
REVIEW
published: 28 April 2020

doi: 10.3389/fcimb.2020.00185

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1 April 2020 | Volume 10 | Article 185

Edited by:

Philip R. Hardwidge,

Kansas State University, United States

Reviewed by:

Sabrina Mühlen,

University of Münster, Germany

Christian Rueter,

University Hospital Münster, Germany

*Correspondence:

Shan Li

lishan@mail.hzau.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Bacteria and Host,

a section of the journal

Frontiers in Cellular and Infection

Microbiology

Received: 18 February 2020

Accepted: 07 April 2020

Published: 28 April 2020

Citation:

Pan X, Luo J and Li S (2020)

Bacteria-Catalyzed Arginine

Glycosylation in Pathogens and Host.

Front. Cell. Infect. Microbiol. 10:185.

doi: 10.3389/fcimb.2020.00185

Bacteria-Catalyzed Arginine
Glycosylation in Pathogens and Host

Xing Pan 1,2,3†, Jie Luo 1† and Shan Li 1,2,3*

1 Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China, 2College of Biomedicine and

Health, Huazhong Agricultural University, Wuhan, China, 3College of Life Science and Technology, Huazhong Agricultural

University, Wuhan, China

In recent years, protein glycosylation in pathogenic bacteria has attracted more and

more attention, and accumulating evidence indicated that this type of posttranslational

modification is involved in many physiological processes. The NleB from several

enteropathogenic bacteria species as well as SseK from Salmonella enterica are

type III secretion system effectors, which have an atypical N-acetylglucosamine

(N-GlcNAc) transferase activity that specifically modified a conserved arginine in

TRADD, FADD, and RIPK1. NleB/SseKs GlcNAcylation of death domain proteins

abrogates homotypic and heterotypic death receptors/adaptors interactions, thereby

blocking an important antimicrobial host response. Interestingly, NleB/SseKs could also

GlcNAcylate themselves, and self-GlcNAcylation of NleB, SseK1, and SseK3 are crucial

for their biological activity during infection. In addition, EarP (EF-P specific arginine

rhamnosyl transferase for Posttranslational activation) catalyzes arginine rhamnosylation

of translation elongation factor P (EF-P). Importantly, this kind of N-linked protein

glycosylation is not only important for EF-P dependent rescue of polyproline stalled

ribosomes but also for pathogenicity in Pseudomonas aeruginosa and other clinically

relevant bacteria. Glycosylation of arginine is unique because the guanidine group of

arginine has a high acid dissociation constant value and representing an extremely poor

nucleophile. Recently, the crystal structures of NleB, SseKs, EarP, arginine GlcNAcylated

death domain-containing proteins, NleB/FADD-DD, and EarP/EF-P/dTDP-β-L-rhamnose

were solved by our group and other groups, revealing the unique catalytic mechanisms.

In this review, we provide detailed information about the currently known arginine

glycosyltransferases and their potential catalytic mechanisms.

Keywords: arginine glycosylation, T3SS effectors, death receptor signaling, NleB, SseK, EarP, posttranslational

modification, glycosyltransferase

INTRODUCTION

Glycosylation is one of the most abundant and complex posttranslational modifications of proteins
and involved in diverse processes such as cell differentiation and growth, signaling cascades,
tumorigenesis, as well as host-pathogen interactions (Haltiwanger and Lowe, 2004; Marth and
Grewal, 2008; Lu et al., 2015; Stowell et al., 2015). Additionally, glycosylation affects protein
properties including stability, folding, and solubility (Moremen et al., 2012). Glycosyltransferases
(GTs) are enzymes that establish natural glycosidic linkages, which catalyze the transfer of a sugar
moiety from a glycosyl donor to a substrate, and are classified on the basis of their structure as
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GT-A, GT-B, GT-C, or GT-D fold (Lairson et al., 2008; Gloster,
2014; Zhang et al., 2014; Liang et al., 2015; Park et al., 2018). The
GT-A type GT is composed of two β/α/β Rossmann domains,
and the two domains are closely interlinked. Out of this, GT-A
enzymes possess a conserved Asp-X-Asp (X is any amino acid)
motif in which the carboxylates coordinate Mn2+/Mg2+. Just as
the GT-A type, the structure of GT-B enzymes is made up of
two β/α/β Rossmann-like domains as well. However, in contrast
with the architecture of GT-A enzymes, the two β/α/β Rossmann
domains in GT-B are linked flexibly. In addition, the metal
ions are not required in GT-B enzymes either. The GT-C fold
enzymes have numbers of transmembrane helices, and they also
have a long-loop region within an active site. One study showed
that DUF1792 has a Rossmann-like fold, but the sequence and
structure are quite different with the currently annotated type
GT-A, GT-B, or GT-C folds, which is why it was defined as a
GT-D glycosyltransferase fold.

According to the glycosidic linkage, protein glycosylation
can also be divided into O-linked or N-linked glycosylation
(Jensen et al., 2012; Rojas-Macias et al., 2019). Typically, O-
linked glycans are conjugated to the hydroxyl oxygen of serine
and threonine (Van Den Steen et al., 1998; Yang and Qian,
2017). In contrast, N-linked glycans are usually linked to the
amide side chain of an asparagine residue in an N-X-S/T (X
can be any amino acid, but not proline) motif (Shakin-Eshleman
et al., 1996; Mellquist et al., 1998). Unlike with the popular
and fully understood N-linked glycosylation of asparagine,
N-acetylglucosaminylation (N-GlcNAcylation) that occurs on
arginine is quite rare, and the special molecular mechanism
of arginine N-GlcNAcylation is completely unknown. It has so
far only three reported cases of arginine glycosylation. Self-
β-arginine glycosylation was discovered first in sweet corn
protein amylogenin in 1995 (Singh et al., 1995). However,
there have been no follow up reports. Secondly, the NleB from
several enteropathogenic bacteria species as well as SseK from
Salmonella enterica are type III secretion system (T3SS) effectors,
which were shown to inactivate host death receptors/adaptors
by an unprecedented N-GlcNAcylation of a conserved arginine
(Li et al., 2013; Pearson et al., 2013). NleB/SseK manipulate
host death receptor signaling pathways facilitate the pathogens
infection and evade host immune defenses. NleB homologs are
present in pathogenic Escherichia coli, Citrobacter rodentium
(NleBc), and S. enterica (SseK1/2/3) (Deng et al., 2004; Araujo-
Garrido et al., 2020). It should be noticed that enteropathogenic
and enterohemorrhagic E. coli (EPEC and EHEC) have two
copies of NleB, termed NleB1 and NleB2, and share about 61%
amino acid sequence homology (Perna et al., 2001; Iguchi et al.,
2009). In addition, EPEC NleB1, EPEC NleB2, EHEC NleB1,
EHEC NleB2, SseK1, SseK2, and SseK3 is about 89, 60, 89, 60,
57, 53, and 52% identical to C. rodentium NleB, respectively
(Araujo-Garrido et al., 2020). Interestingly, when compared with
NleB1/NleBc/SseK1/3, NleB2, and SseK2 possessed a much lower
GlcNAcylation activity (Li et al., 2013; Pearson et al., 2013; El
Qaidi et al., 2017; Gunster et al., 2017; Newson et al., 2019). In
the third case, a conserved arginine of the bacterial translation
elongation factor P (EF-P) is rhamnosylated by EarP (EF-
P specific arginine rhamnosyl transferase for Posttranslational

activation) (Lassak et al., 2015; Rajkovic et al., 2015; Yanagisawa
et al., 2016). Notably, this unique modification is important
for EF-P dependent rescue of polyproline stalled ribosomes in
clinically relevant bacteria such as Pseudomonas aeruginosa and
Neisseria meningitides (Lassak et al., 2015; Yanagisawa et al.,
2016). Moreover, several studies have shown that EF-P and
EarP contribute to the pathogenicity of P. aeruginosa and N.
meningitidis by controlling the translation of proline stretch-
containing proteins critical for modulating motility, antibiotic
resistance, and other traits that play key roles in establishing
virulence (Lassak et al., 2015; Rajkovic et al., 2015; Yanagisawa
et al., 2016).

Here we provide a summary of bacterial arginine
glycosyltransferases and their targets in recent research progress,
the unique catalytic mechanisms for arginine glycosylation are
discussed as well.

ARGININE N-ACETYLGLUCOSAMINE
TRANSFERASE IN PATHOGENIC E. COLI

AND C. RODENTIUM

EPEC is an attaching/effacing (A/E) pathogen that usually leads
to severe watery diarrhea, which remains a serious health issue
in developing countries (Kotloff et al., 2013). A related E.
coli pathotype, EHEC, is the predominant pathogen of bloody
diarrhea and hemolytic uremic syndrome (HUS) (Nguyen and
Sperandio, 2012). These human bacterial pathogens, together
with C. rodentium, a natural murine intestinal bacterium that
behaved as the related human pathogens EPEC and EHEC,
usually translocate a core set of effectors into host cells to
antagonize host defense (Gaytan et al., 2016; Pearson et al., 2016;
Pinaud et al., 2018; Shenoy et al., 2018).

Pathogenic E. coli and C. rodentium T3SS effectors, such as
Tir (Ruchaud-Sparagano et al., 2011), EspL (Pearson et al., 2017),
NleB (Nadler et al., 2010; Newton et al., 2010), NleC (Yen et al.,
2010; Baruch et al., 2011; Muhlen et al., 2011; Pearson et al., 2011;
Shames et al., 2011; Sham et al., 2011), NleD (Baruch et al., 2011;
Creuzburg et al., 2017), and NleE (Nadler et al., 2010; Newton
et al., 2010; Zhang et al., 2011), all of which could manipulate the
host innate immune system, including the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) signaling and
death receptor signaling, via several different mechanisms. It
should be noticed that NleB is required for virulence of C.
rodentium in vivo (Kelly et al., 2006; Wickham et al., 2006). More
importantly, several studies suggested that NleB, to some extent,
is associated with the prevalence of human EHEC outbreaks and
the outcome of infection (Wickham et al., 2006).

In 2010, Nadler et. al and Newton et. al reported that both
NleE and NleB could inhibit NF-κB activation (Nadler et al.,
2010; Newton et al., 2010). However, the inhibition activity of
NleE and NleB is different, NleE could inhibit both TNFα and
IL-1β stimulated NF-κB activation, whereas NleB effector could
only inhibit the TNF signaling pathway (Newton et al., 2010;
Ruchaud-Sparagano et al., 2011). Although it is well-known that
NleB plays an important role in the suppresses NF-κB activation,
but the underlying mechanisms are poorly understood. In
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2013, one study proposed that glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was the target of C. rodentium NleB,
and NleB acted as an O-GlcNAc transferase that modified
GAPDH (Gao et al., 2013). Glycosylation of GAPDH inhibited
the activity of the tumor necrosis factor receptor-associated
factors 2 (TRAF2) and TRAF3, thereby leading to reduced
NF-κB signaling and type I IFN signaling (Gao et al., 2013,
2016). Just a few months later, two research groups discovered
independently that a critical function of NleB in hijacking of
the host death receptor signaling and interfering with host
defense (Li et al., 2013; Pearson et al., 2013). Surprisingly, NleB
has an unusual N-GlcNAcylation activity toward a conserved
arginine (Arg235 in TRADD, Arg117 in FADD, and Arg603
in RIPK1) in host death domain-containing proteins (Li et al.,
2013; Pearson et al., 2013). NleB GlcNAcylation of these proteins
abrogated homotypic and heterotypic death receptors/adaptors
interactions, resulting in disrupting TNF signaling in EPEC or
C. rodentium infected cells (Figure 1) (Li et al., 2013; Pearson
et al., 2013; Ding et al., 2019). NleB could also block Fas ligand
and TNF-associated apoptosis-inducing ligand (TRAIL)-induced
cell death by preventing assembly of the canonical death inducing

signaling complex (DISC) (Figure 1) (Li et al., 2013; Pearson
et al., 2013; Ding et al., 2019). It should be noticed that other
host death domain-containing adaptors, such as interleukin-1
receptor-associated kinase1 (IRAK1) and myeloid differentiation
primary response 88 (MYD88), located downstream of the of
IL-1 receptor (IL-1R), and lack the conserved arginine were not
GlcNAcylated by NleB (Figure 1) (Li et al., 2013). This finding
perfectly explained the previous observation that NleB could
selectively inhibit TNF-α but not IL-1β activation of the NF-κB
signaling (Newton et al., 2010; Ruchaud-Sparagano et al., 2011).
Further, hijacking of host death receptor signaling pathways by
NleB was required for C. rodentium colonization in the mouse
model (Li et al., 2013; Pearson et al., 2013; Wong Fok Lung
et al., 2016). In addition, several studies suggested that GAPDH
is another specific target of EHEC NleB1, and EHEC NleB1-
mediated GAPDH GlcNAcylation at Arg197 and Arg200 (Gao
et al., 2013; El Qaidi et al., 2017, 2018; Park et al., 2018).

Hypoxia-inducible factor 1-alpha (HIF-1α), which act as a
key regulator of cellular O2 homeostasis, plays an important role
in regulating oxidative glucose metabolism and glycolytic gene
expression in the glucose metabolism pathway (Iyer et al., 1998;

FIGURE 1 | Inhibition of NF-κB signaling and death receptor signaling by NleB and SseK1/3. GlcNAcylation of GAPDH by NleB/SseK1 would suppress TRAF2

polyubiquitination and NF-κB activation. GlcNAcylation of death domain (DD) proteins by NleB and SseK1/3 abrogates homotypic and heterotypic death

receptors/adaptors interactions and the assembly of TNFR1 complex, leading to disrupting TNF signaling in EPEC or Citrobacter rodentium infected cells, including

NF-κB signaling, apoptosis, and necroptosis. NleB also blocked Fas ligand and TNF-associated apoptosis-inducing ligand (TRAIL)-induced cell death by preventing

assembly of the canonical death inducing signaling complex (DISC). In contrast, interleukin-1 receptor-associated kinase1 (IRAK1), and myeloid differentiation primary

response 88 (MYD88), lacking the conserved arginine were not GlcNAcylated by NleB and SseK1/3. Besides, the site-directed RA mutants of NleB

(NleBArg13/53/159/293Ala), SseK1 (SseK1Arg30/158/339Ala), and SseK3 (SseK3Arg153/184/305/335Ala) abolished or attenuated the capability of enzyme activity toward their

death domain-containing targets during infection, and loss of self-GlcNAcylation of NleB, SseK1, and SseK3 couldn’t inhibit TNFα- or TRAIL-induced cell death.
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Cheng et al., 2014; Shukla et al., 2017). Remarkably, in more
recent work, Wuhan Xiao and co-workers discovered that HIF-
1α was GlcNAcylated at a conserved arginine (Arg18) during C.
rodentium or EPEC infection, and the modification enhanced
HIF-1α transcriptional activity, thus inducing downstream
glucose metabolism-associated gene [such as glucose transporter
1 (GLUT1) gene] expression to alter host glucose metabolism (Xu
et al., 2018). Additionally, a more recently study has shown that
bacterial glutathione synthetase (GshB) was GlcNAcylated by C.
rodentium NleB on Arg256 (El Qaidi et al., 2020). Further, NleB-
mediated GlcNAcylation of GshB contributed to C. rodentium
survival in oxidative stress conditions (El Qaidi et al., 2020).

ARGININE N-ACETYLGLUCOSAMINE
TRANSFERASE IN S. ENTERICA

S. enterica is a motile, non-spore-forming, and intracellular
Gram-negative pathogen that causes both localized and systemic
diseases in a wide range of mammals (Gal-Mor et al., 2014).
Unlike EPEC, which possesses one T3SS, pathogenic serovars of
Salmonella possesses two T3SSs, T3SS1 (encoded by Salmonella
pathogenicity islands 1, SPI-1), and T3SS2 (encoded by SPI-2),
that inject numerous of effectors into host cells to benefit bacterial
invasion and survival (Pearson et al., 2016; Pinaud et al., 2018).
Interestingly, SPI-1 and SPI-2, which are activated at different
infection stages. T3SS1 is activated upon contact with intestinal
epithelial cells, and responsible for the invasion (Zhang et al.,
2018; Lou et al., 2019). In contrast, the T3SS2 is expressed after
Salmonella has entered host cell (Figueira et al., 2013; Jennings
et al., 2017). Moreover, T3SS2 effectors manipulate vesicular
trafficking, thereby enhancing Salmonella intracellular survival
(Jennings et al., 2017). Three closely related Salmonella T3SS
effectors, SseK1, SseK2, and SseK3, are translocated by the SPI-2
T3SS, behave as NleB-like arginine glycosyltransferase, although
they displayed distinct differences in host substrate specificity
(Brown et al., 2011; Li et al., 2013; Pearson et al., 2013; El Qaidi
et al., 2017). Data by Günster et. al suggested SseK1 caused the
GlcNAcylation of TRADD and FADD, whereas SseK3 resulted
in weak GlcNAcylation of TRADD but not FADD (Gunster
et al., 2017). However, another study reported that SseK1 only
glycosylated GAPDH but not FADD in vitro (El Qaidi et al.,
2017). Outside of this, a recent report coupled with our study
provided evidence that endogenous SseK1 modified TRADD,
but not FADD, and endogenous SseK3 modified TNFR1 (at
Arg376) and TRAILR (at Arg293) during Salmonella infection
(Newson et al., 2019; Pan et al., 2019). Significantly, in line
with the biological activity of NleB effector, SseK1 and SseK3
inhibit NF-κB activity as well as TNFα-induced cell death
(Figure 1) (Gunster et al., 2017; Newson et al., 2019). In contrast
with SseK1 and SseK3, SseK2 result in inhibition of TNFα-
induced NF-κB reporter activation in vitro only (Gunster et al.,
2017; Newson et al., 2019). Additionally, SseK2 didn’t induce
detectable arginine GlcNAcylation during Salmonella (1sseK1/3
or 1sseK1/3+pSseK2) infection (Gunster et al., 2017; Newson
et al., 2019). Therefore, SseK2 may have a much weaker enzyme-
substrate interaction network when compared with SseK1 and

SseK3. Remarkably, TRIM32, an E3 ubiquitin ligase, was the first
potential binding partner identified for SseK3 (Yang et al., 2015).
However, SseK3 could not glycosylate TRIM32. Besides, TRIM32
was not required for SseK3 to inhibit NF-κB signaling either
(Yang et al., 2015).

Interestingly, two studies have noticed that in addition to
GlcNAcylation of TRADD, FADD, and RIPK1, NleB/SseKs could
also GlcNAcylate themselves when over-expressed, though the
functional significance of this modification is almost completely
unknown (Park et al., 2018; Newson et al., 2019). Fortunately, in
a more recent study, our study revealed that Arg13/53/159/293
in NleB, Arg30/158/339 in SseK1, and Arg153/184/305/335 in
SseK3 were the self-GlcNAcylation sites, which is consistent
with the results from one previous study (Newson et al., 2019;
Pan et al., 2019). Moreover, the site-directed mutants, i.e.,
NleBArg13/53/159/293Ala (NleB RA mutant), SseK1Arg30/158/339Ala
(SseK1 RA mutant), and SseK3Arg153/184/305/335Ala (SseK3 RA
mutant), abolished or attenuated the enzyme activity toward their
death domain-containing targets (Figure 1) (Pan et al., 2019).
Importantly, the NleB RAmutant, the SseK1 RAmutant, and the
SseK3 RA mutant could not inhibit TNFα- or TRAIL-induced
cell death (Pan et al., 2019).

ARGININE RHAMNOSYLTRANSFERASE
EARP OF P. AERUGINOSA AND OTHER
CLINICALLY RELEVANT BACTERIAL
SPECIES

Ribosomes are the workplaces of protein biosynthesis, the
process of translating mRNA into protein. Surprisingly, the
ribosomes form peptide bonds among different amino acids
with various efficiency. Proline is the least efficient one, both
as a donor in the peptidyl-tRNA binding site (P-site) and as
an acceptor in the tRNA exiting site (E-site) (Muto and Ito,
2008; Pavlov et al., 2009; Johansson et al., 2011). In this case,
ribosomes stall when met with an XPP/PPXmotif (Elgamal et al.,
2014). Ribosome stalling at polyproline motifs is rescued by the
eukaryotic and archaeal elongation factor 5A (e/aIF5A) and its
bacterial ortholog, the EF-P, but only when e/aIF5A and EF-
P is post-translationally activated (Saini et al., 2009; Zou et al.,
2012; Gutierrez et al., 2013; Hersch et al., 2013; Peil et al., 2013;
Ude et al., 2013). In bacteria such as E. coli, EF-P is activated
when the conserved Lys34 (K34 is conserved in the EF-Ps among
about 80% of bacteria) is (R)-β-lysinylated and hydroxylated
(Zou et al., 2012; Hersch et al., 2013; Peil et al., 2013; Ude et al.,
2013). Comparably, in eukaryotes, conserved Lys50 in e/aIF5A is
extended to hypusine (Saini et al., 2009; Gutierrez et al., 2013).

Unusually, several recent studies discovered that the EF-P
(efp and earP are always directly adjacent) proteins from about
9% of bacteria, such as Shewanella oneidensis, P. aeruginosa,
N. meningitidis, N. gonorrhoeae, and Bordetella pertussis, have a
conserved Arg at the position corresponding to Lys34 (Lassak
et al., 2015; Rajkovic et al., 2015; Yanagisawa et al., 2016).
Significantly, Arg32 in EF-P is rhamnosylated by EarP, and
this type of posttranslational modification strategy is crucial for
EF-P dependent rescue of polyproline stalled ribosomes in P.
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aeruginosa and N. meningitidis (Figure 2) (Lassak et al., 2015;
Rajkovic et al., 2015; Yanagisawa et al., 2016). P. aeruginosa is a
Gram-negative, rod-shaped, asporogenous, and monoflagellated
bacterium, and is classified as an opportunistic pathogen (De

FIGURE 2 | EF-P arginine rhamnosylation and mode of action. A conserved

arginine (Arg32) of EF-P is rhamnosylated by EarP using dTDP-β-L-rhamnose

as a sugar donor, and this type of posttranslational modification is crucial for

EF-P dependent rescue of polyproline stalled ribosomes. EF-P, translation

elongation factor P; EarP, EF-P specific arginine rhamnosyl transferase for

posttranslational activation.

Lorenzo, 2015). It has been reported that lots of P. aeruginosa
virulence factors, such as rhamnolipids and pyocyanin, are
polyproline-containing proteins, showing a dependence on EF-
P for their translation (Lassak et al., 2015). Moreover, proteins
involved with motility, protein synthesis, and DNA replication
also act as putative EF-P targets in P. aeruginosa (Rajkovic
et al., 2015). Therefore, EF-P and EarP are crucial for P.
aeruginosa pathogenicity. In total, this is the first example of N-
linked glycosylation occurring on arginine in bacteria which is
important for its own biological function.

THE CATALYTIC MECHANISM FOR
NleB/SseKs-MEDIATED ARGININE
GLCNACYLATION

Several previous mutagenesis analyses showed that NleB, SseK1,
SseK2, and SseK3 contain a putative catalytic DXD motif, and an
exchange of these residues to alanine completely inhibited their
glycosyltransferase activity (Li et al., 2013; Pearson et al., 2013;
Wong Fok Lung et al., 2016). Moreover, present structural data
indicated that all of the NleB, SseK1, SseK2, and SseK3 proteins
share the GT-A fold with the conserved DXD motif (Esposito
et al., 2018; Park et al., 2018; Ding et al., 2019; Newson et al.,
2019). Typical for the GT-A family of the glycosyltransferase, the
DXD motif in NleB and SseKs is involved in a divalent cation
(Mn2+) coordination. Therefore, the NleB and SseK family
proteins are GT-A type glycosyltransferase (Esposito et al., 2018;
Park et al., 2018; Ding et al., 2019; Newson et al., 2019).

Glycosyltransferases can be divided into “retaining” or
“inverting” enzymes based on the stereochemistry of the glycosyl

FIGURE 3 | NleB/SseKs catalyze glycosyl group transfer with either inversion or retention of the anomeric stereochemistry. Glycosyltransferases (NleB/SseKs) can be

segregated into “retaining” or “inverting” enzymes according to whether the stereochemistry of the glycosyl donor’s anomeric bond is retained or inverted during the

transfer.
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donor’s anomeric bond during the glycosylation (Figure 3)
(Lairson et al., 2008). Recently, the structures of GlcNAcylated
TRADD-DD and RIPK1-DD were solved by one of our
groups, revealing a β-configuration glycosidic linkage (Ding
et al., 2019). Consistently, we previously reported the first
synthesis of arginine GlcNAcylated peptides with a β-glycosidic
linkage. Using these glycopeptides, we produced a monoclonal
antibody that can specifically recognize GlcNAcylated TRADD-
DD, FADD-DD, and RIPK1-DD (Pan et al., 2014). As the α-
anomeric linkage in UDP-GlcNAc, these data strongly suggest
that NleB is an inverting glycosyltransferase in catalyzing
arginine GlcNAcylation (Figure 3). However, two retaining
mechanisms have been proposed in the nuclear magnetic
resonance (NMR) study of SseK1 and SseK3-catalyzed GlcNAc
transfer (Esposito et al., 2018; Park et al., 2018). The
major reasons for the discrepancy may due to the hydrolase
activity of SseKs (Esposito et al., 2018). In the hydrolysis
reaction, SseKs were function as hydrolases, a water molecule

rather than the arginine acceptor executes the nucleophilic
attack, thus generating an α-GlcNAc group (Esposito et al.,
2018).

Glycosylation of arginine is unique because the guanidine
group of arginine has a high acid dissociation constant value and
is intrinsically an extremely poor nucleophile at physiological
pH. The crystal structure of the NleB/FADD-DD complex
showed that His182, His281, Tyr283, Tyr284, Trp329, and the
negatively charged Glu253 might promote deprotonation of the
arginine and therefore facilitate catalysis (Ding et al., 2019).
Furthermore, the geometry of the UDP-GlcNAc and the position
of the Arg117 in FADD-DD suggest NleB adopts a direct-
displacement SN2 (substitution, nucleophilic, bimolecular)-like
reaction to transfer the GlcNAc from the UDP-GlcNAc to the
Arg117, and the Glu253 is proposed to act as the catalytic base
(Figure 4) (Ding et al., 2019). Different from this, some other
studies showed that SseK1, SseK2, and SseK3 may be retaining
glycosyltransferases and adopt an SNi or orthogonal mechanism

FIGURE 4 | The potential catalytic mechanism (SN2-like) for NleB-catalyzed arginine GlcNAcylation. Glu253 of NleB acts as the base to deprotonate the guanidinium

in TRADD (at Arg235), FADD (at Arg117), and RIPK1 (at Arg603). The arginine then nucleophilically attacks the C1 atom of UDP-GlcNAc, forming an oxocarbenium

ion-like transition state that progresses to SN2 (substitution, nucleophilic, bimolecular)-like displacement of the UDP.
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FIGURE 5 | The potential catalytic mechanism (SN2-like) for EarP-catalyzed arginine GlcNAcylation. Asp20 of EarP acts as the base to deprotonate the guanidinium in

EFP (at Arg32). The arginine then nucleophilically attacks the C1 atom of TDP-rhamnose, forming an oxocarbenium ion-like transition state that progresses to SN2-like

displacement of the TDP.

for the arginine GlcNAcylation reaction (Esposito et al., 2018;
Park et al., 2018).

THE CATALYTIC MECHANISM FOR
EarP-MEDIATED ARGININE
RHAMNOSYLATION

Compared with the NleB family, the crystal structure of EarP,
revealed a GT-B fold and acted as an inverting arginine
rhamnosyltransferase (Krafczyk et al., 2017; Sengoku et al., 2018).
In the arginine rhamnosylation reaction, the stereochemistry of

the dTDP-β-L-rhamnose’s anomeric bond is reversed, resulting

in α-rhamnosyl on EF-P (Krafczyk et al., 2017; Wang et al.,
2017; Sengoku et al., 2018). Upon successful inverting glycosyl

transfer from dTDP-β-L-rhamnose to Arg32 in EF-P, the X-
ray crystal structure of EarP/EF-P/dTDP-β-L-rhamnose complex
together with the NMR data indicated that EarP probably
performed an SN2 displacement reaction, with Asp20 as the
general base (Figure 5) (Sengoku et al., 2018). Additionally,
EarP-mediated arginine rhamnosylation requires the rhamnose
ring of the dTDP-β-L-rhamnose to undergo a suitable structural
change to expose the β-anomeric face of the rhamnose C1 atom
(Sengoku et al., 2018).

CONCLUSIONS

Arginine glycosylation, the attachment of sugar moieties
(GlcNAc or rhamnose) to protein’s arginine residue, is a novel
type of posttranslational modification. There are three types
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of bacterial arginine glycosyltransferases that make this kind
of modification known to date, including NleB homologs
in pathogenic E. coli and C. rodentium, SseK homologs in
Salmonella, and EarP family in P. aeruginosa and other
relevant bacterial species. Interestingly, NleB/SseKs could also
GlcNAcylate themselves, and self-GlcNAcylation of NleB, SseK1,
and SseK3 is crucial for their biological activity during infection.
Excitingly, the success in generating anti-ArgGlcNAc and anti-
ArgRha antibodies provides a powerful tool toward the discovery
of novel arginine GlcNAcylated or rhamnosylated proteins, and
this is the first step toward a comprehensive understanding
of arginine glycosylation in nature (Pan et al., 2014; Li et al.,
2016; Wang et al., 2017). Besides, a recent report provided
evidence that 100066N and 102644N were acted as arginine-
GlcNAc glycosyltransferase inhibitors (El Qaidi et al., 2018).
Thus, these two compounds may have utility as reagents to
further study arginine GlcNAcylation. In addition, the crystal
structures of NleB, SseKs, EarP, arginine GlcNAcylated death
domain-containing proteins, NleB/FADD-DD, and EarP/EF-
P/dTDP-β-L-rhamnose provide compelling evidence of the
catalytic mechanism for arginine glycosylation, which will
be advantageous to us for designing NleB, SseKs, and EarP
inhibitors against the certain pathogens.
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