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Renal epithelial cells are exposed tomechanical forces due to flow-induced shear stress

within the nephrons. Shear stress is altered in renal diseases caused by tubular dilation,

obstruction, and hyperfiltration, which occur to compensate for lost nephrons.

Fundamental in regulation of shear stress are primary cilia and othermechano-sensors,

and defects in cilia formation and function have profound effects on development and

physiology of kidneys and other organs. We applied RNA sequencing to get a

comprehensive overview of fluid-shear regulated genes and pathways in renal

epithelial cells. Functional enrichment-analysis revealed TGF-β, MAPK, and Wnt

signaling as core signaling pathways up-regulated by shear. Inhibitors of TGF-β and

MAPK/ERK signaling modulate a wide range of mechanosensitive genes, identifying

these pathways as master regulators of shear-induced gene expression. However, the

main down-regulated pathway, that is, JAK/STAT, is independent of TGF-β and

MAPK/ERK. Other up-regulated cytokine pathways include FGF, HB-EGF, PDGF, and

CXC. Cellular responses to shear are modified at several levels, indicated by altered

expression of genes involved in cell-matrix, cytoskeleton, and glycocalyx remodeling,

as well as glycolysis and cholesterol metabolism. Cilia ablation abolished shear induced

expression of a subset of genes, but genes involved in TGF-β,MAPK, andWnt signaling

were hardly affected, suggesting that other mechano-sensors play a prominent role in

the shear stress response of renal epithelial cells. Modulations in signaling due to

variations in fluid shear stress are relevant for renal physiology and pathology, as

suggested by elevated gene expression at pathological levels of shear stress compared

to physiological shear.
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1 | INTRODUCTION

Several organs are subject to variations in fluid flow rate in response to

physiological stimuli, which could be detected by different cell types

via mechano-sensing proteins or complexes. Cellular mechano-

sensitivity and mechanotransduction are essential for normal cell

function, tissue development, and maintenance of organs (Goetz &

Anderson, 2010; Freund, Goetz, Hill, & Vermot, 2012; Quinlan, Tobin,

& Beales, 2008;Weinbaum,Duan, Satlin,Wang, &Weinstein, 2010). In

the kidneys, where urinary volume, diuretics, and diet will expose the

renal epithelial cells to variations in hydrodynamic forces including

fluid shear stress, circumferential stretch, and drag/torque on apical

cilia and probably also on microvilli (Carrisoza-Gaytan, Carattino,

Kleyman, & Satlin, 2016). Depending on the cell type and the

magnitude of the hydrodynamic forces, different responses will be

activated and mutations in critical components maymodulate or cause

(kidney) diseases (Piperi & Basdra, 2015). In addition, strong variations

in hydrodynamic forces and shear stress are common in kidney

diseases due to hyperfiltration, tubular dilation, and obstruction, which

occur in functional nephrons, to compensate for lost glomeruli and

tubules, with diabetic nephropathy and Polycystic Kidney Disease as

the most common examples (Sharma, Mucino, & Ronco, 2014).

Fundamental in flow-sensing are a number of proteins located

throughout the cell membrane, cilium/ciliary base, as well as the

cytoskeleton. These include ion channels, G-protein coupled receptors

(GPCRs), adherens junction proteins, focal adhesion proteins, compo-

nents of the actin cytoskeleton, but also glycocalyx and lipid rafts can

act as mechano-sensors to shear stress (Curry & Adamson, 2012;

Ingber, 2006; Petersen, Chung, Nayebosadri, & Hansen, 2016).

Activation of aforementioned sensors upon shear stress leads to

alteration of cellular signaling. Bending of the primary cilium causes

ciliary influx of Ca2+, followedby an increase in cytosolic Ca2+ (DeCaen,

Delling, Vien, & Clapham, 2013; Delling, DeCaen, Doerner, Febvay, &

Clapham, 2013; Praetorius, Frokiaer, Nielsen, & Spring, 2003;

Praetorius & Spring, 2001). It is likely that the increase in intraciliary

Ca2+ does not spread to the cytosol suggesting the requirement of

additional steps for amplification of the Ca2+ signal, although details

are not entirely clear and under debate (Delling et al., 2013, 2016;

Praetorius, 2015). Other cilia-dependent signaling cascades affected

by fluid flow include the canonical Wnt-signaling pathway, which is

restrained by fluid-flow induced ciliary signaling in favor of non-

canonical Wnt signaling (Simons et al., 2005). Furthermore, mTOR

signaling and cell-size control, as well as STAT6/p100-regulated

transcription are thought to be negatively regulated upon flow-

induced bending of the cilium, independent from flow-induced Ca2+

influx (Boehlke et al., 2010; Low et al., 2006; Weimbs, 2007; Zhong

et al., 2016). Cilia-independent shear-induced alterations in renal

signaling include increasedNa+ andHCO3
− reabsorption and autocrine

TGF-β/ALK5 signaling (Kotsis, Boehlke, & Kuehn, 2013; Kunnen et al.,

2017).

It is currently not known in detail how fluid shear stress affects

cellular behavior and which signaling pathways are altered. Further-

more, gene expression and the overall cellular behavior will be the

effect of an integration of the different signaling pathways, triggered

by shear stress and by cytokine stimulation. In this study we set out

to obtain a comprehensive overview of the transcriptome under

static and shear stress conditions in renal epithelial cells to get more

insight in the pathways and processes involved in the shear response.

Therefore, we applied RNA-sequencing as an unbiased means to

interrogate renal epithelial cell type-specific transcriptome alter-

ations upon fluid shear stress. Our data indicate that genes involved

in TGF-β, MAPK, and Wnt signaling are up-regulated by shear stress,

while the JAK-STAT related genes seems to be down-regulated.

Using ALK4/5/7 and MEK1/2 inhibitors, we showed that the shear

stress-induced signaling cascades are largely modulated by TGF-β/

ALK5 and MAPK/ERK signaling. Cilia removal abrogated shear

induced gene expression of a subset of genes, but genes involved in

TGF-β, MAPK, and Wnt signaling were hardly affected, suggesting

that other mechano-sensors also play an evident role in the shear

stress response of renal epithelial cells. Furthermore, altered

expression of genes involved in cell-matrix, cytoskeleton and

glycocalyx remodeling, as well as amino acid, carbohydrate, and

cholesterol metabolism, indicate that shear stress is regulating gene

expression at several levels for cellular homeostasis. Finally, we

showed that expression of several genes is elevated at pathological

levels of shear stress compared to physiological controls, suggesting

that variations in fluid shear stress might be relevant for the

pathology in kidney diseases due to an imbalance in cellular signaling.

2 | MATERIALS AND METHODS

2.1 | Chemicals

ALK4/5/7 inhibitor LY-364947 (Calbiochem; #616451) from Merck

Millipore (Darmstadt, Germany), MEK1/2 inhibitor Trametinib

(GSK1120212; #S2673) from Selleckchem (Bio-Connect, Huissen,

The Netherlands) and ammonium sulfate (#A-2939) from Sigma–

Aldrich (Zwijndrecht, The Netherlands) were used as previously

described (Kunnen et al., 2017).

2.2 | Cell culture

SV40 large T-antigen immortalized murine proximal tubular epithelial

cells (PTEC), derived from a Pkd1lox,lox mouse, were generated and

cultured as described previously (Kunnen et al., 2017; Leonhard et al.,

2011). Briefly, cells were maintained at 37°C and 5% CO2 in DMEM/

F-12 with GlutaMAX (Gibco, Fisher Scientific, Landsmeer, The

Netherlands; #31331-093) supplemented with 100U/ml Penicillin-

Streptomycin (Gibco, Life Technologies; #15140-122), 2% Ultroser G

(Pall Corporation, Pall BioSepra, Cergy St Christophe, France; #15950-

017), 1x Insulin-Transferrin-Selenium-Ethanolamine (Gibco, Life Tech-

nologies; #51500-056), 25 ng/L Prostaglandin E1 (Sigma–Aldrich;

#P7527) and 30 ng/L Hydrocortisone (Sigma–Aldrich; #H0135). Cell

culture was monthly tested without mycoplasma contamination

using MycoAlert Mycoplasma Detection Kit (Lonza, Basel, Switzerland;

LT07-318). New ampules were started after 15 passages.
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For fluid-flow experiments, cells were cultured on collagen-I

(Advanced BioMatrix, San Diego, CA; #5005) coated culture dishes

or glass slides. Cells grown until high confluency underwent 24 hr

serum starvation before the start of the treatment to exclude

effects of serum-derived growth-factors and to synchronize cells

and cilia formation.

2.3 | Fluid shear stress stimulation

Cells were exposed to laminar fluid shear stress (0.25–2.0 dyn/cm2) in a

cone-platedeviceorparallel-plate flowchamber asdescribedpreviously

(Kunnen et al., 2017). The cone-plate device, adapted from Malek,

Gibbons, Dzau, and Izumo (1993); and Malek, Ahlquist, Gibbons, Dzau,

and Izumo (1995), was designed for 3.5 cm cell culture dishes (Greiner

Bio-One, Alphen aan de Rijn, The Netherlands). Cells were grown on

collagen-I coated dishes until confluence, followed by 24 hr serum

starvation, before disheswere placed in the cone-plate flow system and

incubated at 37°C and 5%CO2. The confluent cellmonolayer of 9.6 cm2

was subjected to fluid shear stress using 2ml serum-free DMEM/F-12

medium containing penicillin-streptomycin, with viscosity (µ) of

0.0078 dyn s/cm2 (Bacabac et al., 2005). Constant laminar (Re = 0.3)

fluid-flow was induced using a cone angle (α) of 2° and a velocity (ω) of

80 rpm, generating a fluid shear stress (τ = µω/α) of 1.9 dyn/cm2.

Alternatively, cells were exposed to shear stress using a

parallel plate flow chamber, as previously described (Juffer, Bakker,

Klein-Nulend, & Jaspers, 2014; Klein-Nulend, Semeins, Ajubi,

Nijweide, & Burger, 1995). Briefly, cells were grown on collagen-I

coated glass slides of 36 × 76mm (Fisher Scientific #15178219) until

confluence, followed by 24 hr serum starvation, before glass slides

were place in a flow-chamber. A confluent cell monolayer of 14.2 cm2

(24 × 59mm) was subjected to fluid shear stress using 7.5 ml serum-

free DMEM/F-12 medium containing penicillin-streptomycin. Fluid

was pumped at a constant flow rate (Q) of 5.5 ml/min through the

chamber with 300 μm height (h), generating a constant laminar

(Re = 5.0) fluid shear stress (τ = 6 µQ/h2b) of 2.0 dyn/cm2. The parallel

plate flow-chamber was placed in an incubator at 37°C and 5% CO2.

Static control cells were incubated for the same time in equal

amounts of serum-free DMEM/F12 medium containing penicillin-

streptomycin at 37°C and 5% CO2. After 4, 6, or 16 hr fluid-flow or

static (control) stimulation, cells have been harvested for mRNA

isolation and gene expression analysis. In select experiments, cells

were pre-exposed to low levels of shear stress (0.25 dyn/cm2),

followed by 16 hr shear stress at the same levels (physiological

control) or at pathological levels of shear (2.0 dyn/cm2). ALK4/5/7

inhibitor (10 μM), MEK1/2 inhibitor (10 μM), or DMSO control (0.1%)

were added 1 hr before start of fluid-flow stimulation in the absence

of medium supplements. Ammonium sulfate (AS) was used to remove

primary cilia. Cells were pre-treated with 50mM ammonium sulfate,

followed by 16 hr fluid flow in medium containing 25mM AS, to

prevent cilia restoration. Control cells were treated similarly, but

without AS. Cilia formation was checked on a parallel slide by

immunofluorescence using anti-acetylatedα-tubulin antibodies (Sigma

Aldrich; #T6793) as previously described (Kunnen et al., 2017).

2.4 | RNA sequencing

Total RNA was isolated from fluid shear stress treated PTECs or

static controls (n = 4) using TRI Reagent (Sigma–Aldrich; #T9424) and

purified using Nucleospin RNA Clean-up (Macherey-Nagel, Düren,

Germany; #740948) according to manufacturer's protocols. Next

generation sequencing of mRNA was done by ServiceXS (GenomeS-

can, Leiden, The Netherlands) using the Illumina® HiSeq 2500

platform (San Diego, CA, USA). Illumina mRNA-Seq Sample Prep Kit

was used to process the samples according to the manufacturer's

protocol. Briefly, mRNA was isolated from total RNA using the oligo-

dT magnetic beads. After fragmentation of the mRNA, a cDNA

synthesis was performed. This was used for ligation with the

sequencing adapters and PCR amplification of the resulting product.

The quality and yield after sample preparation was measured with a

DNA 1000 Lab-on-a-Chip. The size of the resulting products was

consistent with expected size distribution (a broad peak between

300 and 500 bp).

Clustering and cDNA sequencing using the Illumina cBot andHiSeq

2500was performed according manufacturer's protocols. A concentra-

tion of 5.8 pM of cDNA was used. All samples were run on Pair Ends

mode and 125 bp long reads. HiSeq control software HCS v2.2.38 was

used. Image analysis, base calling, andquality checkwas performedwith

the Illumina data analysis pipeline RTA v1.18.61 and/or OLB v1.9 and

Bcl2fastq v1.8.4. At least 87.3% of bases had a Q-score ≥30.

Reads were aligned to mouse genome build GRCm38—Ensembl

(Waterston et al., 2002) using TopHat2 version 2.0.10 (Kim et al.,

2013). Gene expression was quantified using HTSeq-Count version

0.6.1 (Anders, Pyl, & Huber, 2015), using default options

(stranded = no, mode = union). Differential gene expression analysis

was performed in R version 3.0.2 using DESeq (Version1.16.0).

Differentially expressed genes were selected with an adjusted p-value

(corrected for multiple hypotheses testing) of <0.05. Count per million

(CPM) values were calculated by dividing the read counts by total

read counts of the sample, which is a measure for the abundance of

the transcript. CPM> 2 was used to exclude low expressed genes.

2.5 | Quantitative PCR

Gene expression analysis by quantitative PCR (qPCR) was performed

as described previously (Happe et al., 2011). Briefly, cDNA synthesis of

total RNAwas done using Transcriptor First Strand cDNASynthesis Kit

(Roche, Almere, The Netherlands; #04897030001) according to the

manufacturer's protocol. Quantitative PCR was done in triplicate on

the LightCycler 480 II (Roche) using 2x FastStart SYBR-Green Master

(Roche; #04913914001) according to the manufacturer's protocol.

Datawas analyzedwith LightCycler 480 Software, Version 1.5 (Roche).

Gene expression was calculated using the 2−ΔΔCt method (Livak &

Schmittgen, 2001) and normalized to the housekeeping gene Hprt,

giving the relative gene expression. For primer sequences see

Supplementary Table S1. Mean gene expression and standard

deviation (SD) of the different treatment groups were calculated.

Differences between fluid shear stress treated cells and static controls
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were tested using one sample t-tests. One-way analysis of variance

(ANOVA) was used when cells were exposed for a different time

or to a different flow rate. Two-way analysis of variance (ANOVA)

was used, when the shear stress response was compared to a

second treatment. The ANOVA was followed by post-hoc Fisher's

LSD multiple comparison, if the overall ANOVA F-test was significant.

p < 0.05 was considered to be statistically significant.

2.6 | Pathway analysis

Functional enrichment analysis was performed against the Molecular

Signature Database (MSigDB: http://software.broadinstitute.org/

gsea/msigdb/annotate.jsp) v5.2 (Subramanian et al., 2005) using

standard hypergeometric distribution with correction for multiple

hypotheses testing according to Benjamini and Hochberg. From this

source we included pathway databases (KEGG, BIOCARTA, and

REACTOME). Up- and down-regulated genes by fluid shear stress

were used as separate gene sets to discriminate between generally

up- and down-regulated pathways. Terms with false discovery rate

(FDR) <0.01 were considered significantly enriched, giving 209

up-regulated and 55 down-regulated terms. Interaction networks of

up- and down-regulated DEG and their connecting pathways/

processes were plotted using Cytoscape, version 3.4.0.

3 | RESULTS

3.1 | Fluid shear stress induced transcriptional
changes in PTECs

To study genomewide fluid-flow induced cellular alterations, proximal

tubular epithelial cells (PTEC) were exposed to fluid shear stress of

1.9 dyn/cm2 using a cone-plate device. Controls were similarly treated

under static conditions. After 6 hr fluid shear stress or static exposure,

total RNA was isolated and gene expression was analyzed using next

generation sequencing (NGS) on the Illumina HiSeq 2500 platform.

After quality checks the reads were aligned to mouse genome

(GRCm38) and gene expression was quantified using HTSeq-Count.

Count per million (CPM) values were calculated as a measure for the

abundance of the transcript (Supplementary Table S2).

A scatter plot was constructed comparing the log2 CPM values of

flow vs static treated cultures, showing a substantial number of genes

that are significantly (p < 0.05) up- or down-regulated (Figure 1a, blue

dots). Overall, RNA sequencing identified 2015 differentially

expressed genes (DEG) upon shear stress exposure in PTECs (Table 1).

Low expressed genes with an average counts per million (CMP) <2

were excluded, resulting in a list of 1551 DEG (Supplementary

Table S3). A heat map of all 8 PTEC samples shows a clear distinction

between fluid shear stress treated samples and static controls

(Figure 1b). Furthermore, our genome wide RNA sequencing analysis

confirmed genes known to be altered by fluid shear stress in renal

epithelial cells, including Ptgs2 (Cox2), Ccl2 (Mcp1), Edn1, Egr1, Snai1,

Cdh1, and Tgfb1 (Flores, Battini, Gusella, & Rohatgi, 2011; Flores, Liu,

Liu, Satlin, & Rohatgi, 2012; Grabias & Konstantopoulos, 2012, 2013;

Maggiorani et al., 2015; Pandit et al., 2015; Schwachtgen, Houston,

Campbell, Sukhatme, & Braddock, 1998).

3.2 | Pathway analysis of RNA sequencing data

We used functional enrichment analysis of the MSigDB (Subrama-

nian et al., 2005) as the tool to identify biological pathways or

FIGURE 1 Gene expression profiling shows a strong difference
between fluid shear stress treated PTECs and static controls. (a) log2
comparison of the counts per million (CPM) values of flow versus no
flow treated PTEC cultures. Differentially expressed genes (DEG)
are indicated by blue dots (p < 0.05). Not significant genes are
indicated by gray dots. Labeled lines indicate a 2, 5, or 10 fold
up- or down-regulation. Black line (Average) represents equal
expression for both conditions. Light-grey box indicates the area of
low expressed genes (CPM < 2). (b) Heat map showing the
expression values of 1551 DEG (p < 0.05; CPM > 2) in 4 fluid shear
stress treated samples (F = Flow) and 4 static controls (NF =No
flow). Expression values were normalized using the Voom function
in limma R package. Hierarchical clustering was applied on the
samples and values were scaled by row
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processes associated with fluid-shear stress in PTECs. The list of

1551 DEG (Supplementary Table S3) was split into up-regulated

(813) and down-regulated (738) genes in order to get pathways that

are generally up- or down-regulated. The 209 up-regulated and 55

down-regulated biological annotations in flow-stimulated cells are

presented in Supplementary Tables S4 and S5, respectively. We

subdivided the biological pathways in core signal transduction, as

well as cell–cell/matrix interaction, metabolism, cytokine signaling,

other cellular processes and diseases. These processes show many

connections as indicated by interaction networks of genes with the

annotated pathways (Supplementary Figure S1). Cell–cell/matrix

interactions are clearly affected by fluid-flow (Supplementary

Table S4). This is revealed by increased gene expression of

cytoskeletal components (Actb, Actg1, Actn1, Flna), cadherins

(Cdh10, Cdh11), tight junction molecule (Cldn4), cell adhesion

molecules (Cadm1, Cadm3, Epcam, Ncam1, Vcam1), extracellular

matrix components (Col1a1, Col5a1, Fn1, Lamc1, Lamc2), and

integrins (Itgav, Itga2, Itga5, Itgb1, Itgb3, Itgb4, Itgb5). Furthermore,

we see a shear stress enhanced expression of genes involved in

glycosaminoglycan and carbohydrate metabolism, including proteo-

glycans (Gpc1, Sdc1, Sdc2, Sdc3, Cd44), heparan sulfate, carbohy-

drate or uronyl sulfotransferases (Hs2st1, Hs3st3b1, Hs6st1, Chst7,

Chst11, Ust). Genes involved in apoptosis and cell cycle activity are

increased by shear stress, including pro-apoptotic (Trp53, Bid, Fas,

Pmaip1) as well as pro-survival (Bcl2, E2f3, Ctnnb1, Myc) and cell

cycle arrest (Gadd45, Sfn, Cdkn2b) genes, while key players in

apoptosis (Bad, Bak, Bax, and caspases) and cell cycle (cyclins and

CDKs) were not altered in gene expression (Supplementary

Table S2–S5). Pathways involved in cytokine signaling and other

cellular processes and diseases are up-regulated as well and have

broad overlap with the core signal transduction pathways. Of those,

the most prominently up-regulated pathways by fluid flow include

MAPK, TGF-β, Wnt, PDGF, and p53 signaling (Table 2). We

previously reported changes in TGF-β signaling, involving genes

encoding proteins relaying the signal from cell membrane toward

the nucleus, i.e. the ligands Tgfb1-3 and the receptor Alk5 (Tgfbr1), as

well as down-stream targets, that is, Pai1 (Serpine1), Fn1, Col1a1, and

Snai1 (Kunnen et al., 2017). Our gene expression profile now also

shows increased expression of genes encoding proteins involved in

TGF-β ligand activation (Furin, Thbs1) or ligand inhibition (Ltbp2), the

transcription factor Smad3, but also the inhibitors Smad7, Smurf1,

Skil, and Tgif1, all critical components of the pathway (Table 2).

However, the most prominently activated signaling pathway is

the mitogen-activated protein kinase (MAPK) pathway (Tables 2 and

S4). The MAPK pathway is a set of intracellular signal transduction

cascades that regulate a wide variety of stimulated cellular

processes, including proliferation, differentiation, apoptosis and

stress responses. The canonical cascades identified in mammalians

are extracellular signal-regulated kinase 1 and 2 (ERK1/2), c-Jun

N-terminal kinase (JNK), p38, and ERK5, responding to different

mitogens or forms of stress. Consequently, the MAPK pathway

comprises a large number of molecules. Increased expression by fluid

shear was observed for several MAP kinases (i.e., Map2k1, Map2k3,

Map4k4, Mapk6, Map3k20 = Zak) as well as dual-specific phospha-

tases (Dusp1, 4, 6, 7, and 9), which negatively regulate members of

the MAP kinase superfamily. The classical MAP kinase (ERK1/2)

pathway, activating proliferation and differentiation, shows

increased expression of Ras (Rras), MEK1 (Map2k1) and c-Fos

(Fos). Upstream mitogens, PDGF (Pdgfa, b, and c), HB-EGF (Hbegf)

and FGF (Fgf1,9) are increased by fluid shear as well. Also the stress-

mitogen pathway is modified, including increased mRNA levels of

TNFα and TNFα-receptors (Tnfaip2, Tnfaip3, C1qtnf3, Fas, Tnfrsf1b,

Tnfrsf12a, Tnfrsf23, Relt). Furtheremore, CXC, CX3C, and CC

chemokines and receptors are increased by shear (Cxcl10, Cxcl14,

Cxcl16, Cx3cl1, Ccl2, Cxcr4). Cooperation between MAPK pathway

and NFAT proteins integrates two important signaling pathways that

are altered by shear stress, the MAPK-pathway and calcium

signaling. This involves elevated expression of Nfatc2 and Nfatc4,

as well as expression of several calcium channels (Cacnb3, Cacna1g)

and calcium/calmodulin dependent proteins (Camk2n1, Ccbe1, Ncs1,

Carhsp1). Other transcription factors that are reported to be

regulated by MAPK/ERK are Ets1 and Ets2 (Foulds, Nelson,

Blaszczak, & Graves, 2004), which are both increased by fluid shear

stress as well (Table 2).

Wnt signaling is activated when secreted Wnt ligands bind

to specific Frizzled (FzD) receptors on the surface of target

cells to trigger the canonical (Wnt/β-catenin) or non-canonical

(β-catenin-independent) pathways. Particularly, canonical Wnt

signaling seems activated by fluid shear. Expression of both

Wnt7a and Wnt7b is increased, as well as Porcupine (Porcn),

required for Wnt secretion. Also expression of FzD receptors

(Fzd7 and 8) is up-regulated (although the co-receptor Lrp6 is

down-regulated) as well as the key players β-catenin (Ctnnb1) and

Tcf7, which are regulating the expression of down-stream target

genes (Wisp1, Fosl1, Myc).

Overall, less core signaling pathways were identified that were

down-regulated by fluid shear stress. The most prominently down-

regulated pathway is JAK/STAT or Interferon signaling (Table 3), with

reduced expression of receptors (Ifngr1, Il6st, Il5ra, and Lifr), signal

transducers (Jak2, Stat1, Stat5a and Irf7, 8, 9) as well as target genes

(Socs2 and Gbp6, 7). Other down-regulated pathways include Rho,

PDGF, Hedgehog, and Insulin signaling, as well as different metabolic

pathways (Tables 3 and S5). This also includes PI3K/AKT related

signaling, which is not included as core signaling pathway from KEGG

in the MSigDB.

TABLE 1 Differentially expressed genes by fluid shear stress in
PTECs using next generation sequencing

All DEG DEG with CPM> 2

Up 1023 813

Down 992 738

Total 2015 1551

Number of differentially expressed genes (p < 0.05) of flow versus static
treatedPTECs.Lowexpressedgeneswereexcludedwithanenrichment filter
of CPM> 2. DEG, differentially expressed gene; CPM, counts per million.
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Expression of a selected set of genes was validated by

quantitative PCR using a parallel plate flow-chamber (Kunnen

et al., 2017) and confirmed fluid-shear induced expression of

Ccbe1, Prune2, Wisp1, Fbln5, Plk2, Junb, Gsto1, Hbefg, Map3k20

(Zak), Wnt7b, Tes, Runx1, Ets1, Map4k4, Itgb1, and Itgav, while Jak2

and Stat1 expression was decreased by fluid shear stress (Figure 2).

After 16 hr gene expression was significantly increased for all tested

genes (Supplementary Figure S2). While several genes reached

significance already at 6 hr, others did not. Furthermore, we

investigated if the changes in gene expression by shear stress

were reversible, by doing a static post incubation of 8 hr, after

removal of shear. For several genes, shear stress induced gene

expression returned to levels close to the static controls, while other

genes showed similar or higher expression levels after post

incubation without shear (Supplementary Figure S3), indicating

that in time genes can respond differently to variations in fluid

shear stress.

3.3 | Fluid shear stress response in PTECs is
dominated by TGF-β/ALK5 and MAPK/ERK
pathways

Wepreviously showed shear stress induced TGF-β/ALK5 dependent

SMAD2/3 signaling and target gene expression (Kunnen et al., 2017).

In addition to increased expression of canonical SMAD2/3 targets,

we see shear stress induced expression of other genes known to be

induced by TGF-β signaling, including Junb and Fbln5 (Figure 2) (Lee,

Hong, & Bae, 2002; Schiemann, Blobe, Kalume, Pandey, & Lodish,

2002; Topalovski, Hagopian, Wang, & Brekken, 2016). Our results

indicate that shear stress induced Junb and Fbln5 expression was

ALK4/5/7 dependent (Figure 3a). In addition, genes involved in other

(core) signaling pathways, like MAPK (Map3k20 and Map4k4), Wnt

(Wisp1), ETS (Ets1), and other pathways (Plk2, Prune2), were strongly

repressed by the ALK4/5/7 inhibitor (Figure 3a), suggesting that

TGF-β/ALK5 signaling is interacting with more pathways than the

canonical TGF-β pathway alone. In contrast, fluid shear stress

induced down-regulation of Stat1 and Jak2 was not altered upon

ALK4/5/7 inhibition, although Jak2 basal levels were already higher

with the ALK4/5/7 inhibitor (Figure 3a).

Since SMAD2/3 mediated gene transcription can be either

restrained or induced by ERK1/2 signaling, as shown before (Hough,

Radu, & Dore, 2012; Kretzschmar, Doody, Timokhina, & Massague,

1999; Kunnen et al., 2017), we also investigated the involvement of

MAPK/ERK signaling in the shear stress response. Our data indicate

that only Plk2 and Fbln5 induction by fluid-shear is lowered using

MEK1/2 inhibitors (Figure 3b), although the flow response is still

present. In contrast, Junb, Map3k20 (Zak), Ets1, and Prune2

expression was further elevated using MEK inhibitors, which was

also seen for many canonical SMAD2/3 targets (Kunnen et al., 2017),

while the shear stress response of Wisp1 and Map4k4 was not

significantly changed upon MEK inhibition (Figure 3b). Fluid shear

stress induced down-regulation of Jak2 and Stat1 is still present upon

MEK inhibition (Figure 3b), although basal levels were slightly higherT
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with MEK1/2 inhibitors. In conclusion, our data suggest complex

regulation of the fluid shear stress response in PTECs, which is largely

modulated by TGF-β/ALK5 and MAPK/ERK pathways.

3.4 | Primary cilia only play a role in a part of the
shear stress response in PTECs

Since defects in cilia formation and function have profound effects

on the development and physiology of kidneys and other organs

(Goetz & Anderson, 2010; Quinlan et al., 2008), we investigated the

shear stress response in PTECs after cilia removal by ammonium

sulfate. Expression of Plk2, Prune2, and Ets1 were clearly cilia

dependent, since the shear stress induced response was completely

lost after cilia ablation (Figure 4). In contrast, genes involved in TGF-β,

Wnt, MAPK, and JAK/STAT signaling, that is, Junb, Fbln5, Wisp1,

Map3k20, Map4k4 as well as Stat1, were only slightly or not affected

in the shear stress response upon cilia removal (Figure 4). Although

shear induced down-regulation of Jak2 was abrogated, Jak2 expres-

sion in static cells was already reduced upon ammonium sulfate

treatment (Figure 4). Our data suggests that shear stress regulated

gene expression in PTECs is only partially cilia dependent and other

mechano-sensors are involved as well.

3.5 | Shear stress induced gene expression in PTECs
is flow rate dependent

Thus farwe applied fluid shear stress of 2.0 dyn/cm2, which is known to

be an increased physio-pathological shear stress (Essig, Terzi, Burtin, &

Friedlander, 2001; Grabias& Konstantopoulos, 2012, 2013;Weinbaum

et al., 2010). To compare the gene expression to physiological levels of

shear,we exposed the cells to a shear stress range of 0.25–2.0 dyn/cm2.

Expression ofWisp1,Map3k20,Map4k4, and Ets1was clearly flow rate

dependent and this trend was also visible for Junb, Plk2, Prune2, and

Fbln5 (Figure 5a). Tomimic the induction of hyperfiltration, PTECswere

pre-exposed to physiological levels of shear (0.25 dyn/cm2) for 4 hr,

followed by 16 hr shear stress at the same physiological level or at

pathological levels of shear (2.0 dyn/cm2). Expression of Wisp1,

Map3k20, Map4k4, Ets1, and Fbln5 was significantly higher at

pathological levels of shear compared to physiological levels, while

this trend was also visible for Junb and Plk2 (Figure 5b). For the

downregulated genes, Stat1 and Jak2, there was no difference in

expression between physiological and pathological shear. So, our data

indicate that higher levels of shear and a switch from physiological to

pathological shear, result in increased gene expression, at least for

most the genes analyzed in this experiment.

4 | DISCUSSION

In this study we used RNA sequencing to get a comprehensive

overview of the transcriptome alterations upon fluid shear stress in

proximal tubular epithelial cells. Physiological shear stress in renal

epithelial cells is ranging from 0.05–1.0 dyn/cm2, where proximal

tubular cells experience the highest range of shear stress (Essig et al.,

2001; Grabias & Konstantopoulos, 2012, 2013; Weinbaum et al.,

2010). We applied a fluid shear stress of 2.0 dyn/cm2, which is known

to be an increased physio-pathological shear stress, mimicking

hyperfiltration after renal mass reduction or during progression of

renal disease. Our genome wide RNA sequencing data confirmed

previously reported fluid flow-induced changes in gene expression of

Cox2 (Ptgs2),Ccl2 (Mcp1), Edn1, Egr1, Snai1, andCdh1 in renal epithelial

cells (Flores et al., 2011, 2012; Maggiorani et al., 2015; Pandit et al.,

2015; Schwachtgen et al., 1998). Furthermore, our data reveal >1,500

other genes to be altered by fluid shear stress in PTECs.We validated a

subset of genes by qPCR and showed that the shear stress response

was time dependent within the first 16 hr. Furthermore, after removal

of the shear, the shear-induced gene expression was reversible for

some of the genes, while other genes showed similar or higher

differential gene expression upon static post incubation. Differences

in signaling and cytokine production upon shear may explain the

different responses as well as differences in transcriptional activation

and stability of transcripts. For example, Fn1 is a very long transcript,

which requires more time for transcription and degradation, while

Pai1 (Serpine1) has an faster turn-over (Kunnen et al., 2017; 't Hoen

et al., 2011).

Pathway analysis indicated increased expression of cell–cell/

cell-matrix interaction genes, including cytoskeletal components, cell

adhesion and tight junction molecules, extracellular matrix compo-

nents and integrins. This suggests strengthening of epithelial cells and

their surroundings to resist (increased) physiological shear stress (Duan

et al., 2008; Essig et al., 2001; Jang et al., 2013). Another study showed

loss of epithelial cell morphology during high pathological shear stress

of 5 dyn/cm2 (Maggiorani et al., 2015). Long-term high shear exposure

therefore might also lead to fibrotic deposition and tubulointerstitial

lesions, which is commonly seen after renal mass reduction or during

FIGURE 2 qPCR validation of RNA sequencing results. Gene
expression (log2 fold change) of selected target genes is altered
upon 16 hr fluid shear stress, as measured by quantitative PCR.
Parallel plate flow-chamber induced fluid shear stress at
2.0 dyn/cm2 in PTECs; n = 13 per condition; Hprt served as
housekeeping gene to correct for cDNA input; data were
normalized to static controls (log2 fold change = 0). *Indicates
significantly altered expression by flow versus no flow (p < 0.05)
using a one sample t-test
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progression of renal diseases (Essig & Friedlander, 2003; Essig et al.,

2001; Grabias & Konstantopoulos, 2014; Rohatgi & Flores, 2010;

Venkatachalam et al., 2010). Pro-apoptotic as well as pro-survival and

cell cycle arrest genes were induced by shear stress, while key players

in apoptosis (Bad, Bak, Bax, and caspases) and cell cycle (cyclins and

CDKs) were not altered in gene expression. This suggests that

apoptosis and cell cycle related gene expression are not dramatically

altered during shear exposure.

Core signaling pathways altered by shear stress comprise MAPK

and TGF-β signaling. Even more, TGF-β/ALK5-induced target gene

expression in renal epithelial cells is partially restrained by MEK1/2-

mediated signaling (Kunnen et al., 2017). Using ALK4/5/7 inhibitors,

we showed that many genes, but not all genes, are dependent on shear

induced TGF-β/ALK5 signaling, including genes involved in other core

signaling pathways like MAPK andWnt signaling. The role of TGF-β as

a master regulator of the shear response is related to the TGF-β/ALK5

interaction since we previously showed that also TGF-β neutralizing

antibodies inhibit the response (Kunnen et al., 2017). It is conceivable

that under flow conditions TGF-β processing and binding of the active

ligand is enhanced. Interestingly, a recent publication showed that

TGF-β can be released from its latency-associated peptide (LAP) by

shear stress, probably by forces exerted onαv-β6-integrins via the actin

cytoskeleton (Dong et al., 2017; Ha, 2017). We also noticed an

increase in gene expression of several integrins during shear stress,

including integrin αv (Itgav). In addition, there are several connections

between TGF-β and MAPK signaling (Hough et al., 2012; Kretzschmar

FIGURE 3 Shear stress response in PTECs is modulated by ALK4/5/7 and MEK1/2 inhibitors. Relative expression of selected genes upon
16 hr fluid shear stress exposure, as measured by quantitative PCR. (a) ALK4/5/7 inhibitor (10 μM LY-364947) significantly reduces shear
stress increased expression of Junb, Wisp1, Map3k20, Map4k4, Ets1, Plk2, Prune2, and Fbln5, while shear stress induced down-regulation of
Jak2 and Stat1 was not altered. (b) MEK1/2 inhibition (10 μM Trametinib) significantly reduces shear stress increased expression of Plk2 and
Fbln5, while fluid-flow increased expression of Junb, Map3k20, Ets1, and Prune2 is further elevated. Wisp1 and Map4k4 expression was not
altered upon MEK inhibition. Jak2 and Stat1 expression was still down-regulated by shear stress upon MEK inhibition, although basal levels
were slightly higher. (a, b) Parallel plate flow-chamber induced fluid shear stress at 2.0 dyn/cm2 in PTECs; t = 16 hr; qPCR, Hprt served as
housekeeping gene to correct for cDNA input; data normalized to unstimulated controls (fold change); n = 3–5 per condition. *Indicates
p < 0.05 by two-way ANOVA, followed by post-hoc Fisher's LSD multiple comparison. ALK-inh = ALK4/5/7 inhibitor (LY-364947). MEK-
inh =MEK1/2 inhibitor (Trametinib, GSK1120212)
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et al., 1999; Lee et al., 2007; Muthusamy et al., 2015), thereby

modulating the response to shear. Our data show that the shear stress

response of a subset of genes is attenuated upon MEK1/2 inhibition,

while other genes showed an enhanced response. Since there are

multiple interactions between TGF-β and MAPK/ERK signaling

pathways, the integration of these pathways is complex and biological

context dependent, and therefore difficult to predict (Kunnen et al.,

2017).

In addition to TGF-β signaling, increased expression of other

cytokines observed in our study suggests attraction and activation of

macrophages and inflammatory cells upon shear in vivo. This is a

common phenomenon during development of kidney diseases, where

shear stress is fluctuating due to changes in glomerular filtration rate,

tubular hyperfiltration and obstruction (Akchurin & Kaskel, 2015).

Altered expression of other growth factors or cytokine signaling

pathways include FGF, HB-EGF, PDGF, CXC, and other cytokines.

FGF,HB-EGF, andPDGFcanbind to tyrosine kinase receptors that upon

activation stimulate theRas/Raf/ERK (MAPK)pathway and/or thePI3K/

AKT pathway (up-regulated upon shear stress) and/or STAT-signaling

(down-regulated upon shear stress) (Pileri & Piccaluga, 2012; Turner &

Grose, 2010). At several levels these pathways can be amplified or

negatively modulated, and they can interact with each other as well.

Multiple ligand isoforms can bind to the receptors with different

affinities. Upon fluid flow, transcript levels of several ligands is increased

(Fgf1, Fgf9, Hbegf, Pdgfa, Pdgfb, Pdgfc), but not the receptors. Whether

increased signaling is related to endocrine/paracrine loops, as seen

for TGF-β, needs more extensive investigation. Interestingly, we also

observed altered expression of proteoglycans, like syndecans and

glypican, as well as modifying enzymes involved in glycosaminoglycan,

heparan-sulphate or chondroitin-sulphate metabolism, which are all

involved inglycocalyx remodeling (Reitsma, Slaaf, Vink, vanZandvoort, &

oude Egbrink, 2007). Cell-surface-associated heparan sulfate proteo-

glycanshavebeen showntobeessential for FGF signal transduction and,

more general, the glycocalyx is able to significantly modify the cellular

response to growth factors including PDGF and FGF. It has been shown

that the glycocalyx plays an important role in mechanotransduction of

shear stress in endothelial cells. It is required for the cytoskeleton to

respond to shear stress and acts as a signaling platform integrating shear

stress, growth factor, chemokine and cytokine signaling (Ebong,

Lopez-Quintero, Rizzo, Spray, & Tarbell, 2014; Thi, Tarbell, Weinbaum,

& Spray, 2004; Zeng, 2017; Zeng & Liu, 2016). So, our data indicate that

fluid shear stress induce genes involved in glycocalyx remodeling in

PTECs, although it has to be further investigatedwhether the glycocalyx

is equally involved in mechano-sensing upon shear stress in renal

epithelial cells.

The shear stress response in PTECs can be regulated by a variety of

mechano-sensors at different sub-cellular locations (Curry & Adamson,

2012; Ingber, 2006; Petersen et al., 2016). We investigated the role of

primary cilia, since defects in cilia formation and function are associated

with developmental disorders and (kidney) diseases (Goetz &Anderson,

2010; Quinlan et al., 2008). Our results indicate that fluid shear stress

induced Plk2, Prune2, and Ets1 expression is cilia dependent, since

“removal” of the cilium by ammonium sulphate completely abolished

the shear stress response. Genes involved in TGF-β, MAPK, and Wnt

signaling were not or only slightly reduced upon ammonium sulphate

treatment, suggesting that mechano-sensors at other cellular locations

are also contributing to the shear stress response in PTECs.

The main shear stress down-regulated pathway is JAK/STAT

signaling. However, this is largely related to reduced expression of

components of the interferon signaling pathway since only a few

STAT1 target genes are differentially expressed (Irf7, Irf9, Ifi35, Ifi27,

Trim25) (Satoh & Tabunoki, 2013). Interferon itself is not expressed in

our in vitro system (Supplementary Table S2), but reduced expression

of components of the signaling pathway support a study in endothelial

cells, describing attenuation of IFNγ-induced responses by laminar

flow, via the suppression of STAT1 activation (Tsai et al., 2007). We

show that reduced Stat1 expression by shear stress was ALK4/5/7,

MEK1/2 as well as cilium independent, although there was slightly

FIGURE 4 Shear stress altered gene expression in PTECs is partially cilia dependent. Relative expression of selected genes upon 16 hr fluid
shear stress exposure in controls and cells treated with 50mM ammonium sulfate (AS), as measured by quantitative PCR. Shear stress
induced expression of Ets1, Plk2, and Prune2 was abrogated after cilia ablation. Junb, Wisp1, Map3k20, Map4k4, Fbln5, and Stat1 expression
was only slightly or not affected in the shear stress response upon cilia removal. Shear induced down-regulation of Jak2 was abrogated, since
Jak2 expression in static cells was already reduced upon ammonium sulfate treatment. Parallel plate flow-chamber induced fluid shear stress
at 2.0 dyn/cm2 in PTECs; Hprt served as housekeeping gene to correct for cDNA input; data were normalized to static controls (fold change);
n = 5 per condition. *Indicates p < 0.05 by two-way ANOVA, followed by post-hoc Fisher's LSD multiple comparison
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higher expression when using the MEK1/2 inhibitors in static cells. A

similar pattern was observed for Jak2 expression, with the notification

that ammonium sulphate treatment already reduced expression of

Jak2 as much as shear stress. For another Stat-family member, STAT6,

reduced expression of target genes has been reported. During fluid

flow both STAT6 and the transcriptional co-activator p100 locate in

the primary cilia, while at static conditions these proteins translocate

to the nucleus (Low et al., 2006).

Other down-regulated genes by shear stress include genes

involved in amino acid, carbohydrate, fatty acid, ketone body and

cholesterol metabolism (Supplementary Figure S1B, Table S5). Also in

endothelial cells shear stress exposure decreased expression of genes

involved in glycolysis (Doddaballapur et al., 2015; Kim, Lee, Kawata, &

Park, 2014), lipid metabolism (Fisslthaler & Fleming, 2009; Mun, An,

Park, Jo, & Boo, 2008; Yamamoto & Ando, 2013) and cholesterol

biosynthesis (Fisslthaler, Fleming, Keseru, Walsh, & Busse, 2007;

Yamamoto & Ando, 2015). This was dependent on AMPK, which is an

important kinase in energy metabolism (Carling, 2004; Fisslthaler &

Fleming, 2009) and plays a central role in fluid flow induced primary

cilium bending and down-regulation of mTORC1 activity in renal

epithelial cells (Boehlke et al., 2010; Zhong et al., 2016). Overall, the

data show that increased shear stress reduces metabolic activity in

renal epithelial cells.

This in vitro study gives a comprehensive overview of fluid shear

stress altered gene expression in renal epithelial cells, but is not fully

representative for the in vivo situation, since several other cells types

and cytokines in the nephrons are involved. Nevertheless, our results

give an overview of genes and pathways that are modulated by shear

stress in renal epithelial cells, which could help us to understand

relevant biological processes involved in mechano-sensing. Several of

the shear regulated processes are altered in kidney diseases as well,

including TGF-β, Wnt, and JAK-STAT signaling (Gewin, Zent, & Pozzi,

FIGURE 5 Shear stress altered gene expression in PTECs is flow rate dependent. Relative expression of selected genes upon different
levels of fluid shear stress exposure (0.25–2.0 dyn/cm2) for 16 hr, as measured by quantitative PCR. (a) After starvation under static
conditions, cells were directly exposed to the indicated level of fluid shear stress. (b) Cells were first pre-exposed for 4 hr to low levels of
shear stress (0.25 dyn/cm2), followed by 16 hr shear stress exposure at indicated levels. Expression of all genes was significantly increased by
shear stress compared to static controls (dashed line in a) and was flow rate dependent for most genes. (a, b) Parallel plate flow-chamber
induced fluid shear stress of 0.25–2.0 dyn/cm2 in PTECs; t = 16 hr (a) or t = 4 + 16 hr (b); qPCR, Hprt served as housekeeping gene to correct
for cDNA input; data normalized to unstimulated controls (fold change); n = 3 per condition. #Significant difference compared to unstimulated
control (dashed line in a) or *significant difference between treatment groups (p < 0.05 by one-way ANOVA, followed by post-hoc Fisher's
LSD multiple comparison)
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2017). We hypothesize that large variations in shear stress, occurring

in kidney diseases, might contribute to the disease phenotype. This

hypothesis is supported by our data showing that the expression of

several genes involved in TGF-β, MAPK, and Wnt signaling is further

elevated upon switching from physiological to pathological levels of

shear.

In conclusion, this study provides a comprehensive profile of

genes altered upon shear stress in PTECs. Both cell cycle activity and

apoptosis are not dramatically altered and molecular alterations are

more related to cell remodeling, involving cell–cell and cell-matrix

interactions, cytoskeleton and glycocalyx remodeling, as well as

glycolysis and cholesterol metabolism. MAPK/ERK and TGF-β

signaling are master regulators of shear-induced gene expression,

since inhibitors modulate other signaling pathways as well. Neverthe-

less, altered JAK/STAT signaling, the main core signaling pathways

down-regulated upon shear stress, is independent of MAPK/ERK and

TGF-β. Our results indicate that different mechano-sensors are

involved in shear stress sensing in PTECs, because cilia ablation did

only affect expression of a subset of shearmodulated genes. Imbalance

in cellular signaling due to variations in fluid shear stress are probably

relevant for renal physiology and pathology as suggested by elevated

expression of genes at pathological levels of shear stress compared to

physiological controls. At this moment only a limited number of genes

have been annotated to pathways and transcriptional target genes are

hardly included, thereby limiting the interpretation of data to what is

currently known. In the future the use of gene-specific targeting, high-

throughput RNA-sequencing, and connectivity maps will probably

reveal additional information on shear induced signaling and how shear

stress regulated processes influence epithelial cell integrity and cellular

plasticity in renal disease.
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