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A B S T R A C T   

Photoacoustic tomography (PAT), as a novel medical imaging technology, provides structural, functional, and 
metabolism information of biological tissue in vivo. Sparse Sampling PAT, or SS-PAT, generates images with a 
smaller number of detectors, yet its image reconstruction is inherently ill-posed. Model-based methods are the 
state-of-the-art method for SS-PAT image reconstruction, but they require design of complex handcrafted prior. 
Owing to their ability to derive robust prior from labeled datasets, deep-learning-based methods have achieved 
great success in solving inverse problems, yet their interpretability is poor. Herein, we propose a novel SS-PAT 
image reconstruction method based on deep algorithm unrolling (DAU), which integrates the advantages of 
model-based and deep-learning-based methods. We firstly provide a thorough analysis of DAU for PAT recon
struction. Then, in order to incorporate the structural prior constraint, we propose a nested DAU framework 
based on plug-and-play Alternating Direction Method of Multipliers (PnP-ADMM) to deal with the sparse sam
pling problem. Experimental results on numerical simulation, in vivo animal imaging, and multispectral un- 
mixing demonstrate that the proposed DAU image reconstruction framework outperforms state-of-the-art 
model-based and deep-learning-based methods.   

1. Introduction 

Multispectral photoacoustic tomography (PAT) is a hybrid imaging 
method [1,2] that has demonstrated its capability in visualizing 
mammalian brain neuronal activity [3], tracking tumor advancement 
[4,5], diagnosing issues related to placental and fetal health [6,7]. 
However, in order to obtain multi-wavelength photoacoustic data, the 
laser need to continuously switch excitation wavelengths for repeated 
scanning, which places a high demand on multi-channel simultaneous 
acquisition and the system cost [2]. To alleviate this, the sparse sampling 
strategy can be used, which reduces the total number of detectors. 
However, the reduction of detectors leads to significant degradation in 
the quality of reconstructed images. The popular universal 
back-projection (UBP) algorithm [8] has been shown to perform poorly 

in sparse sampling PAT imaging. Therefore, specific image reconstruc
tion algorithms are needed to improve the quality of sparse sampling 
PAT [9–11]. Current image reconstruction methods for sparse sampling 
PAT include the model-based (MB) methods and deep-learning-based 
(DL) methods. 

Model-based methods treat the PAT image reconstruction problem as 
a linear inverse problem, which usually contains a data fidelity term and 
a regularization term [12,13]. Prior knowledge of the image can be 
incorporated though the regularization term to address the sparse 
sampling problem [14]. For example, total variational (TV) regulariza
tion combined with L1-norm and image difference can improve PAT 
image reconstruction from sparse sampled data [15,16]. Non-local 
means (NLM) regularization enables enhanced reconstruction of PAT 
images by searching for similar image patches and performing weighted 
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summation [2,17]. Furthermore, by incorporating the edge information 
of the structural prior into the sparse sampling PAT images, the direc
tional total variation (dTV) method avoids traversing of the image and 
obtains promising results with reduced computational cost [13]. 
Nonetheless, all the aforementioned approaches require the design of 
analytical and intricate handcrafted regularization terms, and inappro
priate prior selection can lead to unsatisfactory performance or even 
reconstruction failure. 

In recent years, deep learning has gained prominence in both in
dustrial and medical imaging applications [18–20]. For PAT image 
reconstruction, Waibel et al. [21] first proposes to utilize the U-Net 
framework to realize direct image reconstruction, which harnesses the 
time series data to obtain initial pressure distribution without 
pre-processing. Lan et al. [22] proposes to employ the general adver
sarial network for reconstruction, where raw data reconstructed by 
conventional reconstruction algorithm is also fed into the network to 
leverage additional information. However, the performance of 
learning-based methods is crucially relying on well-labeled real-world 
training data, which is typically deficient in PAT imaging. Furthermore, 
DL network model is often regarded as a black box, which lacks 
interpretability. 

The above problems can be well addressed by deep algorithm 
unrolling (DAU), a novel DL-based method that combines the advan
tages of both the model-based and the DL-based method [23,24]. The 
main idea of DAU is that conventional model-based iterative optimiza
tion algorithm can be implemented by convolutional neural network 
(CNN) blocks and deploys learnable parameters in each iteration, so that 
the parameters could be updated in an end-to-end manner [25–27]. For 
instance, Schwab et al. [28] incorporates supplementary weight factors 
that considers the properties of acoustic detectors into the standard 
back-projection approach to improve reconstruction quality. Haupt
mann et al. [29] introduces an iterative learning strategy that involves 
iterative reconstruction by training distinct networks for each iteration 
step and incorporating them into the reconstruction process. Although 
these methods have demonstrated the feasibility of DAU for PAT image 
reconstruction, they have not employed the rich prior information 
provided by multispectral excitation in multispectral PAT. 

To address the above limitation, here we propose a new DAU-based 
image reconstruction method that incorporates the structural prior into 
the unrolling framework for multispectral sparse sampling PAT. Our 
DAU framework is based on the unrolling of alternating direction 
method of multipliers (ADMM) [30]. We choose the dTV constraint as 
the tool for introducing structural information. We transform the dTV 
prior to an image restoration block, which is then integrated into the 
unrolled ADMM framework in a plug-and-play (PnP) manner. This 
eventually leads to a DAU network model nested by dTV, or NDU-dTV as 
we named it. To validate the effectiveness of our method, we first test 
our NDU-dTV model in numerical simulation experiment with com
parison to other model-based and DL-based methods under different 
sparse sampling rates. Further, we perform multispectral PAT imaging 
experiment on mice in vivo, where our NDU-dTV method shows signif
icant improvement in both reconstruction results and spectral un-mixing 
accuracy, thus revealing its attractive potential. 

2. Theory 

2.1. PAT imaging model 

In model-based PAT image reconstruction, the relationship between 
the photoacoustic signal and the image can be represented in the form of 
a discrete matrix, defined as [12] 

p = Ax, (1)  

where p and x are the original photoacoustic signal and the target image 
represented by vectors. A is the system matrix, with its elements rep

resenting the response function mapping from object space to data 
space. The solution of x can be obtained by solving the model-based 
optimization problem: 

x = argmin
1
2
‖p − Ax‖2

2 + λJ(x), (2)  

where ‖p − Ax‖ is the data fidelity term; J(x) is a regularization term and 
λ is the trade-off parameter balancing the data fidelity term and regu
larization term. 

2.2. Multispectral interlaced sparse sampling PAT method 

Current multispectral PAT system employs transducer array 
encompassing hundreds of detection elements in order to ensure effec
tive angular coverage and facilitates multispectral measurement [31]. In 
practice, the reduction of data volume could be achieved by sparse 
sampling, but it is challenging to retain detail structural information 
when there is only a very small number of detectors available. In mul
tispectral imaging, the missing structural information problem can be 
addressed through the technique called interlaced sparse sampling 
photoacoustic tomography (ISS-PAT) [2]. In ISS-PAT, as shown in Fig. 1, 
the sparse detector arrays rotate by a certain angle every time the 
excitation wavelength is switched from one another. Following a certain 
number of rotations, the obtained sparse signals contain information 
from different scanning angles and different wavelengths. The signals 
are then combined and reconstructed into a structural prior image, 
which is then used to guide the reconstruction of images at individual 
wavelength. Compared to dense sampling, the ISS mode reduces the 

Fig. 1. (a) Schematic diagram of multispectral ISS-PAT principle. ① Acquiring 
interlaced sparse-sampling signals, where the detector array rotates with 
wavelength switching. ②Linearly combining the acquired sparse signals to 
obtain a set of dense signal. ③ The dense signal is reconstructed to obtain a 
structural prior image. (b) Overview of the proposed NDU-dTV for SS-PAT. The 
top orange-colored box denotes the unrolled ADMM network for image 
reconstruction. Underneath is the dTV-based image restoration blocks nested 
into the unrolled ADMM, which incorporates the prior information. K and N 
represent the number of the stages in image restoration block and the iterations 
in ADMM respectively. 
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detector number but does not increase the total multispectral imaging 
time. 

In ISS-PAT image reconstruction, the structural prior is introduced 
by designing a regularization term to leverage the structural similarity 
between the image to be reconstructed and the structural prior image. 
To do so, the directional total variational (dTV) method has been pro
posed [13] for efficient image reconstruction. The dTV regularization 
assesses the need for constraint by evaluating the gradient direction of 
the reconstructed image and the prior image at a specific point, it can be 
written as 

JdTV(x, a) =
⃒
⃒Pξ∇x

⃒
⃒, (3)  

where Pξ∇x is used to extract the structural information from the prior 
image, and defined as 

Pξ∇x = PξDx = ∇x − 〈ξ,∇x〉ξ, (4) 

∇x is the gradient direction of the image to be reconstructed, and ξ is 
the unit gradient direction of the structural prior image, defined as 

ξ =
∇a

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|∇a|2 + ε2
√ , (5)  

where a is the structural prior image; ε is a constant term that prevents 
the denominator part from being zero. As can be seen, when the angle 
between ∇x and ξ is 0, then 〈ξ,∇x〉ξ = ∇x and Pξ∇x = 0, and JdTV(x, a)
is minimum. This means that the structure of the image to be recon
structed resembles that of the prior image. In this way, because the prior 
image is only used to measure the similarity of the gradient direction, it 
does not involve in the weighted average operation. Therefore, the in
tensity of the prior image will not affect the intensity of the target image 
[13]. 

3. Method 

3.1. Deep algorithm unrolling based on ADMM 

The model-based image reconstruction problem shown in Eq.(2)
could be solved by various algorithms, such as iterative shrinkage- 
thresholding algorithm (ISTA) [32], alternating direction method of 
multipliers (ADMM) [33], and primal-dual hybrid gradient (PDHG) al
gorithm [34]. Among them, ADMM is a method that solves generic 
unconstrained optimization problems with non-differentiable convex 
functions. It combines the robustness of the augmented Lagrangian 
relaxation method with the effectiveness of the multiplier method, 
leading to an efficient and reliable convergence process [35]. It is the 
first algorithm that has been demonstrated with deep algorithm 
unrolling [30]. 

As a variant of the ADMM, Plug-and-Play ADMM (PnP-ADMM) has 
shown enhanced performance compared to the standard ADMM without 
explicit regularization in image reconstruction tasks [36,37]. 
PnP-ADMM exhibits faster convergence rates and requires fewer itera
tions compared to traditional ADMM, particularly in image processing 
tasks [38]. By leveraging domain-specific denoisers, PnP-ADMM can 
exploit the structure of the underlying problem more effectively, leading 
to improved convergence behavior and reduced computational 
complexity [39]. Introducing z = ∇x = Dx, the problem of PAT 
reconstruction in Eq. (2) can be solved by augmented Lagrangian 
function as 

Lρ(x, z, v) =
1
2
‖p − Ax‖2

2 + β|z| + λT(D1x − z) +
ρ
2
‖D1x − z‖2

2 (6) 

The above problem can be solved by DAU based on PnP-ADMM as 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xn =
(
ATA + ρDT

1D1
)− 1

(ATp + ρDT
1
(
zn− 1 − vn− 1)),

zn = G(xn, vn− 1),

vn = vn− 1 − σ1zn + σ2D1xn,

(7)  

where G denotes the off-the-shelf denoiser. ρ, σ1, σ2 are hyper-parame
ters. 

Recent researches have shown that we can implicitly use CNN to 
represent the convolution operation Dl,DT

l . As illustrated in the yellow 
box in Fig. 1(b), by generalizing the iterative ADMM algorithm to a deep 
architecture, its iterative procedures in Eq. (7) are mapped to a data flow 
graph, so that the n − th iteration of ADMM algorithm corresponds to the 
n − th stage of the data flow graph. This generalization process is 
referred to as deep algorithm unrolling, because it spreads the ADMM 
steps in the manner of deep networks. In contrast to conventional black- 
box-like CNN models, DAU network is considered interpretable because 
it is stemmed from rigorous optimization algorithm. For PnP-ADMM, the 
denoiser G can also be unrolled into the DAU network as an end-to-end 
trainable deep network and typically yields superior results with fewer 
iterations [40]. 

3.2. PAT image reconstruction based on NDU-dTV 

In our SS-PAT image reconstruction task, although the dTV method 
could achieve comparable performance, it is non-trivial to tune the 
iterative parameters in ADMM solver. Also, the iteration involves com
plex iterative computation scheme and specific convergence condition. 
Introducing the dTV method by using PnP-ADMM may ease these 
limitations. 

Assuming the output of the reconstruction layer as y, the denoising 
problem can be solved as 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(n, k) =
[
I + μDT

2PT
ξ PξD2

]− 1
[y + μPξD2(z(n,k− 1) − t(n,k− 1))],

z(n,k) = β1z(n,k− 1) + β2(x(n,k) + t(n,k− 1)) − DT
2PT

ξ H(PξD2z(n,k− 1)),

t(n,k) = t(n,k− 1) − γ
(
z(n,k) − PξD2x(n,k)),

(8)  

where H represents the non-linear transforms. μ, γ, β1, β2 are the learn
able parameters. 

Next, as stated above, the denoiser in PnP-ADMM can be imple
mented by a DAU network. In our case, this means we can integrate the 
dTV method into the deep algorithm unrolling, resulting in DAU-dTV as 
Eq. (8). Inspired by the recently reported nested DAU method [27], we 
incorporate the DAU-dTV that serves as an image restoration module 
with the inclusion of structural prior information, into the unrolled 
ADMM framework. As shown in Fig. 1(b), each stage of the network 
consists of a reconstruction layer (Xn), an image restoration block (Zn)

and a variable update layer (Vn), corresponding to the iteration of 
PnP-ADMM. Because of its nested structure, we call our model 
NDU-dTV. 

Image reconstruction layer (Xn). This layer reconstructs an image 
according to the reconstruction operation Xn in Eq. (7). The data flow of 
this layer in n − th iteration is illustrated in Fig. 2(a). The output xn in 
this layer is the input for subsequent image restoration block Zn. We do 
not constrain the parameters to be the same in different iterations to 
enhance network capacity. 

Image restoration block (Zn). We next introduce an image resto
ration block to implement Zn, which is replaced by denoising method 
based on DAU illustrated in Eq. (8). According to the second subproblem 
in Eq.(8), we first decompose and generalize the operation 
DTPT

ξ H(PξDz(n,k− 1)) to the residual CNN structure. As shown in Fig. 2(b), 
for the k − th stage in the image restoration block, the residual CNN 
structure is defined as ‘Convolution (Conv.) +Batch Normalization (BN) 
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+Rectified Linear Unit (ReLU)’. 
As shown in Fig. 2(b), given the outputs of previous layers x(n,k),

t(n,k− 1), z(n,k− 1) and o(n,k)2 , the output of this layer is z(n,k) = β1z(n,k− 1) +

β2(t(n,k− 1) + t(n,k− 1)) − o(n,k)2 , where o(n,k)2 represents the output of the 
residual CNN structure. 

Variable update layer (Vn). We generalize the variable update 
procedure Vn in Eq. (7) to the multiplier update layer. As shown in Fig. 2 
(c), given three inputs xn, zn and vn− 1, the output of variable update layer 
in iteration n is defined as vn = vn− 1 − σ1zn + σ2D1xn. 

4. Experimental setup 

4.1. NDU-dTV implementation 

The optimization of the NDU-dTV is implemented using PyTorch, 
and all experiments are run on a workstation equipped with a Titan X 
GPU. We use the Adam solver with the initial learning rate of 1× 10− 3 

with a poly decay strategy. The batch size and maximum iterative 
number are set to 14 and 10,000. After testing different parameter set
tings, we set the number of iterations N = 10 and stage K = 10. For the 
learnable parameters, we use the random initialization to initialize the 
network parameters. To assess the structural constraint provided by the 
dTV method, we also implemented the Total Variation (TV) method, 
which is known for its effective denoising performance but lacks the 
capability of incorporating structural prior information from external 
sources. The TV method is integrated into the PnP-ADMM framework by 

DAU using the same setting, and thus is referred to as DAU-TV. 

4.2. PAT data acquisition 

All the animal experiments are carried out on a commercial multi
spectral PAT system, the MSOT inVision128 (iThera Medical GmbH, 
Germany). Fig. 3(a) shows a diagram of the imaging chamber of the 
system. In this system, a tunable laser (670–960 nm) with repetition 
frequency of 10 Hz, pulse width < 10 ns, and a maximum pulse energy 
of 60 mJ at 700 nm excites the samples. The ultrasonic signals generated 
from the samples are transmitted by water, and subsequently captured 
by the ring-shaped transducer array with a center frequency of 5 MHz 
and 6-dB bandwidth of 100 %. Fig. 3(b) shows the schematic diagram of 
the ultrasound transducer setting, which is equipped with 128 elements 
with 270-degree detection angle and a radius of 40.5 mm. Sparse sam
pling data is obtained by simulating the evenly-spaced sparse detector 
setting at two down-sampling rates: 1/4 and 1/6, which corresponds to 
32 and 21 transducer elements respectively. 

4.3. Simulation setup 

Fig. 4 shows the simulation process to obtain initial PAT images. The 
imaged object is a vascular network from the public fundus oculi vessel 
datasets DRIVE [41] and STARE [42], which consisted of two mediums, 
oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb), located in the left 
and right half of the image respectively. μα and μs of HbO2 and Hb at 
different wavelengths are determined by following reference [43]. The 

Fig. 2. The data flow of NDU-dTV framework. The rectangular box represents the focal layer, while the circles symbolize the layers interconnected with the focal 
layer. Solid arrows signify the data propagation during the forward pass, and dashed arrows represent the reverse update during gradient computation in back- 
propagation. 

Fig. 3. (a) A side view of the cross-sectional PAT system; (b) Schematic of the array transducer setting at 1/4 sparse sampling rate, i.e. Nd=32. (c) Schematic of the 
array transducer setting at 1/6 sparse sampling rate, i.e. Nd=21. Dots in the same color indicate transducer elements used for imaging at an individual wavelength in 
the interlaced sparse sampling mode. TD: transducer. 
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reduced scattering coefficient is set as μś = μs(1 − g), where g is the 
scattering anisotropy. We set the effective attenuation coefficient ueff as 
the absorption signals of simulation by μeff =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(μα + μś)

√
. To simulate 

light attenuation in the background water, we assume very low ab
sorption and scattering, with coefficient values of 0.0001 cm− 1. These 
absorption and scattering values are then integrated into the Finite 
Element Method model using the TOAST++ toolkit [44], which subse
quently calculates the fluence of each node within the entire mesh. The 
light source is configured according to the illumination geometry of our 
MSOT system, and the light fluence maps at the following five wave
lengths are obtained: 700, 730, 760, 800, 850 nm. Subsequently, 
assuming a uniform Grüneisen parameter in soft biological tissues, we 
obtain the initial PAT image by multiplying the ideal PAT images with 
the light fluence images. Finally, we utilize the discrete forward model 
to produce the raw PAT signal. 

Following the interlaced multispectral sparse sampling setting [13], 
the sparse-sampling signals are acquired at 1/4 and 1/6 sparse sampling 
rates. The sparse-sampling signals are set as the input for all the network 
models, while the initial PAT images are designated as the reference 
images. Additionally, the structural prior image of the dTV regulariza
tion is reconstructed using the unregularized model-based method 
solved by conventional gradient algorithm [45]. The dataset for the 
simulation experiment consists of 1550 training sets, 100 validation sets 
and 150 test sets. 

4.4. Animal experiment 

In vivo animal imaging experiment is conducted utilizing four 
healthy nude mice (female, 8 weeks) and dense-sampling signals are 
acquired from the abdomen section in the previously mentioned com
mercial PAT system, which is approved by Southern Medical University 
and follows the local Animal Ethics Committee guidelines. During the 
experiments, nude mice are anesthetized using a medical oxygen mixed 
with 3 % isoflurane (RWD Life Science Co., Ltd, China) to decrease 
respiratory motion artifacts. The sparse-sampling signals are set as the 
input for all the network models, while the reference images are 
reconstructed from dense-sampling signals at each wavelength using the 
unregularized model-based method solved by conventional gradient 
descent algorithm [45]. Additionally, the structural prior image of the 
dTV regularization is reconstructed using the dense signal linearly 
combined from interlaced sparse sampled at multiple wavelengths as 
illustrated in Fig. 1(a). The reconstruction process follows the same 
method as the reference images. The setting is adopted for the rest of the 
paper. The dataset for the animal experiment consists of 1050 training 
sets, 100 validation sets and 100 test sets. 

4.5. Public human arms dataset 

To illustrate the feasibility of the DAU in the multispectral PAT 
reconstruction, we measure the proposed algorithm performance on the 

public human arms dataset OADAT [46] and compare them with other 
DL and MB-based methods. The OADAT dataset is collected by multi
segment array detectors which is a combination of linear array (128 
elements) and concave parts on the right and left sides (64 elements), 
totaling to 256, from nine volunteers at five wavelengths (700, 730, 760, 
800 and 850 nm) for human arms. Following the multispectral sparse 
sampling setting [2], the sparse-sampling signals are acquired at 1/4 and 
1/6 sampling rates. The public human arms dataset consists of 400 
training sets, 50 validation sets and 50 test sets. The results are presented 
in Supplementary Fig. S1 and Table S1. 

4.6. Spectral un-mixing 

For multispectral PAT imaging, the concept of spectral un-mixing is 
to obtain relative concentrations of light absorbers based on their 
spectral attributes at each wavelength. For a given wavelength λi, the 
light absorption h of the tissue at position r can be expressed as, 

h(λi, r) = Φ(λi, r)μα(λi, r) = Φ(λi, r)
∑S

j=1
(εj(λi)cj(r)) (9)  

where Φ(λi, r) is the local light fluence dependent on wavelength, S is the 
total number of absorber types. εj(λi) and cj(r) are the molar extinction 
coefficient and concentration of the absorber type j at wavelength λj. In 
our simulation experiment, we have simulated the ideal light fluence 
maps at different wavelengths from the absorber images, i.e., Φ(λi, r) is 
known. To perform spectral un-mixing, we can normalize the total light 
absorption by its corresponding light fluence via 

h(λi, r)
Φ(λi, r)

=
∑S

j=1

(
εj(λi)cj(r)

)
. (10) 

Letting H =
h(λi ,r)
Φ(λi ,r)

be the light absorption matrix of each location 

dependent on wavelength, E = [ε1 ε2…εs]
T be the vector containing the 

molar extinction coefficient of all the absorbers, and C = [c1 c2…cs]
T be 

the concentration of each absorber, the above un-mixing problem can be 
expressed as 

H = CE. (11) 

Then, the relative absorber concentration can be solved by mini
mizing the least square problem Ĉ = argmin

C
‖CE − Ĥ‖

2
2 corresponding to 

Eq. (11). 
In the animal imaging experiment, without an accurate measure

ment of the distribution of absorption and scattering coefficients 
throughout the imaging region, it is difficult to obtain the correct light 
fluence distribution in living biological tissues. Therefore, we present 
the spectral un-mixing results of the animal experiments solved by linear 
un-mixing in the supplementary materials. 

4.7. Evaluation metrics 

To quantitatively evaluate the proposed algorithm, we use four 
popular metrics in this study, including the root mean square error 
(RMSE), peak signal-to-noise ratio (PSNR), and structural similarity 
index measure (SSIM) to evaluate the quality of the reconstructed im
ages and Dice coefficient (DICE) to indicate the accuracy of spectral un- 
mixing: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

mn
∑m

i=1

∑n

j=1

(
Rij − xij

)2
√

, (12)  

PSNR = 10⋅log10

⎛

⎜
⎝

L2

1
mn

∑m

i=1

∑n

j=1

(
Rij − xij

)2

⎞

⎟
⎠, (13)  

Fig. 4. The process of obtaining the initial PAT images in the simulation 
experiments. 
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SSIM =
(2μRμx + C1)(2σR⋅x + C2)(

μ2
R + μ2

x + C1
)(

σ2
R + σ2

x + C2
), (14)  

DICE =
2
∑m

i=1
∑n

j=1
(
Rij ∩ xij

)

∑m
i=1

∑n
j=1

(
Rij + xij

) , (15)  

where R and x are the reference image and the corresponding recon
structed image, which have the size m× n. (⋅)ij denotes the i − th row and 
j − th column element. L is the dynamic range of the pixel value (L = 255 
for 8 bits grayscale images). μI and μx are the mean value of I and x. σ2

I 
and σ2

x are the corresponding variance, respectively. σI⋅x is the covari
ance of I and x. The small constants C1 and C2 are given by, C1 = (K1L)2

,

C2 = (K2L)2, where K1, K2 are set as K1 = 0.01 and K2 = 0.03, 
respectively. 

5. Results 

5.1. Simulation results 

In the simulation experiments, we use the simulated interlaced 
sparse sampled photoacoustic signal as the input for image reconstruc
tion. We compare the differences between the proposed method and 
other model-based and DL-based methods at different sparse sampling 
rates. 

Fig. 5 shows the reconstruction results at 800 nm. MB-TV and MB- 
dTV are the model-based methods with TV and dTV regularization, 
respectively. Moreover, an end-to-end U-Net model is trained using the 
same data for comparison to our NDU model. As can be seen in Fig. 5, at 
1/4 sparse sampling rate, all the methods exhibit fine performance, 
except for MB-TV whose result appears blurry due to excessive 

smoothing. When shifting to 1/6 sparse sampling rate, the model-based 
methods are impacted by artifacts. Even though U-Net is able to generate 
good structural information, obvious artifacts are present. NDU-dTV 
produces superior performance compared to NDU-TV, owing to the 
incorporation of structural prior constraints. 

Table 1 presents the quantitative comparison results for different 
reconstruction methods. As can be seen, the NDU-dTV method achieves 
superior metrics at the two sparse sampling rates. At 1/4 sampling, the 
RMSE values of the NDU-dTV method are reduced by 68.40 %, 52.26 %, 
40.69 % and 40.83 % compared with MB-TV, MB-dTV, U-Net, and NDU- 
TV respectively. Furthermore, because of the incorporation of structural 
prior information as a constraint, NDU-dTV achieves the optimal SSIM 
value (0.9034) compared to other methods, showcasing a more com
plete structural reconstruction capability. 

Fig. 6 presents the image intensity profile corresponding to the solid 
red line position in Fig. 5. As can be seen, the pixel intensity of the MB- 
TV (green curve) and MB-dTV (purple curve) methods are significantly 
lower than the reference image (black curve) at the two sparse sampling 

Fig. 5. Visual comparison of reconstructed images by different methods. ‘1/4’, ’1/6’ denote the sparse sampling rates. Err shows the difference between the 
reconstructed image and the reference image. The artifact reduction performance of the different methods is compared by the enlarged red boxes. 

Table 1 
Quantitative comparison results of the simulation experiment at 800 nm. The 
optimal results are denoted by bolded values.  

Sampling 
Rate 

1/4 1/6 

Metrics RMSE PSNR SSIM RMSE PSNR SSIM 

MB-TV  0.1573  18.0675  0.6218  0.1706  16.3973  0.5170 
MB-dTV  0.1041  19.6528  0.8606  0.1146  18.8169  0.7522 
U-Net  0.0838  22.1024  0.8577  0.0991  20.7787  0.8281 
NDU-TV  0.0840  22.5148  0.8139  0.1121  20.0046  0.6377 
NDU-dTV  0.0497  26.0806  0.9034  0.0729  22.7506  0.8449  
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rates, with larger errors indicated by the red arrows. While U-Net 
demonstrates commendable performance at 1/4 sampling rate, its effi
cacy diminishes notably at 1/6 sampling rate. This can be found on the 
profile position indicated by the arrow in Fig. 6(C), where oddly intense 
signal is presented. Without the constraint of structural prior informa
tion, broadening of the edges is observed in NDU-TV, as in Fig. 6(D). The 
NDU-dTV method (red curve) has a smoother profile, and the pixel 
values are closer to the reference profile, as indicated by the arrow in 
Fig. 6(B). 

Next, we conduct spectral un-mixing experiments at five different 
wavelengths. Fig. 7 shows the spectral un-mixing results of different 
methods at 1/6 sampling rate. We define the absorber in the left half of 
the image as HbO2 and in the right half as Hb for better comparison. It is 
obvious that the NDU-dTV method produces superior un-mixing results. 
Clear and complete absorber distribution has been revealed that re
sembles the reference image closely. For quantitative comparison, we 
subsequently calculate the DICE of the un-mixing results. As shown in  
Fig. 8, NDU-dTV achieves the highest DICE score. In particular, the DICE 
score of HbO2 of NDU-dTV is 56.61 %, 19.41 %, 5.89 % and 8.46 % 
higher than those of MB-TV, MB-dTV, U-Net, and NDU-TV, respectively, 
whereas the DICE score of Hb is 45.50 %, 17.36 %, 6.48 % and 9.16 % 

higher. 
Fig. 9 presents the spectral un-mixing intensity profiles correspond

ing to the solid yellow line position in Fig. 7. As can be seen, the pixel 
intensity of the MB-TV (green curve) and MB-dTV (purple curve) 
methods exhibit notable deviations from the reference image (black 
curve), as evident in the error maps presented in Fig. 7. Introducing the 
deep algorithm unrolling, the NDU-TV gets a notable improvement in 
the image reconstruction, leading to more accurate intensity in un- 
mixing results compared to the MB-TV. With the constraint of struc
tural prior information, the NDU-dTV has the optimal results in the un- 
mixing intensity profiles. 

5.2. Small animal imaging experiment results 

Fig. 10 shows the imaging results of the abdomen region of the 
mouse using different image reconstruction methods at 1/4 down- 
sampling rate at 800 nm. As can be seen, the MB-TV methods are 
affected by artifacts that resulted in blurry internal organs. By intro
ducing the structural prior constraints, the image quality is improved by 
the MB-dTV method. Although the U-Net can effectively eliminate ar
tifacts, it inadvertently erases organ detail information, as indicated by 

Fig. 6. Image intensity profiles corresponding to the solid red line position in Fig. 5 at 1/4 down-sampling rate (a) and at 1/6 down-sampling rate (b). The dashed- 
box regions are enlarged on the right panel for better comparison. 
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the red arrow. With the advantage provided by the DAU method, the 
image quality has been improved significantly by NDU-TV. Compared to 
NDU-TV which made a rough balance between image denoising per
formance and detail structure preservation, the proposed NDU-dTV 
method achieves more comprehensive reconstruction of detailed 
image structures. 

Table 2 lists quantitative evaluation results in the small animal im
aging experiments. The NDU-dTV method has the best results at both 1/ 
4 and 1/6 down-sampling rates. In addition, due to the introduction of 

structural prior information as a constraint, the NDU-dTV method is able 
to present a more complete structure with less error, and its RMSE value 
is the lowest among all methods. Specifically, at the 1/6 down-sampling 
rate, the RMSE values of the NDU-dTV method are reduced by 56.83 %, 
41.86 %, 19.01 %, and 38.04 % when compared to MB-TV, MB-dTV, U- 
Net, and NDU-TV, indicating that the NDU-dTV method has better 
reconstruction results. 

In addition, Fig. 11 shows the intensity profiles corresponding to the 
solid line position in Fig. 10 for different methods. As can be seen from 
the profiles at 1/6 down-sampling rate, the signal curves of MB-TV 
(green curve) and MB-dTV (purple curve) exhibits notable deviations 
from the reference curve (black curve) indicated by Fig. 11(C). 
Compared to the NDU-TV (blue curve), the NDU-dTV (red curve) yields 
a smoother profile with pixel intensity more closely approximating the 
reference profile, as depicted in Fig. 11(A). 

5.3. Model structure selection 

The optimized hyperparameters are closely associated with the DAU 
architecture, including the number of stages (K) in the image restoration 
block and the number of iterations (N) in ADMM. We calculate the 
NMSE between the output of the image reconstruction layer and the 
reference image at 1/6 sampling rate. As shown in Fig. 12(a), the NMSE 
decreases fast when the number of stages K ≤ 10. Fig. 12(b) shows the 
evaluation of the number of ADMM iterations, i.e. N, given K = 10. As 
can be seen, N can be set to 10 considering the reconstruction quality 
and computational efficiency. 

5.4. Computational efficiency results 

To further assess the computational performance, we also calculate 
the parameters and processing time of different methods. As shown in  
Table 3, while maintaining superior image quality, the reconstruction 
time required by the proposed method is, on average, 19.0 times less 
than that of the model-based approach. Additionally, NDU-dTV also 

Fig. 7. Spectral un-mixing results of different methods at 1/6 sampling rate. The absorbers are HbO2 (red) and Hb (blue). The enlarged areas corresponding to the 
green boxes for better visualization. Err shows the difference between the spectral un-mixing images and the reference image. 

Fig. 8. The DICE score of the spectral un-mixing results in Fig. 7.  

Fig. 9. HbO2 (a) and Hb (b) image intensity profiles corresponding to the solid 
yellow line position in Fig. 7 at 1/6 down-sampling rate. 
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prevails the U-Net method. 

5.5. Effectiveness of different image restoration blocks 

Finally, we conduct quantitative experiments to assess the contri
bution of the image restoration blocks. Table 4 shows the RMSE indices 
at 1/6 sparse sampling rate for the simulation experiments after 
implementing different image restoration blocks, where “TV” and “dTV” 
indicate the image restoration block based on off-the-shelf TV and dTV 
denoiser, representing the standard DAU model. “DAU-TV” and “DAU- 
dTV” denote the image restoration block based on DAU, representing the 
nested DAU models. As can be seen, owing to the adaptive learning of 
suitable prior, the nested DAU method outperforms the standard DAU 
method, further proving the effectiveness of the nested DAU framework. 

6. Discussion 

The above rigorous experimental results show that the proposed 
DAU-dTV method produce image reconstruction results with overall 
quality and spectral un-mixing accuracy comparable to dense sampling. 
Compared to model-based method that requires handcrafted regulari
zation, our DAU-based method automatically learns the suitable prior 
from the training dataset. Compared to previous DL-based PAT image 
reconstruction methods, our network architecture takes into account 
explicit domain knowledge, including both the physical imaging model 

and the sparse sampling setting. Moreover, the DAU framework, as the 
core of our method, has been shown to possess the advantage of good 
interpretability over conventional black-box-like DL models [23,47]. 
Our method shares the same advantage of DAU. 

Although the DAU method has made success in PAT image recon
struction, it is unable to introduce structural prior information of sparse 
sampling PAT. To alleviate the deficiency, our NDU-dTV incorporates 
the prior information through PnP-ADMM and achieves enhanced per
formance and flexibility. Instead of using pre-train denoiser, we inte
grate the dTV algorithm, which considers local directional image 
features, into DAU to serve as an image restoration block. The experi
mental results have demonstrated improved image reconstruction per
formance closely associates with the unique structure of the proposed 
NDU-dTV model. Compared to standard DAU, our NDU-dTV show 
lower RMSE, indicating high feasibility. Compared to conventional U- 
Net model, we achieve significantly enhanced image quality with three 
times fewer learnable parameters. While maintaining optimal perfor
mance, the reconstruction speed of our method is also much faster. 

We evaluate the performance of our NDU-dTV method using the 
interlaced sparse sampling scheme proposed previously. This scheme 
has certain difference compared to conventional sparse sampling 
method because a clean structural prior image is obtained during mul
tispectral imaging. However, this does not affect the applicability of our 
method to other sparse sampling strategy, such as non-interlaced sparse 
sampling or limited-view sampling. It can be confirmed by the NDU-TV 
results in both the simulation and real-world experiments, where no 
structural prior information is introduced. 

7. Conclusion 

In this work, we propose NDU-dTV, a novel deep-learning-based PAT 
image reconstruction method based on deep algorithm unrolling. 
Developed upon classical ADMM optimization framework, our method 
integrates the dTV algorithm into the DAU process for structural infor
mation introduction. Our NDU-dTV incorporates both the adaptive 
parameter optimization of DL-based method and the interpretability of 
model-based method. We conduct extensive experiments of sparse 
sampling PAT imaging to evaluate the performance of NDU-dTV. The 

Fig. 10. In vivo mouse image reconstruction results by different methods at 1/4 sparse sampling rate at 800 nm. The second and third rows are enlarged areas 
corresponding to the red and blue boxes in the first row for better visualization. 

Table 2 
Quantitative evaluation of the small animal imaging results. The optimal results 
are denoted by bolded values.  

Sampling 
Rate 

1/4 1/6 

Metrics RMSE PSNR SSIM RMSE PSNR SSIM 

MB-TV  0.0945  20.4958  0.8299  0.1332  17.5753  0.7393 
MB-dTV  0.0567  24.9244  0.9270  0.0989  20.0923  0.8697 
U-Net  0.0617  24.1950  0.8641  0.0710  22.9765  0.8492 
NDU-TV  0.0763  22.3539  0.8369  0.0928  20.6521  0.8190 
NDU-dTV  0.0432  27.2890  0.9512  0.0575  24.8018  0.9154  
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results demonstrate our method offers optimal image reconstruction 
quality with high computational efficiency and fine interpretability. 
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Table 3 
Computational performance comparison on in vivo animal experiment.  

Method MB-TV MB-dTV U-Net NDU-TV NDU-dTV 

Parameters N/A N/A 3.22×

105 
1.02×

105 
1.02×

105 

Testing Time 116.577 s 127.322 s 1.151 s 5.852 s 6.651 s 
Training 

Time 
N/A N/A 9 h 16 h 17 h  

Table 4 
Comparison of different image restoration block settings.  

Image restoration block TV dTV DAU-TV DAU-dTV 

RMSE  0.1428  0.0921  0.1083  0.0746  
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