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Abstract

Recent studies have shown the contribution of miRNAs to cancer pathogenesis. Prostate cancer is the most commonly
diagnosed cancer in men. Unlike other major types of cancer, no single gene has been identified as being mutated in the
majority of prostate tumors. This implies that the expression profiling of genes, including the non-coding miRNAs, may
substantially vary across individual cases of this cancer. The within-class variability makes it possible to reconstruct or infer
disease-specific miRNA-mRNA correlation and regulatory modular networks using high-dimensional microarray data of
prostate tumor samples. Furthermore, since miRNAs and tumor suppressor genes are usually tissue specific, miRNA-mRNA
modules could potentially differ between primary prostate cancer (PPC) and metastatic prostate cancer (MPC). We herein
performed an in silico analysis to explore the miRNA-mRNA correlation network modules in the two tumor subtypes. Our
analysis identified 5 miRNA-mRNA module pairs (MPs) for PPC and MPC, respectively. Each MP includes one positive-
connection (correlation) module and one negative-connection (correlation) module. The number of miRNAs or mRNAs
(genes) in each module varies from 2 to 8 or from 6 to 622. The modules discovered for PPC are more informative than
those for MPC in terms of the implicated biological insights. In particular, one negative-connection module in PPC fits well
with the popularly recognized miRNA-mediated post-transcriptional regulation theory. That is, the 39UTR sequences of the
involved mRNAs (,620) are enriched with the target site motifs of the 7 modular miRNAs, has-miR-106b, -191, -19b, -92a, -
92b, -93, and -141. About 330 GO terms and KEGG pathways, including TGF-beta signaling pathway that maintains tissue
homeostasis and plays a crucial role in the suppression of the proliferation of cancer cells, are over-represented (adj.p,0.05)
in the modular gene list. These computationally identified modules provide remarkable biological evidence for the
interference of miRNAs in the development of prostate cancers and warrant additional follow-up in independent laboratory
studies.
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Introduction

MicroRNAs (miRNAs) are short (,22nt), non-coding RNAs

derived from genome-encoded stem loop precursors. As the crucial

post-transcriptional regulators of gene expression in metazoans,

miRNAs primarily bind to the 39 UTR sequences of messenger

RNAs (mRNAs), usually resulting in translational repression or

mRNA degradation [1,2]. It is estimated that ,30% of human

protein-coding genes are regulated by miRNAs, where each

miRNA can target approximately 200 transcripts and more than

one miRNA can converge onto a single mRNA target [2,3].

Numerous studies have shown that aberrantly expressed miRNAs

are likely to contribute to human diseases, including cancer

[4,5,6,7,8,9]. However, these small RNAs could not be the

‘‘cancer-drivers’’ [10] in the majority of cancer cases because the

evidences for their mutations in sematic cells are still relatively rare

[11,12]. This indicates that miRNAs themselves may be regulated

by other molecules such as transcription factors [13] and, in turn,

cooperatively play roles in disease progression by amplifying or

reducing the impact of the aberrations occurring in proto-

oncogenes and tumor suppressor genes. It has been recognized

that the interference of miRNAs with tumorigenesis is quite

complicated and needs to be scrutinized by the network-based

systems biology approaches.

To date, a number of algorithms have been developed to infer

miRNA-mRNA modules or modular networks using the genome-

wide transcription and sequence affinity information

[14,15,16,17]. Despite the diverse algorithmic designs and

computational complexities, the flow schemes of these methods

are fairly explicit and the definitions of a miRNA-mRNA module

carry similar characteristics. A fundamental module generally

consists of a set of co-expressed protein-coding genes and a
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miRNA which is significantly correlated with these genes in the

expression level, or is a top predictor (among other regulators) for

the mRNA-set-determined classification trees of the biological

samples/‘‘conditions’’ [18,19,20]. Such a one-to-many type of

module can then be refined into a canonical miRNA-mRNA

regulatory module where the expressions of miRNAs and mRNAs

are in inverse relationship, and the complementary motifs of the

miRNAs’ seed sequences exist in the 39UTRs of the target genes

(mRNAs). Two or multiple one-to-many modules can further be

combined into a many-to-many module by identifying their

intersections [16].

Prostate cancer is the most commonly diagnosed cancer and the

second leading cause of cancer mortality in American men. Every

year, more than 200,000 new cases are diagnosed and over 30,000

adult males die from this disease [21]. Fatal outcome often occurs

when the local tumor infiltration has spread beyond the prostate

gland and metastasized to lymph nodes and other organs. Unlike

other major types of cancers, the genetic etiology of prostate

cancer is rather complex and heterogeneous. No single gene

mutation has been pinpointed in the majority of prostate tumors

[12,22,23]. This implies that the expression profiling of genes,

including non-coding miRNAs, may substantially vary across

individual cases in different stages or subtypes of prostate cancer.

The within-class variability, i.e. variability primarily due to the

intrinsic differences in molecular genetic mechanism among

sampled individuals of the same class, makes it possible to

reconstruct or infer the disease specific correlation and regulatory

(modular) networks using the high-dimensional microarray data of

prostate tumor samples. In particular, because miRNAs and

tumor suppressor genes are usually tissue specific [23,24], miRNA-

mRNA modules potentially differ between primary prostate

cancer (PPC) and metastatic prostate cancer (MPC). Our study

thus initiated from this perception and centered on the in silico

identification and comparison of miRNA-mRNA modules in PPC

and MPC. A recently released comprehensive database [12]

provided us the required information for such a bioinformatics

investigation. The obtained results provide remarkable biological

insight into the interference of miRNAs in the development of

prostate cancers. Figure 1 summarizes the scheme of our study

flow, and the details of each step are described in the Results and

Method sections.

Results and Discussion

SVD Analysis of miRNA-mRNA Interaction Matrices
Before inferring the miRNA-mRNA network modules for PPC

and MPC, we tried to obtain a general understanding of the

differences between those two correlation matrices calculated from

Figure 1. The schematic presentation of the study flow.
doi:10.1371/journal.pone.0040130.g001
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the miRNA/mRNA expression levels of the primary and

metastatic tumor samples, respectively (see the Method section

for details). However, due to the enormous number of potential

miRNA-mRNA regulatory or co-expressed relationships and the

complicated interplay among them, together with the noises

introduced into the sampling and measurement process, the

pairwise comparison of the corresponding matrix elements was too

trivial to reach a conclusion. We circumvented this obstacle by

employing a novel method. More specifically, we treated each

correlation matrix as a pseudo dataset with the rows (mRNAs) as

Figure 2. The singular value decomposition (SVD) analysis of miRNA-mRNA transcriptional correlation matrices. Before the
decomposition, Pearson correlation coefficients were transformed with Fisher’s r-z method. A1/B1/C1: the results obtained from the primary
prostate cancer (PPC) samples. A2/B2/C2: the results obtained from the metastatic prostate cancer (MPC) samples. A3/B3/C3: the results obtained
from a random data structure generated by shuffling the PPC matrix.
doi:10.1371/journal.pone.0040130.g002
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‘‘observations’’ and the columns (miRNAs) as ‘‘features’’, and

characterized it by conducting SVD (Singular Value Decompo-

sition) analysis [25,26,27,28]. Considering the values of correlation

coefficients were in the range of [-1, 1], we transformed the matrix

entries using Fisher’s r-z method prior to the decomposition so that

the results can be explained by the standard statistical theory.

This analysis led to two interesting findings. First, for both PPC

and MPC correlation matrices, the leading latent factor can

explain over half of the variance in data (Figure 2-A1, -A2), and

the scores (in the first left singular vector) across genes (Figure 2-
B1, -B2) show a clear two-peak distribution. Second, the PPC

matrix differs from the MPC matrix by a substantial second latent

factor that explains ,20% of the variance and has an asymmetric

score (in the second left singular vector) distribution (Figure 2-
C1), which deviates from the symmetric counterpart for MPC

(Figure 2-C2). The strength of this analysis is further highlighted

by the fact that the observed patterns are not present in a random

data set as shown in Figure 2-A3, -B3 and C3, where SVD

analysis was conducted on a matrix generated by shuffling the

rows and columns of the PPC matrix. While the biological

implications need to be further investigated, these findings

preliminarily confirmed our initial hypothesis that the dynamic

interference of miRNAs in those two types of prostate cancer can

be different and worth further exploration.

It is worth noting that, in preparing Figure 2, we used the

information of 58 cancer miRNAs collected in [7]. However, the

presented results largely held when the SVD analysis was

conducted on the entire datasets (matrices). In addition, we

recognize that the differences between the PPC and MPC can be

determined by a core set of miRNAs. This perception is based on

an additional analysis which showed that the patterns demon-

strated in Figure 2 also held on the sub-matrices with only the

tumor suppressor miRNAs, but not on the sub-matrices containing

the oncogene miRNAs exclusively. We will continue to investigate

this problem in future research.

miRNA-mRNA Modules in different Prostate Cancer
Subtypes

Two miRNA-mRNA networks (PN and MN) were generated by

a correlation-based method for PPC and MPC, respectively. In

order to focus the analysis on the cancer-related miRNAs, the

dimensions of PN and MN were further reduced as presented in

the Method section. With the condensed networks as inputs, major

cancer-related miRNA-mRNA modules were identified by a

clustering analysis-based algorithm. Within an individual module,

each miRNA or mRNA has at least two connections with the

corresponding modular mRNAs or miRNAs.

As summarized in Table 1, Figure 3 and Figure 4, we

identified 5 miRNA-mRNA module pairs (MPs) for PPC and

MPC, respectively. Each MP includes one positive-connection

(correlation) module and one negative-connection (correlation)

module. The number of miRNAs or mRNAs (genes) in each

module varies from 2 to 8 or from 6 to 622. Most of the modules

contain the sequence-specific DNA binding transcription factor

(TF) genes [29] that may take roles as the mediators for the

miRNA-mRNA connections. The two members (such as p-modu-

Table 1. The summary of miRNA-mRNA correlation-network modules.

Modulea Gene number Number of TF genesb miRNAc

p-modu-1-ps 542 39 -1, -143, -145, -221, -222

p-modu-1-ne 113 7 -1, -143, -145, -221, -222

p-modu-2-ps 466 50 -181c, -224, -24, -27a

p-modu-2-ne 92 8 -181c, -224, -24, -27a

p-modu-3-ps 233 6 -7a, -7d, -7f, -7g, -7i, -126, -195, -98

p-modu-3-ne 6 0 -7a, -7d, -7f, -7g, -7i, -126, -195, -98

p-modu-4-ps 350 26 -146a, -150, -223

p-modu-4-ne 38 5 -146a, -150, -223

p-modu-5-ps 145 11 -106b, -141, -19a, -19b, -200c, -92a, -93

p-modu-5-ne 622 47 -106b, -141, -19a, -19b, -200c, -92a, -93

m-modu-1-ps 81 2 -17, -20a, -20b

m-modu-1-ne 15 0 -17, -20a, -20b

m-modu-2-ps 173 7 -200a, -200b

m-modu-2-ne 382 6 -200a, -200b

m-modu-3-ps 115 5 -15a, -26a, -29c

m-modu-3-ne 123 0 -15a, -26a, -29c

m-modu-4-ps 92 4 -7a, -7d, -7e, -7f, -98

m-modu-4-ne 138 2 -7a, -7d, -7e, -7f, -98

m-modu-5-ps 86 3 -107, -26b

m-modu-5-ne 182 3 -107, -26b

aThe modules in primary prostate cancer (PPC) or metastatic prostate cancer (MPC) are marked with the prefix ‘‘p-’’ or ‘‘m-’’. The positive or negative-connection
modules are marked with the extension ‘‘-ps’’ or ‘‘-ne’’. b Only the sequence-specific DNA binding transcription factors were counted. The TF genes have been annotated
to one of the five GO terms: GO: 0003700 (sequence-specific DNA binding transcription factor activity), GO: 0003702 (RNA polymerase II transcription factor activity), GO:
0003709 (RNA polymerase III transcription factor activity), GO: 0016563 (transcription activator activity), and GO: 0016564 (transcription repressor activity). c The prefix
‘‘hsa-miR’’ are omitted in the IDs. For a miRNA, the statistical significance of the target site enrichment level in the list of the correlated modular genes was measured by
the Fisher’s exact test in reference to the level of the entire gene set. The red bold font indicates p-value ,0.01.
doi:10.1371/journal.pone.0040130.t001
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1-ps and p-modu-1-ne in PPC) of each MP contain the same

miRNAs but different mRNAs. Two modules of distinct MPs

(such as p-modu-1-ps and p-modu-2-ps in PPC) consist of different

miRNAs and varied (or partially overlapped) mRNA sets. Within

a positive or negative-connection module (with ‘‘-ps’’ or ‘‘-ne’’

extension in the IDs), the correlations of the involved miRNAs

and mRNAs at the expression levels are consistently positive or

negative. Regardless of the connection type, the mRNA set in

each module largely imitates a co-expressed gene cluster. Besides

the four modules of the two MPs (p-modu-3-ps (-ne) and m-modu-4-

ps (-ne)) in which most miRNAs belong to the let-7 family, the

modules for MPC hardly overlap with the modules for PPC in

terms of the involved miRNAs (Table 1) and protein-coding

genes (Table S1). Advanced insights regarding the differences

between PPC and MPC can be further inferred by a scrutiny of

the biological implications of the identified modules.

Here we need to point out that the identified modules are not

necessarily the canonical regulatory modules in which all the

connections between miRNAs and genes are determined by the

causal regulator-target relationships [30]. In fact, due to the

unsolved problem in accurately recognizing the miRNA target

sites [2], it is challenging to identify a nontrivial and exact

canonical regulatory module. Nonetheless, we can expect to find a

less strict regulatory module, called a ‘‘semi-canonical’’ regulatory

module hereafter, where the relationship potentially determined

by the miRNA-mediated mRNA degrading mechanism is

predominant among the miRNA-mRNA connections. Based on

this widely-accepted theory, semi-canonical regulatory modules, if

exist, should be among the negative-connection modules, and then

can be determined by the target site enrichment analysis. We did

this exploration by establishing the miRNA-mRNA sequence

affinity matrix and conducting Fisher’s exact test (see the Method

section). As a result, we found that p-modu-5-ne, a module identified

Figure 3. Identifying miRNA-mRNA correlation-network modules in primary prostate cancer (PPC) by the hierarchical clustering
algorithm. Red: the top 1% positive correlations. Yellow: the top 1% negative correlations. Orange: pseudo or unconsidered correlations.
doi:10.1371/journal.pone.0040130.g003
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for PPC, was the only semi-canonical module where the 39UTR

sequences of the involved 622 mRNAs were significantly enriched

(p,1.0E24) with the target site motifs of the 7 modular miRNAs

(hsa-miR-106b, -200c, -19b, -92a, -92b, -93, and -141) (Figure 5).

This module, therefore, represents the most significant difference

between PPC and MPC in terms of the observed miRNA-mRNA

correlations. It suggests that the post-transcriptional regulation

mediated by the documented cancer miRNAs directly contribute

to the expression variability of the protein-coding genes across the

tumor samples for PPC but not for MPC.

The implications of the identified modules need to be further

inferred through the functional annotations of the modular genes,

since there is a great biomedical interest in elucidating the

relationships between the activity of modular miRNAs, as

regulators or biomarkers, and the variability of the specific

biological processes. Using the David database [31], we found that

over 330 GO terms and KEGG pathways, including the TGF-

beta signaling pathway, were over-represented (BH adj.p,0.05)

with the 622 genes of the semi-canonical module p-modu-5-ne. The

genes within other individual modules also demonstrated the

significant functional similarity. For example, m-modu-4-ne, a

negative-connection module discovered for MPC, was enriched

with the genes in the GO:0007186,G-protein coupled protein

signaling pathway (BH adj.p = 1.14E240). Table S2 summa-

rized the functional enrichment analysis results of the modular

genes.
We also examined the differences between these two prostate

cancer subtypes by studying the distributional profile of the

KEGG pathways over-represented in the individual modular gene

set. As shown in Figure 6, module p-modu-4-ps for PPC is unique

among the identified modules regarding the functions of the

modular genes. About two dozen of the pathways, such as type I

Figure 4. Identifying miRNA-mRNA correlation-network modules in metastatic prostate cancer (MPC) by the hierarchical clustering
algorithm. Red: the top 1% positive correlations. Yellow: the top 1% negative correlations. Orange: pseudo or unconsidered correlations.
doi:10.1371/journal.pone.0040130.g004
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diabetes mellitus, are over-represented in its gene list and most of

them are related to disease process and/or immune response.

Three miRNAs (hsa-miR-146a, -150 and -223) are included in this

module. The involvement of miR-146a in the immune response

has been widely investigated. [32] showed that miR-146a is a

modulator of IL-2 and activation-induced cell death in lympho-

cytes. [33] reported that it mediates an inflammatory circuit in

Alzheimer disease and stressed human brain cells. Another study

[34] also demonstrated that HSV-1 infection in human brain cell

can induce the expression of miR-146a. Apparently, these findings

not only indicate that miR-146a takes a functional role in immune

response as a regulatory factor, but also suggest that its dynamic

activity (expression), in some specific contexts, may just serve as

the passenger of disease and/or immune processes [10]. This is

exactly the main message conveyed by the module p-modu-4-ps

where the positive correlations between the modular miRNAs and

genes could not be simply explained by a regulator-target

mechanism.

Olfactory receptors (ORs) are expressed not only in the sensory

neurons of the olfactory epithelium, but also in various other

tissues where their potential functions are largely unknown. In a

recent publication, the authors reported that the activation of an

olfactory receptor (PSGR) inhibits proliferation of prostate cancer

cells [35]. The results from our analysis show that olfactory

transduction (pathway) is over-represented in the gene list of 4

major modules (m-modu-2-ne, m-modu-3-ne, m-modu-4-ne, m-modu-5-

ne) in MPC (Figure 6). The involved miRNAs include hsa-miR-

200a/-200b, hsa-miR-15a/26a/29c, hsa-miR-7a/-7e/-7f/-98,

and hsa-miR-107/-26b. Although the miRNA set in p-modu-3-ps

(-ne) largely overlapped with that in m-modu-4-ne, no module in

PPC has a functional relationship with olfactory conduction.

Therefore, we speculate that the activation of PSGR and the

(direct or indirect) association with miRNAs are only confined to

MPC.

Focal-adhesion kinase (FAK) is an important mediator for

growth-factor signaling, cell proliferation, cell survival and cell

migration. Mouse models have shown that FAK expression is

increased in human tumors [36]. A recent study demonstrated

that focal adhesion controls prostate cancer progression [37]. In

this study, we found that miRNAs interfere in the transduction of

FAK signaling, thus may take roles in cancer development. As

shown in Figure 6, focal adhesion (together with 6 related

KEGG pathways such as ECM-receptor interaction) is over-

represented in the gene lists of 3 major modules identified for

PPC (p-modu-1-ps, p-modu-2-ps, p-modu-5-ne). Opposite to the cases

of olfactory transduction for MPC, the association of by a

hierarchical clustering algorithm FAK signaling with miRNAs

seems limited to PPC. These findings indicate another major

difference between the two cancer subtypes. Experimental

investigation on this issue could be promising for the diagnosis

of prostate cancer.

Potential Interference of miRNAs in TGF-beta Signaling
Pathway

The transforming growth factor-beta (TGF-beta) maintains

tissue homeostasis and plays a crucial role in the suppression of

the proliferation of cancer cells [23,38]. As mentioned above,

the TGF-beta signaling pathway is over-represented in the gene

(mRNAs) set of the semi-canonical regulatory module, p-modu-5-

ne. Of the 622 modular genes, a dozen of them encode proteins

in the pathway. These 12 genes demonstrate 56 negative-

connections with the 7 modular miRNAs, and nearly one third

of the connections are compatible with the potential regulator-

target relationships determined by the sequence affinity infor-

mation (Figure 7). Based on this finding and the theories

described in [23] (pages 198–224), we generated a hypothesized

model (Figure 8) to show the interference of the modular

miRNAs with the TGF-beta signaling and the proliferation of

cancer cells. In Figure 8, the genes negatively correlated with

the miRNAs in the modular network are highlighted in red.

Gene CDKN1A is also marked in red because of its significant

negative correlations (p,0.001) with hsa-miR-93, -106b and

Figure 5. miRNA target site enrichment analysis for module p-modu-5-ne.
doi:10.1371/journal.pone.0040130.g005
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2200c at the expression level. Genes E2F5, CMYC (MYC) and

CDK4 show an apparent pattern of positive transcriptional

correlations with the modular miRNAs and are highlighted in

yellow. The relationships presented in Figure 8 suggest that the

modular miRNAs interfere with the disease process of the

primary prostate cancer by an oncogenic mechanism in the

measured PPC samples. More specifically, the expression of

those miRNAs inversely regulates the transcript intensity of two

GF-beta genes, TGFBR1 and TGFBR2, and a cancer

suppression gene SMAD3. Then, through the activation or

inactivation of the Smad2-3/Smad4/E2f complex, this effect is

reflected on the expression levels of CDKN1A and CMYC, and

finally influences the cell cycle arrest and cell proliferation

inhibition.

Expression Variability of miRNAs in Module p-modu-5-ne
As discussed above, in p-modu-5-ne, the identified miRNAs

directly regulate the transcript intensities of the modular mRNAs

in the PPC samples. In this regard, it is important to elucidate the

etiology of the biological variability (across tumor samples) of the

miRNA expression levels that determine the miRNA-mRNA

connections. First, we noted that most of the identified miRNAs,

including hsa-miR-19b, -92a, -93 and -106b, have been reported as

the targets of the transcription factors of the E2F family [13,39].

Meanwhile, we also observed the positive connections between these

miRNAs and E2F5 at the expression levels (Figures 8 and 9).

Therefore, there was a possibility that the biological variability of the

miRNAs was due to the regulation by E2F5. However, such a

mechanism needs to be further investigated since the actual picture

of the regulation and/or mutation of the TF gene itself is still not

clear. Next, we asked if the modular miRNA expression levels were

related to the progression of prostate cancer. To investigate this

Figure 6. Over-represented KEGG pathways in the individual modular gene sets of 10 major miRNA-mRNA modules discovered
for primary prostate cancer (PPC) or metastatic prostate cancer (MPC). The ordinary p-values were adjusted with BH method.
doi:10.1371/journal.pone.0040130.g006
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issue, we grouped the 98 PPC samples on the expression levels of the

7 modular miRNAs by a hierarchical clustering algorithm and

compared the result with the Gleason score-based classes. No

association was found between the two partitions. Finally, we

proposed and tested a hypothesis that the biological variability of the

miRNAs was sourced from the regulation by the protein-coding

genes (including cancer genes) on which mutations sporadically

occurred in individual tumor samples. By clustering analysis, we

firstly generated two partitions of the 98 PPC samples, respectively

based on the expression levels of all the 7 module miRNAs and the

transcript intensities of 34 potential cancer-driving genes in the

tumor samples as shown in the figure-1 of [12]. Then by a Chi-

square test, we found the association between the two partitions was

extremely significant (p,0.001), indicating our hypothesis can be

confirmed in this way.

Materials and Methods

Data Sets
The microarray data was published in the Gene Expression

Omnibus (GEO, a MIAME compliant database) repository with

accession number GSE21032 [12,40]. Among the 218 biological

samples included in the super-series, 98 primary tumors, 13

metastatic tumors and 28 normal prostate tissue samples (N

= 139) have both miRNA and mRNA expression profiles.

Rigorous criteria have been applied in selecting tumors for the

genomic analysis [12]. The gene (mRNA) expression profiles

were measured with Affymetrix Human Exon 1.0 ST Array

[probe set (exon) version], and the images were quantified using

the GeneChip Operating Software (GCOS) version 1.4. The

Raw data were processed by Aroma Affymetrix. The standard

RMA background adjustment and quantile normalization were

performed. The miRNA expressions were measured on the

platform of Agilent-019118 Human miRNA Microarray 2.0

G4470B, and the images were quantified using Agilent Feature

Extraction version 9.5. The data were normalized with between-

array variance stabilization normalization (VSN) after excluding

the microRNAs not present in over 80% of the profiled samples.

In this study, the mRNA data (the downloaded Series Matrix

File) was further simplified by following procedure. First, we

adapted the gene expression values that originally centered on

Affymatrix_Exon_Gene_IDs (Affy_IDs) to the official gene

symbols by calculating the mean for a gene with two or multiple

Affy_IDs. Second, the adapted gene expression values were

transformed into log2 scale. Finally, we filtered out the genes that

lack of expression variability across the 139 arrays. With a cutoff

of a two-fold change from the maximum expression intensity to

the minimum one, , 5730 genes passed the filter. Therefore, the

final miRNA datasets contains 5730 genes and 377 miRNAs.

While the information of the 28 normal tissue samples was

considered in the data preprocessing to dilute the potential noise

in the microarray experiments, we focused on the PPC and MPC

samples in the following SVD analysis and miRNA-mRNA

module identification.

Computation of miRNA-mRNA Correlation Matrices
We used a computationally intensive method to estimate the

expression correlation between a miRNA and an mRNA. The

calculation of Pearson correlation was repeated 1000 times. In

each run, 80% of the randomly-selected PPC or MPC samples

Figure 7. Modular miRNA-mRNA network for TGF-beta signaling pathway. The sub-network was extracted for modules p-module-5-ne(ps).
All the connections except for those related to E2F5 are negative. Signal + indicates that at least one miRNA-target-site motif exists in the 39 UTR
sequence of the connected mRNA (gene).
doi:10.1371/journal.pone.0040130.g007
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were involved. The final estimation was obtained by averaging the

results over the 1000 replications.

Generation of miRNA-mRNA Correlation Networks
We respectively generated two miRNA-mRNA correlation

networks, PN and MN, for PPC and MPC by discretizing the

expression correlation matrices with 5730 genes (mRNAs) as rows

and 377 miRNAs as columns. More specifically, we filled in both

matrices with 1 for the top 1% of the positive miRNA-mRNA

correlations, -1 for the top 1% of the negative correlations, and 0

for the rest of the entries. Thus, a non-zero element represents a

positive or negative correlation for a pair of miRNA and mRNA.

A correlation defined in such a way corresponds to a miRNA-

mRNA connection with the BH adjusted p-value ,0.008 (or

,0.065) for PPC (or MPC).

Identification of miRNA-mRNA Modules
Both discretized correlation matrices were condensed by

excluding the miRNAs lack of recorded relationships with cancers

and the genes of no connection with the cancer-related miRNAs.

That is, the columns corresponding to the miRNAs not included in

the documented list in [7] were firstly removed, and then the rows

(genes) which did not contain at least two non-zero entries were

excluded. The condensed PN and MN thus contain 58 columns,

and 1792 and 1340 rows, respectively. With the refined network

matrices as inputs, two heatmaps were generated respectively for

Figure 8. The interference of miRNAs in module p-module-5-ne in TGF-beta signaling pathway. The genes which have negative
connections with the miRNAs in the modular network are shaded with red. Gene CDKN1A (albeit not in the module gene list) is also shaded with red
because of the significant negative correlations (p,0.001) with hsa-miR-93, -106b and -200c at the expression level. Genes E2F5, MYC (CMYC) and
CDK4, demonstrating an apparent pattern of positive transcriptional correlations with the modular miRNAs (Figure 9), are shaded with yellow.
doi:10.1371/journal.pone.0040130.g008
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PPC and MPC by applying the function ‘‘heatmap.2’’ in the R

package ‘‘gplots’’. The layout of miRNAs and mRNAs in the

heatmaps were based on a two-way hierarchical clustering analysis

with Manhattan distance and Ward method as the arguments.

Taking PPC as an example (Figure 3), we identified the miRNA-

mRNA modules via the following three steps. (1) Based on the

dendrogram and the miRNA-mRNA connection patterns shown

on the heatmap, five modular miRNA subsets (clusters) were

visually determined. (2) For each of the miRNA subsets, the

positive or negative connections with mRNAs were collected into a

couple of 2-column topology matrices, respectively. (3) A miRNA-

mRNA module pair was identified from the outputs of step (2)

after dropping the mRNAs with only one (positive or negative)

connection. Figures of the modular networks were produced by

Cytoscape 2.8.1 [41].

Target Site Enrichment Test
Using a lab-owned R program with the core being the

matchPattern() function in the Bioconductor Biostrings [42,43], we

identified the 7-mer and 8-mer miRNA target site motifs on the 39

UTR sequences (retrieved from hg-18) of the genes measured in

the employed microarray data. The binary miRNA-mRNA

sequence affinity matrix (A) was then generated in a way such

that an element (Aij) of value 1 indicated the existence of target site

motif (s) for the jth miRNA in the 39 UTR sequence of the ith

mRNA. For a miRNA, the statistical significance of the target site

enrichment level in the list of the correlated modular genes was

measured by the Fisher’s exact test in reference to the level of the

entire gene set.

Figure 9. The transcriptional correlations of miRNAs in modules p-module-5-ne (ps) with TGF-beta signaling pathway downstream
genes. The number presented on each cell is the p-value of the correlation for the corresponding miRNA and mRNA (gene).
doi:10.1371/journal.pone.0040130.g009
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Supporting Information

Table S1 The summary of miRNA-mRNA correlation-
network modules.
(TXT)

Table S2 The summary of functional enrichment anal-
ysis of gene lists in the identified miRNA-mRNA
correlation-network modules. The BH adjusted p-values

are listed. NA indicates that adj.p is .0.05 or no gene in the

module has been annotated to the GO terms (or the KEGG

pathway).

(TXT)
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