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Improving the health of skeletal muscle is an important component of obesity treatment.

Apart from allowing for physical activity, skeletal muscle tissue is fundamental for the

regulation of postprandial macronutrient metabolism, a time period that represents when

metabolic derangements are most often observed in adults with obesity. In order for

skeletal muscle to retain its capacity for physical activity and macronutrient metabolism,

its protein quantity and compositionmust bemaintained through the efficient degradation

and resynthesis for proper tissue homeostasis. Life-style behaviors such as increasing

physical activity and higher protein diets are front-line treatment strategies to enhance

muscle protein remodeling by primarily stimulating protein synthesis rates. However,

the muscle of individuals with obesity appears to be resistant to the anabolic action of

targeted exercise regimes and protein ingestion when compared to normal-weight adults.

This indicates impaired muscle protein remodeling in response to the main anabolic

stimuli to human skeletal muscle tissue is contributing to poor muscle health with obesity.

Deranged anabolic signaling related to insulin resistance, lipid accumulation, and/or

systemic/muscle inflammation are likely at the root of the anabolic resistance of muscle

protein synthesis rates with obesity. The purpose of this review is to discuss the impact

of protein ingestion and exercise on muscle protein remodeling in people with obesity,

and the potential mechanisms underlining anabolic resistance of their muscle.
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INTRODUCTION

At present, 39% of adult Americans are obese (1), which is defined as having a body mass index
(BMI) of 30 or higher. Obesity represents a growing societal problem as incidence has increased
rapidly since the early 2000s when 30% of American were obese (2). If current trends continue, it
is projected that nearly half of all US adults may be obese by 2030 (3). Obesity is associated with
several chronic conditions including cancer, type 2 diabetes, cardiovascular disease, arthritis, liver
and kidney disease, sleep apnea, mental illness (4, 5), and increased risk of all-cause mortality (6).
The annual obesity-related healthcare costs in 2005 were estimated at $190.2 billion or nearly 21%
of total medical spending in the US (7). Therefore, effective treatment strategies to prevent, halt,
and reverse obesity are imperative to improve public health and reduce the societal (e.g., healthcare
and economic) cost of obesity.
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The frontline treatment of obesity is typically multifactorial
and is predominantly centered around behavior strategies such as
changes in nutrition and/or physical activity to elicit weight loss
(8). Weight loss, however, commonly occurs with concomitant
reductions in skeletal muscle mass (9), the prevention of which
is a focus for several research groups (10, 11). These efforts are
due to the recognized important contribution of skeletal muscle
health to total body health (12).

Besides the obvious role in generating force for movement,
skeletal muscle also contributes to health through the use
and storage of macronutrients (13). Skeletal muscle is the
primary determinant of meal-derived glucose (14) and lipid
(15) uptake and utilizes a major portion of meal-derived amino
acids (AA) released into systemic circulation to build new
functional proteins (16, 17). Moreover, changes in the skeletal
muscle’s contribution to basal and/or postprandial macronutrient
metabolism can have profound effects on disease risk (18).
For example, impaired insulin sensitivity is a fundamental
characteristic of Type 2 diabetes (19). Emerging data have
revealed that obesity may also negatively alter muscle protein
turnover, or the breaking down and rebuilding of functional
proteins, with the myofibrillar proteins being particularly
susceptible to anabolic resistance. The purpose of this review is
to discuss the mechanisms by which obesity may hamper normal
turnover of muscle proteins and ultimately impact muscle health
(Figure 1). In addition, we discuss lifestyle strategies to improve
the muscle protein synthetic response with obesity.

SKELETAL MUSCLE PROTEIN TURNOVER
FOR HEALTHY MUSCLE

Tissue proteins are maintained through the coordination of rates
of synthesis (from free AAs) and breakdown (replenishment of
the free amino acid pool) under basal conditions. In skeletal
muscle, protein synthesis appears to be more highly responsive
to changes in plasma amino acid (AA) availability as compared
to protein breakdown (MPB) (20–22). Proteins in skeletal muscle
are degraded for a variety of reasons including to remodel
the muscle in response to changes in metabolic demands (e.g.,
larger and stronger vs. more fatigue resistant muscles) (23,
24) or as they become old, damaged and subsequently need
replacement (25–27). Moreover, as the body’s largest pool of AAs,
the muscle provides gluconeogenic precursors to other tissues
during an overnight (28, 29) or prolonged fast (30). Therefore,
the stimulation of muscle protein synthesis rates represents an
important physiological process for maintaining the health and
function of this tissue.

Regulation of muscle protein synthesis rates is coordinated
by several extra- and intracellular signals, many of which
are increased in response to nutrition (e.g., insulin and AAs;
Figure 2A) and physical activity (e.g., muscle contraction;
Figure 2A). Changes in protein phosphorylation and activity
is fundamentally catalyzed by protein-protein interactions, the
study of which has led to a greater understanding of and
appreciation for the dynamic nature of mRNA translation
regulation in human muscle (31). For example, mixed meal

ingestion with protein and carbohydrate induces a rise in plasma
aminoacidemia and insulinemia that directs the dissociation
of Ras homolog-enriched in brain (Rheb) from its negative
regulator tuberous sclerosis complex 2 (TSC2) in order to
facilitate Rheb association with the mechanistic target of
rapamycin (mTOR) to form the mTOR complex 1 (mTORC1)
(32, 33). This complex subsequently moves to the lysosome and
translocates toward the sarcolemma, which is more proximal to
capillaries, AA transporters (e.g., the large neutral amino acid
transporter, LAT1 or SLC7A5), and the ribosomal machinery
(33–35). This intracellular positioning would presumably be
ideally suited to detect and utilize exogenous nutrients for the
postprandial muscle protein synthetic response at the level of
mRNA translation. In addition, the kinase activity of mTORC1
is essential for the phosphorylation and activation of several
proteins involved in ribosomal assembly (e.g., ribosomal protein
S6, rpS6; eukaryotic translation initiation factor 4E-binding
protein 1, 4EBP1; eukaryotic initiation factor 2, eIF2) either
directly, or through downstream kinases (e.g., ribosomal protein
S6 kinase 1, p70S6K1) (36, 37). Indeed, phosphorylation of
mTOR and these downstream proteins are commonly used
readouts of pathway activation (38–42), though it should be
appreciated that changes in protein phosphorylation of these
candidate markers do not always reflect their kinase activity
(43) nor direct proportional changes in muscle protein synthesis
(38) in human muscle. Importantly, these processes are also
stimulated by muscle contraction (i.e., resistance exercise) with
the peripheral targeting of mTORC1 persisting beyond the acute
postprandial period (i.e., >3 h) (34), which likely contributes to
the sustained p70S6K1 phosphorylation and myofibrillar (i.e.,
contractile proteins) protein synthetic response with exercise
(44, 45). There is also in vitro evidence suggesting that, similar to
glucose transport, an inducible pool of amino acid transporters
(e.g., SNAT2) may also be recruited to the sarcolemma in
response to anabolic stimuli, such as insulin, and contribute
to the acute regulation of muscle protein synthesis (46). Thus,
given the dynamic nature of anabolic signaling events and
nutrient transport, any physical or biochemical changes within
the skeletal muscle of people with obesity that interferes with
these intracellular processes could ultimately contribute to the
dysregulation of muscle protein synthesis.

Protein ingestion and exercise have been shown to be two
primary anabolic stimuli to human skeletal muscle; protein
ingestion being particularly important as it also provides the
necessary substrate (i.e., essential AAs) for synthesizing new
proteins. The factors involved in the regulation of muscle
protein synthesis rates has been studied under a variety of
conditions and different populations. From a protein nutrition
perspective, a range of 20–40 g of high quality protein is
required to ingest in a single meal to maximize the muscle
protein synthetic response during the postprandial period in
adult men (21, 47–50). Protein type (isolated vs. whole food),
exercise pattern (resistance vs. endurance), BMI, and/or age
of an individual may all be important factors that modulate
the recommended amount of protein to consume in a meal to
augment postprandial muscle protein synthesis rates as discussed
elsewhere (51, 52).
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FIGURE 1 | Potential regulators of the postprandial muscle protein synthetic response with obesity.

Muscle protein synthesis, however, is a relatively generic term
given the myriad of various structural and regulatory proteins
within this tissue. Many studies, however, assess the synthesis
of mixed muscle protein, or the entire muscle proteome. In
healthy adults, the rates of protein synthesis are not equivalent
across sub-fractions of the skeletal muscle (44, 53) and mixed
muscle protein synthesis represents a weighted average of
the rates of these sub-fractions. However, this approach may
obscure important phenotypic differences in rates of protein
synthesis occurring in specific protein sub-fractions in response
to nutrition or exercise. For example, it has been shown that
the stimulation of myofibrillar protein synthesis rates is more
sensitive to feeding and exercise during early (i.e.,∼5 h) and later
(i.e.,∼24 h) recovery when compared to the sarcoplasmic protein
fraction in healthy adults (44, 54). More importantly, muscle sub-
fractional protein synthesis rates are differentially responsive to
common stimuli [e.g., insulin, exercise (38–40, 44, 55, 56)] and
may be differentially impacted based on the population studied
(39, 40, 57). Therefore, to obtain a more complete picture of the
potential dysregulation of muscle protein metabolism in clinical
populations such as the obese it is advantageous to investigate the
response in specific sub-fractions.

THE IMPACT OF OBESITY ON MUSCLE
PROTEIN TURNOVER

Basal muscle protein synthesis rates have been assessed in obese
individuals in mixed muscle (41, 58) and within the myofibrillar
(40, 42, 59–61), sarcoplasmic (40, 42, 61), and mitochondrial
(41, 58, 62) protein sub-fractions and generally show no
impairment when compared to healthy-weight counterparts.
Though, lower basal mixed muscle (41) and mitochondrial (58)
protein synthesis rates in individuals with obesity as compared
to non-obese individuals have also been reported. The reasons
for these discrepant findings are not clear, and may reflect the
heterogeneity observed with obesity, which is discussed later
on. However, obesity is characterized by several well-known
impairments in macronutrient metabolism in skeletal muscle

that results in altered regulation of blood glucose and lipids (63).
Accumulating evidence also suggests that stimulation of muscle
protein synthesis rates during the postprandial period is altered
in obese individuals as compared to normal-weight controls
(defined as a body mass index; BMI < 25 kg/m2) (40–42, 58–
60), although this finding is not universal (61, 62). Moreover, the
specific alterations to muscle sub-fractions (e.g., mitochondrial,
myofibrillar, and/or sarcoplasmic) are also not consistent among
studies. These discrepancies between studies may relate to a lack
of standardized participant grouping (e.g., healthy-weight (BMI
< 25 kg/m2) vs. non-obese individuals (BMI < 30 kg/m2) as
controls) and/or postprandial conditions (i.e., meal ingestion vs.
AA infusions) among study designs. A summary of the above
studies is presented in Table 1 and their main findings will be
discussed in the next sections.

Much of the earlier work studying the effects of obesity
on the regulation of postprandial muscle protein synthesis
rates centered on the intravenous delivery of AAs during a
clamp procedure. Under hyperinsulinemic-hyperaminoacidemic
clamp conditions, it has been reported that obese men
exhibit lower rates of mixed muscle (58), myofibrillar (59),
mitochondrial (58) protein synthesis when compared to controls,
although evidence is also available that do not support these
differences (41, 61). While a hyperinsulinemic-euglycemic
clamp may represent the gold-standard for assessing insulin-

sensitive glucose disposal, sustained hyperaminoacidemia (with
or without hyperinsulinemia) is an atypical stimulus that

may be associated with a refractory stimulation of muscle
protein synthesis (64). Thus, the physiological relevance of
clamp conditions for assessing the impact of protein nutrition
on postprandial regulation of muscle protein synthesis is
arguably limited.

Relatively few experiments have compared the stimulation

of postprandial muscle protein synthesis rates in individuals

with obesity vs. healthy-weight individuals under the typical

applied setting of ingesting protein-dense foods (42, 60, 62).

These experiments, which have incorporated the ingestion of a
bolus of high-quality protein [i.e., milk (60) or lean pork (42, 62)],
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FIGURE 2 | Healthy anabolic signaling in the skeletal muscle (A). Potential dysregulation to anabolic signaling with obesity (B). → indicates a stimulation. ⊥ indicates

an inhibition.
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TABLE 1 | Effect of obesity on human muscle protein synthesis.

AMINO ACID INFUSION STUDIES

Experiment Populations studied Conditions Basal MPS

OB vs. CON

OB Postprandial

MPS vs. basal

Postprandial MPS

OB vs. CON

Guillet et al. (58) Young men Hyper-AA ↓ Mixed ↑ Mixed ↓ Mixed

OB vs. Non-OB (CON) hyperinsulinemia ↓ Mito ↔ Mito ↓ Mito

Murton et. al. (59) Older men Hyper-AA ↔ Myo ↔ Myo ↓ Myo

OB vs. HW (CON) hyperinsulinemia

Chevalier et al. (61) Young men Hyper-AA ↔ Myo ↑ Myo ↔ Myo

OB vs. HW (CON) hyperinsulinemia ↔ Sarc ↑ Sarc ↔ Sarc

Tran et al. (41) Young men Hyper-AA ↓ Mixed ↑ Mixed ↔ Mixed

OB vs. HW (CON) ↓ Mito ↑ Mito ↔ Mito

PROTEIN INGESTION STUDIES

Experiment Populations studied Protein source Basal MPS

OB vs. CON

OB Postprandial

MPS vs. basal

Postprandial MPS

OB vs. CON

Beals et al. (42) Young adults Lean pork (36 g) ↔ Myo ↔ Myo ↓ Myo

OB vs. HW (CON)

Beals et al. (62) Young adults Lean pork (36 g) ↔ Mito ↑ Mito ↔ Mito

OB vs. HW (CON)

Smeuninx et al. (60) Older adults Milk protein isolate (15 g) ↔ Myo ↔ Myo ↓ Myo

OB vs. HW (CON)

EXERCISE STUDIES

Experiment Populations studied Protein source Exercise bout Basal MPS

OB vs. CON

OB Postexercise

MPS vs. rest*

Postexercise MPS

OB vs. CON

Hulston et al. (72) Young adults N/A Unilateral knee N/A ↑ Mixed ↔ Mixed

OB vs. HW (CON) extension 4 sets

at 70% 1RM

Beals et al. (40) Young adults Lean pork (36 g) Unilateral knee ↔ Myo ↔ Myo ↓ Myo

OB vs. HW (CON) extension 4 sets

at 65-70% 1RM

↔ Sarc ↔ Sarc ↔ Sarc

OB, Obese; CON, control group; HW, healthy-weight; OW, overweight; AA, amino acids; MPS, muscle protein synthesis; Sarc, sarcoplasmic; Mito, mitochondrial; Myo, myofibrillar;

Mixed, mixed muscle; ↔, no change/difference; ↑, increased/greater; ↓, decreased/lower. *these studies used a unilateral model—rest leg was used for this comparison.

have revealed that myofibrillar (42, 60), but not mitochondrial
protein synthesis rates (62), are reduced in people with obesity
compared with healthy-weight individuals after the consumption
of protein-dense foods. Indeed, protein-dense food ingestion
results in a differential pattern of plasma amino acid availability

when compared to directly infusing free AAs intravenously. For

example, the ingestion of meat, milk and eggs, important sources
of protein in many diet patterns, results in peak plasma amino

acid availability occurring ∼2 h after the meal, which wanes

over the latter portion of a postprandial period (65, 66). The
same pattern is also witnessed when observing plasma insulin
concentrations after protein ingestion in healthy adults (67).
By contrast, clamp conditions are on the other end of the
continuum and attempt to alter concentrations of AA and/or
insulin in a square wave fashion to maintain concentrations at
postprandial or supraphysiological levels over an extended period
of time, which may have unintended consequences on muscle
protein synthesis rates (64). Clamp conditions also bypass the
digestive tract, which plays several important roles in stimulating
uptake of nutrients from a meal into peripheral tissues (68–70).
Collectively, it is clear that the prime anabolic signals (dietary
AAs) to muscle behave very differently when provided as a bolus

vs. delivered intravenously, and underlines the value of using
more practical approaches when characterizing the impact of
nutrition on the regulation of muscle protein synthesis rates in
a fraction specific manner with health and disease.

OBESITY-RELATED ANABOLIC
RESISTANCE OF MUSCLE PROTEIN
SYNTHESIS

Potential factors underpinning anabolic resistance of muscle
protein synthesis with obesity are shown in Figure 2B. Somewhat
contradictory to the above data regarding muscle protein
synthesis rates, basal phosphorylation of anabolic signaling
proteins such as mTORS2448 (40–42), and its downstream target
ribosomal protein S6 kinase (p70S6KT389) (40, 71), are often
quite elevated in people with obesity when compared to normal-
weight individuals. These findings are suggestive of greater
basal anabolic signaling in the muscle. However, an elevated
phosphorylated-state of basal anabolic signaling mechanisms in
people with obesity are not universal findings (59, 72), which
again serves to reflect the heterogeneity in this condition. Total
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muscle mTOR protein content is also not always reported (41,
72), and presenting only ratios of phosphorylated: total protein
can mask the true levels of phosphorylated mTOR as several
studies have reported greater muscle mTOR protein content
in individuals with obesity (40, 42). It is currently not fully
understood how basal anabolic signals are maintained at these
greater levels with obesity. Nevertheless, greater basal mTOR
phosphorylation may prevent the characteristic postprandial
increase in mTOR phosphorylation in those with obesity (41, 42),
perhaps suggesting an upper limit for activation of anabolic
signaling through this protein complex. For example, one study
showing apparently normal basal mTOR phosphorylation in
those with obesity, did show increased phosphorylation of
mTOR during the postprandial period (59). Phosphorylation of
other target proteins downstream of mTORC1 and/or p70S6K
signaling [ribosomal protein S6, rpS6S240/244 (58, 90); eukaryotic
translation initiation factor 4E-binding protein 1, 4EBP1T37/46

(58); eukaryotic initiation factor 2, eIF2S251 (44)] are unaltered
by obesity indicating that proximal aspects of the anabolic
signaling pathway are more disrupted compared to healthy-
weight individuals.

INSULIN RESISTANCE AND MUSCLE
ANABOLISM

Resistance to insulin was historically uncommon in the literature,
initially only represented by case studies (73). However, by
the 1950s it was recognized that a subset of people with
type 2 diabetes were less responsive to insulin and this was
accompanied with being overweight or obese (74). Given insulin’s
role in mTORC1 signaling, diminished responsiveness could be
an important aspect of muscle protein metabolism during the
postprandial period.

Obesity is often associated with elevated basal plasma
circulating branched chain AAs (BCAA) levels (75, 76),
which may relate to metabolic changes observed in the
skeletal muscle of people with obesity (77). Greater plasma
BCAAs concentrations are potentially linked to dysregulation
of metabolism with obesity, mostly as it relates to insulin
resistance (75, 78–81) and chronic activation of the mTORC1
signaling pathway (82, 83). These findings could be relevant to
observations of elevated basal mTORC1 signaling in people with
obesity (40–42). However, only one study that reported the effects
of obesity on the mTORC1 signaling pathway andmuscle protein
synthesis has shown mild elevations (∼20%) in plasma BCAAs
in obese vs. lean individuals (61) with the majority reporting no
differences (40–42, 58, 60, 84). Collectively this seems to suggest
that elevated basal circulating BCAAs may not be significant
nor consistent contributors to the dysregulated muscle protein
anabolic response in obesity.

Obesity is also associated with elevated plasma non-esterified
fatty acids (NEFA) (85). In fact, infusions of lipid with heparin,
which increases plasma NEFAs, can blunt insulin sensitivity
even in healthy, insulin-sensitive subjects (86). Lipid infusions
also impair myofibrillar protein synthesis in healthy participants
under hyperinsulinemic-hyperaminoacidemic conditions (87),

which suggests a possible role for insulin resistance in
the regulation of myofibrillar protein synthesis. A series of
experiments examined the relationship between plasma NEFA
concentrations and muscle protein synthesis rates in response
to protein ingestion in obese participants and healthy-weight
controls (42, 62). The participants with obesity in these studies
had only subtle differences in postprandial plasma NEFAs,
which did not appear to be related to either myofibrillar (42)
or mitochondrial protein synthesis (62). In contrast, other
have shown that greater intramyocellular lipids are associated
with diminished postprandial myofibrillar protein synthesis in
obese older adults (60). High intramyocellular lipid is classically
associated with insulin resistance in sedentary populations (88),
although the causality and mechanistic link for this relationship
is not clear. It is worthwhile noting that intramyocellular
lipid accumulation in obese human muscle (60) tends to be
sub-sarcolemmal as compared to intermyofibrillar in athletic
populations (89), which could impairmTORC1 translocation and
subsequent downstream activity of this pathway. Alternatively,
dysregulated insulin signaling is also attributed to changes in
intracellular lipid metabolites (90–92) and in particular the
sphingolipid ceramide (92, 93). An in vitro study showed
that ceramide treatment reduced small neutral amino acid
transporter (SNAT2)-mediated sarcolemmal translocation and
amino acid transport in L6 myotubes, which translated in
an attenuated phosphorylation of p70S6KT389 and amino acid
induced stimulation of muscle protein synthesis (94). Thus, the
relationship between intramyocellular lipid accumulation and/or
ceramide production and the intracellular anabolic signaling
(e.g., mTORC1) represents a fruitful area for further study.

Efficient delivery of AAs to peripheral tissues is important
for the postprandial stimulation of muscle protein synthesis
and may be mediated by an insulin-induced vasodilation of the
capillary bed (95, 96). Muscle capillarity has been suggested
to independently influence peripheral insulin sensitivity and
postprandial myofibrillar protein synthesis rates in older adults
(97–99), which could implicate a diminished muscle capillary
network (100) and/or insulin-induced recruitment (101) in obese
individuals as a contributing factor to the anabolic resistance of
this population.

Thus, far the impact of obesity per se compared to its
associated insulin resistance on the dysregulation of postprandial
anabolic response is unknown. For instance, overweight young
adults with apparently normal insulinemia and homeostatic
model assessment of insulin resistance (HOMA-IR) have
also been reported to have a blunted myofibrillar protein
synthesis response to protein ingestion and greater basal mTOR
phosphorylation (42). This could suggest that increased basal
mTOR phosphorylation may occur early with weight gain
prior to the development of discernible insulin resistance but
concomitant with a blunted postprandial anabolic response.
Indeed, substantial evidence has mounted that some individuals
with obesity remain nearly as insulin sensitive as lean
counterparts while other individuals with a similar degree of
obesity become insulin resistant (102). Whether differences in
insulin sensitivity are predictive of muscle anabolic sensitivity in
obese individuals is currently not known.
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INFLAMMATION AND MUSCLE PROTEIN
SYNTHESIS

Obesity is associated with chronic low-grade inflammation (103),
which has been linked to impaired glucose tolerance (104) and
dyslipidemia (105). This includes elevated basal levels of plasma
inflammatory biomarkers [i.e., CRP (42, 59, 60, 62, 72), IL-6
(42, 59, 62), TNFα (59)] in obese participants. Because of shared
metabolic signaling pathways, skeletal muscle inflammation
may also contribute to impaired protein anabolism in obese
individuals [Figure 2B (106)]. Indeed, protein metabolism is
dramatically altered by high levels of inflammation with trauma
or severe illness [e.g., thermal injury (107) or end stage renal
disease (108)], which may be related to direct effects of some
inflammatory markers (e.g., CRP and TNFα) on suppressing
muscle protein synthesis as demonstrated in vitro (109, 110).

A few studies have attempted to describe the muscle protein
synthetic response to protein ingestion in humans with low-
grade inflammation independent of obesity (111, 112). In
healthy older men stratified by plasma C-reactive protein (CRP)
concentrations, postprandial mixed muscle protein synthetic
rates were not different between groups (111). Another group
tested the effect of 1 week of ibuprofen or placebo administration
on basal and postprandial myofibrillar protein responses to whey
protein ingestion in older men with elevated CRP and compared
these responses to those of healthy non-inflamed older men
(112). In this study, basal and postprandial myofibrillar protein
synthesis were not different between ibuprofen and placebo
groups. Moreover, both intervention groups (ibuprofen and
placebo) had similar basal and postprandial rates of myofibrillar
protein synthesis compared with the non-inflamed control
group (112). Despite the implication of CRP in attenuating
muscle protein anabolism in vitro (109), results in humans,
and especially obese individuals, are less clear. Nevertheless,
elevated basal levels of plasma inflammatory biomarkers in
individuals with obesity [i.e., CRP (42, 59, 60, 62, 72), IL-6
(42, 59, 62), TNFα (59)] are associated with basal muscle protein
synthesis rates that are indistinguishable from healthy-weight
non-inflamed controls, but blunted postprandial myofibrillar
protein synthesis rates (42, 59, 60, 62), suggesting the impact of
low-grade inflammation (e.g., elevated inflammatory cytokines)
may depend on the nutrient environment.Moreover, as discussed
above, the muscles of overweight individuals are also anabolic
resistant (42), but this group does not show indications of
systemic or muscle inflammation (62).

Data concerning the effect of muscle inflammation on
postprandial muscle protein synthesis in people with obesity
is largely limited to the toll-like receptor 4 (TLR4) signaling
pathway. This receptor is involved in innate immunity and is
primarily known for responding to endotoxin (113), but is also
responsive to NEFA (114) and CRP (115) in circulation. TLR4
signaling involves docking with several intracellular proteins,
among these is myeloid differentiation factor 88 (MyD88),
which appears to potentiate the intracellular signaling of TLR4-
induced insulin resistance (114, 116). Muscle TLR4 protein
content correlates with body fat percentage in older adults
(117) and is related to NEFA-induced insulin resistance (114).

Although, one group found that muscle content of both TLR4
and MyD88 proteins are greater in obese, anabolic resistant
adults compared with healthy-weight controls (62), discerning
the impact of obesity or low-grade inflammation on differences in
the postprandial muscle protein synthetic response is not possible
from the experiment described above.

EXERCISE TO IMPROVE ANABOLIC
SENSITIVITY WITH OBESITY

Leisure time physical activity is a potent treatment for health
and its regular performance reduces mortality (118). Physical
inactivity has been linked to numerous adverse health outcomes
and is predictive of metabolic health with obesity (119). Physical
inactivity has also been linked to anabolic resistance in obese
older adults (60) and may contribute to the development of
sarcopenic obesity (120). For interventions, exercise represents
a structured manner to increase daily physical activity. Exercise
training takes many forms, but most can be categorized as either
endurance (aerobic) or resistance (strength) exercise, though
those lines can be somewhat blurred (e.g., high intensity interval
training). Each of these training modalities has differing effects
on the muscle phenotype, but the effects on muscle tissue health
(e.g., insulin sensitivity, endothelial function) appear to be more
universal (121–124). Moreover, as physical activity is an essential
component of strategies to improve body composition (125, 126),
it is important to consider how the muscle adaptive response is
affected by obesity.

Endurance training is commonly recommended to improve
health and body composition in individuals with obesity. There
is limited data studying the impact of endurance exercise on
the muscle protein synthesis rates in individuals with obesity.
However, in healthy, but untrained young men, an acute bout
of endurance exercise appears to favor the stimulation of
mitochondrial, over myofibrillar, muscle protein synthesis rates
during the postprandial period, an effect which was not modified
by a 10-wk training period (39). The same work also reported that
resistance exercise tends to increase myofibrillar muscle protein
synthesis, in particular after a period of training (39). These
findings may be important for determining exercise prescription
in those with obesity, given that myofibrillar protein synthesis
seems to more affected by obesity (40, 42, 59–61) than muscle
mitochondrial protein synthesis (41, 58, 62).

A single bout of resistance exercise can induce substantial
alterations of macronutrient metabolism such as improvements
in glucose tolerance (121) and postprandial lipemia (127) in
healthy young men. Resistance exercise also potentiates muscle
protein synthesis rates compared with feeding alone in healthy-
weight young and older men (128), an effect that may persist
for up to 2 days (54, 129). It appears that resistance exercise
is particularly effective at enhancing the myofibrillar (more so
than the sarcoplasmic or mitochondrial) sub-fractional protein
synthetic response to protein ingestion in healthy adults (40, 44,
56). Therefore, resistance exercise would ostensibly be an ideal
intervention for improving the obesity-related impairment in
postprandial myofibrillar protein synthesis rates.
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Two studies have assessed the impact of acute resistance
exercise on muscle protein synthesis and related anabolic
signaling mechanism in people with obesity, the findings of
which are summarized in Tables 1, 2 (40, 72). One investigation
observed acute resistance exercise increased mixed muscle
protein synthesis in the fasted state with no differences
in protein synthetic rates nor anabolic signaling molecule
phosphorylation (e.g., mTORC1) between obese and healthy-
weight adults (72). However, mixed muscle protein synthetic
responses represent an average of all muscle proteins, which can
have markedly different rates of turnover and contraction and
nutrient sensitivities (44, 130, 131). When sub-fractional protein
synthetic responses to resistance exercise after protein ingestion
are compared, the postprandial myofibrillar protein synthetic
response was not further stimulated by resistance exercise in

obese vs. healthy-weight groups whereas sarcoplasmic muscle
protein synthesis rates were largely unaffected by obesity or
exercise (40). We also reported that resistance exercise prior to
protein ingestion did not augment phosphorylation of targets
downstream of mTORC1 (p70S6KT389, 4EBP1T37/46) in those
with obesity, which contrasted starkly with their healthy-weight
counterparts. As highlighted previously, lysosomal targeting of
mTORC1, which appears to be mediated by the production
of phosphatidic acid (PA) (132–134), is integral to maximize
post-exercise myofibrillar synthetic rates in the fed state (135).
Interestingly, ceramide has also been reported to blunt PA
production in L6 myoblasts (136), which may have contributed
to the attenuated myofibrillar protein synthetic response to
resistance exercise in obese individuals (40). Nevertheless, these
studies collectively underscore the importance of assessing the

TABLE 2 | Effect of obesity on muscle anabolic signaling.

AMINO ACID INFUSION STUDIES

Experiment Populations studied Conditions Basal OB vs.

CON

OB Postprandial

vs. basal

Postprandial

OB vs. CON

Murton et al. (59) Older men Hyper-AA ↔ mTORS2448 ↑ mTORS2448 ↔ mTORS2448

OB vs. HW(CON) hyperinsulinemia

Chevalier et al. (61) Young men Hyper-AA ↔ p70S6KT389 ↑ p70S6KT389 ↓ p70S6KT389

OB vs. HW (CON) hyperinsulinemia ↔ rpS6S240/244 ↑ rpS6S240/244 ↔ rpS6S240/244

↔ 4EBP1S65 ↑ 4EBP1S65 ↔ 4EBP1S65

Tran et al. (41) Young men Hyper-AA ↑ mTORS2448 ↔ mTORS2448 ↑ mTORS2448

OB vs. HW (CON) ↔ p70S6KT389 ↑ p70S6KT389 ↑ p70S6KT389

↔ eIF2S51 ↔ eIF2S51 ↔ eIF2S51

Williamson et al. (71) OB,T2D vs. HW (CON) Hyperinsulinemia ↔ REDD1 ↔ REDD1 ↑ REDD1

↑ p70S6KT389 ↓ p70S6KT389 ↔ p70S6KT389

↓ 4EBP1T37/46 ↔ 4EBP1T37/46 ↓ 4EBP1T37/46

PROTEIN INGESTION STUDIES

Experiment Populations studied Protein source Basal

OB vs. CON

OB Postprandial

vs. basal

Postprandial

OB vs. CON

Beals et al. (42) Young adults Lean pork (36 g) ↑ mTORS2448 ↔ mTORS2448 ↔ mTORS2448

OB, OW vs. HW (CON) ↔ p70S6KT389 ↑ p70S6KT389 ↑ p70S6KT389

Gran et al. (84) Middle-aged men Dairy protein (31 g) N/A ↑ mTORS2448 ↔ mTORS2448

OB w/MetS vs. Non-OB (CON) ↔ p70S6KT389 ↓ p70S6KT389

↑ rpS6S240/244 ↔ rpS6S240/244

Soy protein (31 g) N/A ↔ mTORS2448 ↔ mTORS2448

↔ p70S6KT389 ↓ p70S6KT389

↔ rpS6S240/244 ↔ rpS6S240/244

EXERCISE STUDIES

Experiment Populations studied Protein source Exercise bout Basal

OB vs. CON

OB Postexercise

vs. rest*

Postexercise

OB vs. CON

Hulston et al. (72) Young adults N/A Unilateral knee ↔ mTORS2448 ↑ mTORS2448 ↔ mTORS2448

OB vs. HW (CON) extension 4 ↔ p70S6KT389 ↑ p70S6KT389 ↔ p70S6KT389

sets at 70% 1RM ↔ 4EBP1T37/46 ↑ 4EBP1T37/46 ↔ 4EBP1T37/46

Beals et al. (40) Young adults Lean pork (36 g) Unilateral knee ↑ mTORS2448 ↔ mTORS2448 ↔ mTORS2448

OB vs. HW (CON) extension 4 sets ↑ p70S6KT389 ↔ p70S6KT389 ↓ p70S6KT389

at 65–70% 1RM ↔ 4EBP1T37/46 ↔ 4EBP1T37/46 ↓ 4EBP1T37/46

OB, obese; CON, control group; HW, healthy-weight; OW, overweight; AA, amino acids; mTORC1, mechanistic target of rapamycin; p70S6K, ribosomal protein S6 kinase; rpS6,

ribosomal protein S6; 4EBP1, eukaryotic translation initiation factor 4E-binding protein 1; eIF2, eukaryotic initiation factor 2; REDD1, regulated in development and DNA damage 1;

MetS, metabolic syndrome; ↔, No change/difference; ↑, increased/greater; ↓, decreased/lower; 1RM, one-repetition maximum strength. * Resting measurement was performed in

contralateral non-exercised leg.
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sub-fractional protein synthetic responses to the independent
and combined anabolic effect of resistance exercise and
protein ingestion.

Combined endurance and resistance (i.e., concurrent) exercise
training has been demonstrated to have beneficial effects on
body composition in adults with overweight or obesity (137).
An acute bout of concurrent exercise has been demonstrated to
alleviate the suppressive effect of elevated NEFAs on postprandial
mixed muscle protein synthesis rates in middle-aged men with
overweight or obesity (138). There are relatively few studies
that employed a longitudinal design incorporating a combined
endurance and resistance exercise approach in obese older adults
(139–141). These studies reported rates of mixed muscle protein
synthesis before, during, and after exercise with somewhat
equivocal results. Two reports showed that increased multi-
modality physical activity (endurance + resistance) over a 3
month period increases basal mixed muscle protein synthesis
rates, but the magnitude of postprandial stimulation of muscle
protein synthesis rates was not affected (140). In contrast, the
same group also reported, in a similar population, that weight
loss over 12 months of caloric restriction with multi-modality
physical activity does not change either basal or postprandial
mixed muscle protein synthesis rates (141). That study did show
that during active weight loss, measured at 3 months of the
intervention, the postprandial mixed muscle protein synthesis
rates were substantially elevated. The latter finding indicates that
prolonged energy restriction with relatively low protein intake
(1.0 g/kg/day) may hamper the muscle anabolic response to
multi-modality exercise (141).

Several studies have shown that greater dietary protein (>1.2
g/kg/day) helps to preserve muscle protein synthesis rates during
caloric restriction-induced weight loss (∼40% energy restriction)
in healthy-weight (142) and individuals with overweight or
obesity (10, 143). In overweight and obese men, the amount
of dietary protein required to sustain muscle protein synthesis
rates during caloric restriction could be even greater when a
high volume of exercise (resistance training and high-intensity
intervals) is also performed (143). These studies (10, 141, 143)
serve to underscore the importance of considering both nutrition
and physical activity when designing interventions to treat
obesity and/or its co-morbidities.

CONCLUSIONS

Protein ingestion is an important component of a healthy
diet and has been touted for its potential to facilitate weight
loss for those with obesity (144). When studies are considered
together, obesity primarily affects the postprandial myofibrillar
protein synthetic response to nutrition and exercise (Table 1),
which is likely related to altered intramyocellular signaling

cascades (Table 2). Identification of mechanisms responsible for
greater basal anabolic signaling molecule phosphorylation could

potentially yield novel therapeutic targets.
Obesity is an inherently variable condition, which likely

explains the observations discussed throughout this review. For
example, insulin resistance can manifest itself as impaired fasting
glucose, glucose intolerance, or both (145). In fact, the variability
in glucose metabolic outcomes with obesity has been extensively
discussed (102, 145). With this in mind, differences in insulin
sensitivity or inflammation may impact muscle protein synthetic
responses and explain some of the variability observed in the
various studies discussed in this review.

The studies of acute resistance exercise discussed above
employed robust exercise protocols in excess of most
recommendations for untrained weightlifters (146–148). It
is remarkable that this exercise prescription was insufficient
to augment myofibrillar protein synthesis rates after protein
ingestion. There is potential that increasing the exercise volume
could have a positive impact on postprandial myofibrillar
protein synthesis rates; similar to improvements seen in older
anabolic resistant adults (149). Future studies should focus
on long-term interventions that include combined diet and
exercise strategies to reduce obesity and examine the impact
of weight loss and/or exercise training status on postprandial
muscle protein synthesis and anabolic signaling. These long-
term studies could also benefit from the use of deuterium
oxide (heavy water) to determine free-living rates of muscle
protein synthesis during an intervention period. However,
differences between nutritional interventions (e.g., protein type,
leucine dose) on acute rates of myofibrillar protein synthesis
in response to a single meal ingestion with traditional primed
constant infusions may be less pronounced when assessed
by D2O in a free-living environment (150, 151), highlighting
the need for additional research utilizing a variety of stable
isotope methodologies to study the presence and consequence
of obesity-related anabolic resistance. Dietary interventions
should focus on ensuring adequate protein nutrition (∼1.2
g/kg/day). Ideally, future studies would incorporate more
comprehensive metabolic profiling (e.g., measures of insulin
sensitivity) that would allow better insight as to how the
phenomena of metabolic (ab)normality with obesity (102)
affects muscle protein synthesis responses to dietary protein
and exercise.
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