/journal.pone.0264263.t002
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Land use and land cover changes

The land use and land cover transition matrix from 2001 to 2015 displayed that the ground-

cover area of grasslands, shrubland, urban lands and croplands had increased from 2001 to

2015 (Table 4). Remarkable changes are the the increase of grassland and the decrease of desert

land. Additionally, this analysis showed that 21.1% of the total desert area in 2001 was replaced

by grassland in 2015.

Partial correlation analysis

Partial correlation analyses were conducted to reveal the comparative roles of individual cli-

mate variables (TMP vs. PRE, TMN vs. TMX, WMI vs. CDI) on the inter-annual variation of

NDVI (3). NDVI of eastern and south-eastern parts of the region were positively correlated

with TMP (controlling PRE) (Fig 3A), whereas, the rest of the region displayed positive corre-

lation with PRE (controlling TMP, Fig 3B). Conversely, negative correlation with TMP (con-

trolling PRE) were identified for the western part of the region. This negative correlation

reveals the effects of drought had combined with increased TMP and PET that resulted in

restricted vegetation growth.

The analysis also reveals that elevation has an influence on which climate variables were

important controls on NDVI. NDVI in low elevations in the eastern and southern parts of the

region were negatively correlated with TMX (controlling TMN), but were positively correlated

with TMN (controlling TMX) (Fig 3C and 3D). NDVI in the higher elevations in the central

part of the region were positively correlated with TMX (controlling TMN), but negatively cor-

related with TMN (controlling TMX). Partial correlation between WMI and NDVI (Fig 3E,

controlling CDI) displayed similar spatial pattern with Fig 3A, suggesting the temperature var-

iations below the threshold of 5˚C is less important in controlling the vegetation growth. The

Fig 1. The annual anomalies and linear slopes of A) mean annual temperature (TMP), B) mean annual daily

minimum temperature (TMN), C) mean annual daily maximum temperature (TMX), D) warmth index (WMI), E)

coldness index (CDI), F) total annual precipitation (PRE), G) total annual potential evapotranspiration (PET), H)

mean annual vapor pressure (VAP), I) mean annual cloud coverage (CLD), J) mean annual Normalized Difference

Vegetation Index (NDVI).

https://doi.org/10.1371/journal.pone.0264263.g001

Table 3. Correlation coefficients between climate variables and the principal components. PRC is principal regression coefficients of NDVI against the climate vari-

ables. NDVI columns are the Pearson and Spearman correlation coefficients between NDVI and climate variables.

Climate variables Principal Components PRC NDVI

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Pearson Spearman

TMP 0.962 0.199 -0.107 0.092 -0.069 -0.093 0.038 -0.053 0.242 0.258

TMN 0.933 0.303 -0.014 0.030 -0.034 -0.045 0.183 0.022 0.234 0.263

TMX 0.934 0.062 -0.210 0.162 -0.107 -0.146 -0.140 -0.142 0.237 0.226

WMI 0.919 -0.029 0.167 -0.054 -0.267 0.222 -0.022 0.194 0.230 0.187

CDI 0.781 0.243 -0.314 -0.007 0.466 0.119 -0.031 0.100 0.189 0.177

PET 0.860 -0.429 -0.118 -0.202 -0.111 0.026 -0.026 0.114 0.239 0.127

VAP -0.489 0.705 -0.196 0.433 -0.171 0.087 -0.021 -0.197 -0.245 -0.223

PRE -0.217 0.754 -0.081 -0.607 -0.088 -0.027 -0.034 0.326 0.222 0.137

CLD 0.515 0.353 0.761 0.082 0.140 -0.030 -0.051 0.094 0.244 0.248

Cumulative variance 0.601 0.776 0.867 0.938 0.980 0.992 0.998 - - -

Correlation coefficient� 0.349 means 0.05 level (2-tailed) significance.

Correlation coefficient� 0.448 means 0.01 level (2-tailed) significance.

https://doi.org/10.1371/journal.pone.0264263.t003
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insignificant role of coldness on controlling the vegetation growth was confirmed by non-sig-

nificant partial correlation coefficients between CDI and NDVI (controlling WMI, Fig 3F).

Discussion

Characteristics of climate change

This study expanded on the traditional understanding of regional climate warming, it also

revealed asymmetric climate warming characterized by higher trend in TMN than TMX. This

disparity results in decreased diurnal temperature range (TMX–TMN) [12,36]. As the daily

temperature minima is influenced by night time net radiation, increased TMN was likely

caused by increased night time cloud coverage. This observation coincides well with the posi-

tive trend of CLD found in this study (Table 2). The increase in CDI also coincided with winter

Fig 2. Pixilation trends in the Ordos study area: A) Spatial distribution of NDVI slope, B) significance of NDVI trend,

C) color composite of vegetation sensitivity to TMP (red), PRE (blue) and CLD (green), and D) R2 values of the

principal regression analysis.

https://doi.org/10.1371/journal.pone.0264263.g002

Table 4. The Land use (MODIS MCD12Q1) transition matrix of Ordos from 2001 to 2015 (km2).

2015

2001

Desert Cropland Grassland Shrubland Urban Wetland Unknown SUM (2001)

Desert 10047 2 2691 3 1 0 0 12745

Cropland 7 584 174 0 0 0 0 765

Grassland 194 239 73315 33 8 2 0 73791

Shrubland 0 0 3 0 0 0 0 3

Urban 0 0 0 0 86 0 0 86

Wetland 0 0 1 0 0 0 0 1

Unknown 2 0 1 0 0 0 8 10

SUM (2015) 10250 825 76184 36 95 2 8 87400

https://doi.org/10.1371/journal.pone.0264263.t004
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warming, which has been widely reported [37]. The thermal change points that took place in

1996 coupled with decreased CDI during post-1996 period coincide with the recovery of Sibe-

rian High intensity [38,39]. The significant change point of temperature-related variables may

also be related to 1997/1998 El Niño event [40–43].

This study revealed a positive but nonsignificant trend of PRE which is coincided with pre-

vious studies within the Loess Plateau [13] and in Northwest China [17]. Increased PRE may

have also driven increased actual ET through vegetation transpiration [21,44]. However, the

benefits of positive PRE trend are negated by significant rising PET, which was largely thermi-

cally driven. Higher PET caused the regional climate to shift towards warming and drying

trends. Consequently, the regional climate change could be summarized as warming and dry-

ing and influenced by larger scale climate dynamics such as the El Niño, Southern Oscillation

and the Siberian High intensity.

Fig 3. Spatial distribution of partial correction coefficients between NDVI and TMP (A, controlled PRE), NDVI and

PRE (B, controlled TMP), NDVI and TMX (C, controlled TMN), NDVI and TMN (D, controlled TMX), NDVI and

WMI (E, controlled CDI), NDVI and CDI (F, controlled WMI). The significance at 0.05 probability level is ±0.349.

https://doi.org/10.1371/journal.pone.0264263.g003

PLOS ONE Joint effects of climate change and human activities on regional vegetation dynamics.

PLOS ONE | https://doi.org/10.1371/journal.pone.0264263 November 4, 2022 9 / 14

https://doi.org/10.1371/journal.pone.0264263.g003
https://doi.org/10.1371/journal.pone.0264263


Vegetation dynamics

Over the past three decades, numerous national and local ecological restoration projects had

been implemented by the central and local governments of China. Examples of these national

projects include the Live-stocks Loading Balance and Award Program (starting from 2005),

and the Fencing Grassland and Moving Users project (enforced in 2002), Three North Shelter

Forest System Project (starting from 1979), the Grain for Green Program (starting from 1999),

and the Natural Forest Conservation Program (starting from 2000), in order to facilitate eco-

logical security [19,45] and sustainable development [24,46], resulting in the positive trends of

vegetation growth and regional actual evapotranspiration [21]. As a result of high variance of

NDVI in Ordos [47], annual scale climate variables displayed non-significant correlation with

NDVI (Table 3), which suggests there is a weak link between climate change and vegetation

dynamics over the past three decades [23]. Similarly, R2 values of the principal regression anal-

ysis were low (Fig 2D), suggesting the limited contribution of inter-annual climate variability

on vegetation dynamics. Previous studies also reported that the regional NDVI displayed

opposite trend with the prediction using climate variables as model inputs [23,48]. Moreover,

the vegetation resilience and the spatial distribution of vegetation types were accountable for

the non-significant inter-annual climate-vegetation relationship (Table 5). For example, half of

the plateau displayed positive correlation between precipitation and NDVI, whereas, weak cor-

relation coefficients were mainly distributed in Hobq Desert and the Mu Us Sandy Land [22].

Besides, some edaphic and topographic factors were accountable for the spatial distribution

of NDVI [53,54]. For example, the lithology of bedrock greatly affects vegetation cover and dis-

tribution in the Mu Us Sandy Land area, whereas, a high percentage farmlands and grasslands

with large NDVI values are mainly distributed on low-permeability strata, such as the Quater-

nary Lake and alluvial deposits [49]. Moreover, it is also likely that vegetation dynamics may

links to depletion of ground water [21], possibly leading to the rapid loss of regional lakes [55].

To further address the influence of human activity on climate-vegetation relationship, two

typical pixels with negative NDVI slope were selected. Land use change from 1984 to 2015 at

the 1st pixel (39˚41050.6@N, 109˚56020.45@E) displays the expansion of urban land and the 2nd

pixels were related to lake extinctions (40˚09044.46@N, 108˚27028.04@E). In addition, the Global

Human Influence Index Dataset of the Last of the Wild Project, Version 2, 2005 (LWP-2), was

used as a surrogate for human activities (data not shown). This dataset derived from nine

Table 5. Available studies on regional vegetation dynamics and its controlling factors.

Authors Temporal

Span

Data Sources Vegetation Trend Controlling Factors Human

effects

Ma et al. [22] 2000–2016 MODIS

MOD13Q1

Greening Humidity Positive

Zhang et al.

[19]

2001–2014 MODIS

MCD12Q1

Positive Co-work of climate and human activities Positive

Zhou et al.

[48]

1993–2000 GIMMS ndvi3g Negative Afforestation, Husbandry feeding reform Positive

Fang et al. [49] 1982–2000 Landsat-5 TM

GIMMS ndvi3g

Positive Geologic structure -

Dong et al.

[50]

2000–2010 Landsat TM Expanded forest land and farmland, reduced

grassland

Humidity, Grain to Green Project and Road

Density

Positive

Liu & Xin.

[51]

2000–2017 MODIS

MOD13A2

Positive Humidity and Human activities Positive

Sun et al. [52] 2000–2019 MODIS

NDVI

Positive Climatic factors and Afforestation Positive

https://doi.org/10.1371/journal.pone.0264263.t005
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global data layers covering human population pressure (population density), human land use

and infrastructure (built-up areas, nighttime lights, land use/land cover), and human access

(coastlines, roads, railroads, navigable rivers) [56] and had been applied to study the influence

of human activity on species distribution, biodiversity protection and vegetation activities

[15,57]. Preliminary investigation on the correlation between the the spatial distribution of

human influence index and NDVI trends suggests the positive role of human influences. Fur-

ther studies are needed to address the detailed information of the influence of human activity

on vegetation growth and dynamics.
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