
A nine–consensus–prognostic
–gene–based prognostic
signature, recognizing the
dichotomized subgroups of
gastric cancer patients with
different clinical outcomes and
therapeutic strategies

Dan Ji1†, Yang Yang2†, Fei Zhou1 and Chao Li3*
1Department of Basic Medicine, Anhui Medical College, Hefei, Anhui, China, 2Huangshan Health
Vocational College, Huangshan, Anhui, China, 3Department of General Surgery, Hefei First People’s
Hospital, Hefei, China

Background: The increasing prevalence and mortality of gastric cancer (GC)

has promoted the urgent need for prognostic signatures to predict the long-

term risk and search for therapeutic biomarkers.

Methods and materials: A total of 921 GC patients from three GEO cohorts

were enrolled in the current study. The GSE15459 and GSE62254 cohorts were

used to select the top prognostic gene via the evaluation of the area under the

receiver operating characteristic (ROC) curve (AUC) values. The

GSE84437 cohort was used as the external validation cohort. Least absolute

shrinkage and selector operation (LASSO) regression analysis was applied to

reduce the feature dimension and construct the prognostic signature.

Furthermore, a nomogram was constructed by integrating the independent

prognostic analysis and validated by calibration plot, decision curve analysis and

clinical impact curve. The molecular features and response to chemo-/

immunotherapy among risk subgroups were evaluated by the “MOVICS” and

“ESTAMATE” R packages and the SubMap algorithm. Lauren classification and

ACRG molecular subtype were obtained to compare with the risk model.

Results: Forty-four prognosis-associated genes were identified with a preset

cutoff AUC value of 0.65 in both the GSE62254 andGSE15459 cohorts. With the

10-fold cross validation analysis of LASSO, nine genes were selected to

construct the nine-consensus-prognostic-gene signature. The signature

showed good prognostic value in the GSE62254 (p < 0.001, HR: 3.81, 95%

CI: 2.44–5.956) and GSE15459 (p < 0.001, HR: 2.65, 95% CI: 1.892–3.709)

cohorts and the external validation GSE84437 cohort (p < 0.001, HR: 2.06, 95%

CI: 1.554–2.735). The nomogram constructed based on two independent

predictive factors, tumor stage and the signature, predicted events tightly

consistent with the actual (Hosmer–Lemeshow p value: 1-year, 0.624; 3-

years, 0.795; 5-years, 0.824). For the molecular features, we observed the

activation of apical junction, epithelial mesenchymal transition, and immune
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pathways in the high-risk group, while in the low-risk group, cell cycle

associated G2M, E2F and MYC target pathways were activated. Based on the

results we obtained, we indicated that gastric patients in the low-risk group are

more suitable for 5-fluorouracil therapy, while high-risk group patients are

more suitable for anti-CTLA4 immunotherapy, these results needmore support

in the further studies. After compare with proposed molecular subtypes, we

realized that the nine-consensus prognostic gene signature is a powerful

addition to identify the gastric patients with poor prognosis.

Conclusion: In summary, we constructed a robust nine-consensus-

prognostic-gene signature for the prediction of GC prognosis, which can

also predict the personalized treatment of GC patients.

KEYWORDS

immunotherapy, prognostic signature, gastric cancer, chemothearpy, validation

Introduction

Gastric cancer (GC) is among the fifth most common

malignancies worldwide, with almost 1000000 new cases

recorded annually (Bray et al., 2018). The incidence rates of

GC vary by country and region, and two-thirds are reported in

developing countries (Thomassen et al., 2014). It was proposed

that 80% of patients were diagnosed with GC at an advanced

stage due to a lack of early characteristic complaints and signs,

resulting in 800000 deaths each year, and is the third reason for

cancer-specific death among all types of malignancies (Lou et al.,

2021). Peritoneal dissemination is the widely accepted cause

responsible for the high recurrence and dismal metastasis

rates of GC (Thomassen et al., 2014). Once peritoneal

dissemination onset occurs, most patients might suffer from

bowel obstruction and the formation of massive malignant

ascites and thus succumb within 4 months (Lee et al., 2021).

Currently, multidisciplinary management strategies centered

around surgical resection are the main treatments to decrease

recurrence and delay metastasis for GC, including adjuvant

therapy, radiotherapy, and targeted therapy (Lin Y. et al.,

2021). However, numerous patients with GC relapse or

develop metastatic disease even after radical resection. To

optimize the therapeutic schemas for different patients, the

tumor-node-metastasis (TNM) staging system is generally

employed for risk stratification and prognostic prediction

(Sasako et al., 2010). However, it was observed that patients

with the same TNM stages presented different clinical outcomes

(Tang et al., 2020). Fluoropyrimidine-platinum doubletHerein is

the first-line agent in adjuvant therapy, while just 9% of patients

estimated benefit from it (Bang et al., 2012). The pivotal reason

responsible for the heterogeneity of prognosis and therapy is the

different molecular features of each patient. Less attention has

been given to the genetic alteration of GC in the past (Cristescu

et al., 2015). Herein, further investigation of the underlying

molecular mechanisms of GC and prognostic and therapeutic

biomarkers are imperative.

The genomic landscape of GS has been revealed by large-

scale next-generation sequencing analysis in decades, and

comprehensive molecular alterations in GS have been

reported, such as PIK3CA mutation, DNA hypermethylation,

and amplification of JAK2, CD274 and PDCD1G2. Different

genetic alterations were validated to correlate with significantly

different clinicopathological features. Limitations exist in the

small cohorts and incomplete analysis, which hinders its use

in clinical settings (Tay et al., 2003; Cho et al., 2011; The Cancer

Genome Atlas Research Network, 2014; Cristescu et al., 2015).

GC with HER2 amplification was proven to be sensitive to

trastuzumab, while a small proportion of patients would

benefit from it (Bang et al., 2010). Microsatellite instability

(MSI) is one subtype defined by TCGA. A recently published

study proved that extra chemotherapy has little benefit compared

to surgery alone. Regrettably, it can help few patients because

5%–10% of GC cases were divided into the MSI subgroup among

the four molecular subtypes defined by TCGA (The Cancer

Genome Atlas Research Network, 2014; Sohn et al., 2017). For

immunology in GC, MSI, and PD-L1 are generally employed to

guide clinical decision-making; the problem is that their modest

predictive capability only takes limited help for clinicians

(Keenan et al., 2019). Therefore, further research in this field

is urgently needed.

In the present study, we identified nine prognosis-related

genes of GC through ROC and LAASO algorithms and

established a prognostic signature for risk stratification. We

tested the discriminative accuracy and reliability of this model

via robust statistical methods and validated that this signature

served as an independent risk factor in GC. A nomogram risk

model was established to facilitate risk stratification in a

quantitative way. The accuracy and clinical value of this

nomogram were confirmed with calibration and clinical

decision curve analysis. In addition, we comprehensively

elucidated different signaling activation statuses and

immunocyte infiltration landscapes among the high- and low-

risk groups.
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Methods and materials

Cohort summary

Four GC cohorts from GEO were enrolled for the current

study, including 300 patients from the GSE62254 cohort,

190 patients from the GSE15459 cohort, 431 patients from the

GSE84437 cohort and 294 patients from TCGA-STAD cohort.

The clinical features of each cohort were also collected, including

age, sex, and tumor stage. The overall survival (OS) status was

regarded as the endpoint of the follow-up, and patients with a

follow-up time less than one more were eliminated to ensure that

the new findings were more stable and representative. Details of

the enrolled cohorts are shown in Table 1.

Data preprocessing

For the gene expression profile, the gene symbols were

annotated according to the corresponding platform.

GSE62254 and GSE15459 were all based on the

GPL570 platform, while GSE84437 was based on the

GPL6947 platform. The gene expression file was first checked,

and the potential batch effect was removed by the “sva” package

(Supplementary Figure S1) and further scaled to ensure that all

the data were on a similar order of magnitude to ensure that the

prognostic formula could be used in a consistent situation. The

scaled gene expression value of GSE15459 ranged from −1.046 to

17.393, GSE6224 from 2.008 to 23.465, and GSE84437 from

1.478 to 20.205. A total of 20750 genes presented in all three

enrolled cohorts were filtered for further subsequent analysis.

Identifying consensus prognostic genes
and constructing a prognostic model

We carried out receiver operating characteristic (ROC) curve

analysis to evaluate the prognostic value of each gene in the

GSE62254 and GSE15459 cohorts, while the area under the ROC

curve (AUC) values were used for comparison. The process was

performed by the “pROC” package. The preset cutoff value used

to select the most prognostic gene was 0.65 in each cohort. Least

absolute shrinkage and selector operation (LASSO) regression

analysis was applied in several studies to construct the prognostic

model, as well as in the current study. The “glmnet” R package

completed a 10-fold cross validation analysis and revealed the

minimum lambda to minimize the mean cross-validation error.

The corresponding index for each selected gene was multiplied

and added together to calculate the risk score for each patient.

The protein levels of the nine genes were also determined

through the Human Protein Atlas (https://www.proteinatlas.

org/). We compared the IHC staining picture under the same

antibody of each protein between normal stomach tissue and GC

tissue.

Establishment of a predictive nomogram

We first performed multivariate Cox regression analysis to

identify independent factors, age, sex, and pathologic stage, and

the signature was enrolled. Then, the nomogram was established

based on the independent prognostic factors to integrate the

predicted value via the “rms” and “regplot” R packages. To assess

the accuracy and reliability, we performed a calibration plot,

decision curve analysis (DCA) and clinical impact curve analysis.

Molecular pathway variation and immune
infiltration analysis

The “MOVICS” R package (Lu et al., 2020) was developed

to identify the molecular subtypes and characterize the

molecular features of tumors. We used it to generate the

enrichment scores of 50 HALLMARK gene sets

(Subramanian et al., 2005) and 28 immunocyte gene sets

(Yoshihara et al., 2013) and visualized them with a

heatmap. Gene set enrichment analysis (GSEA) also

displayed different enrichment scores among risk

subgroups, and the gene sets were derived from GO

biological processes obtained from the Molecular Signatures

Database (MSigDB, https://www.gsea-msigdb.org/gsea/

msigdb/index.jsp). The overall immune infiltration status

was evaluated through the ESTIMATE score, which was

calculated by the “ESTIMATE” R package. Correlations

between the risk score and infiltration ESTIMATE scores

were calculated using the Spearman method.

Target therapy prediction

The Genomics of Drug Sensitivity in Cancer (GDSC)

database was used to predict the IC50 of cisplatin and 5-

fluorouracil, which was calculated based on 10-fold cross-

validation ridge regression (Yang et al., 2013). Anti-immune

checkpoint therapy has shown promise for malignancy

treatment, especially anti-CTLA-4 and anti-PD-1/PD-

L1 treatment. We downloaded the gene expression profile

from a melanoma cohort that contained 47 cases who

received immunotherapy and corresponding response

information (McGranahan et al., 2016). The SubMap

algorithm was used to predict the response to immunotherapy

in the current study based on the similarity of expression profiles

to reflect the treatment response (Hoshida et al., 2007; Lu et al.,

2019; Meng et al., 2021).
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Statistical analysis

The T test or the Mann–Whitney U test was applied to assess

differences between subgroups with continuous variables.

Survival curves were drawn by the K-M method and log-rank

test, and hazard ratio (HR) and 95% confidence interval (CI)

values of candidate genes were calculated by a univariate Cox

regression model. Multivariate Cox analysis was used to explore

the independent prognostic effect of the risk score after

adjustment for several clinical characteristics. With p <
0.05 as the standard of significance, a two-sided statistical test

was used. R software (4.1.2) was used for all analyses.

Results

Identifying 44 prognostic genes and
constructing the nine-consensus-
prognostic-gene signature

As mentioned in the methods section, we first evaluated the

prognostic value of 20750 genes in both GSE62254 and

GSE15459 (Figure 1A), and 44 genes were selected for

subsequent analysis with a preset cutoff AUC value of 0.65.

The top 10 prognostic genes included HEYL, FERMT2, TUBB6,

MXRA7, MYL9, THSD7B, AKAP12, LAMC1, PRSS23,

PPP1R14A and ARHGEF17 (Figure 1B). The heatmaps

illustrate the expression value of these 44 genes among each

patient in the GSE15459 cohort (Figure 1C) and

GSE62254 cohort (Figure 1D).

With the 10-fold cross validation analysis of LASSO, we

revealed a minimal lambda value of 0.02985 (Figures 2A,B) and

identified a nine-consensus-prognostic-gene signature, including

NOTCH3 (p = 0.001, HR: 1.99, 95% CI: 1.33–2.98), MATN3 (p <
0.001, HR: 2.40, 95% CI: 1.60–3.61), PRICKLE2 (p = 0.004, HR:

1.82, 95% CI: 1.22–2.73), MPDZ (p < 0.001, HR: 2.08, 95% CI:

1.39–3.12), ANKRD6 (p = 0.016, HR: 1.65, 95% CI: 1.10–2.46),

PDE12 (p = 0.004, HR: 0.55, 95% CI: 0.37–0.82), RBP1 (p < 0.001,

HR: 2.20, 95% CI: 1.47–3.29), TBSD7B (p < 0.001, HR: The

risk score of the nine-consensus-prognostic-gene signature

was calculated by the formula: risk score =

0.169*NOTCH3–0.082*MPDZ + 0.202*RBP1 + 0.269*MATN3

+ 0.151*ANKRD6 + 0.365*THSD7B–0.266*PRICKLE2 –

0.216*PDE12 + 0.205*TUBB6. After separating the patients

into low-risk and high-risk subgroups by the median value of

the risk score, we observed a dramatic OS difference, which also

indicated the prognostic value of the signature (Figure 3B, p <
0.001, HR: 3.81, 95% CI: 2.44–5.956). In addition, the prognostic

value also assessed by the ROC curve resulted in the preferable

AUC values (Figure 3C, 1-year: 0.715,3-years: 0.765,5-years:

0.812).

The protein levels of the nine genes were also determined

through the Human Protein Atlas (https://www.proteinatlas.org/).

We compared the IHC staining picture under the same antibody of

each protein between normal stomach tissue and GC tissue. The

protein levels of MATN3 and PRIHKLE2 are lacking in the

TABLE 1 Clinical features for the enrolled three datasets.

GSE15459 (N =
190)

GSE62254 (N =
300)

GSE84437 (N =
431)

TCGA-STAD (N =
294)

Overall (N =
1215)

OS

Alive 95 (50.0%) 148 (49.3%) 224 (52.0%) 175 (59.5%) 642 (52.8%)

Dead 95 (50.0%) 152 (50.7%) 207 (48.0%) 119 (40.5%) 573 (47.2%)

OS time, months

Mean (SD) 38.8 (43.3) 50.6 (31.4) 70.5 (47.2) 21.1 (18.4) 48.7 (42.1)

Median [Min, Max] 19.7 [0.200, 158] 57.9 [1.00, 106] 70.0 [1.00, 161] 16.8 [0.525, 122] 33.0 [0.200, 161]

Age, years

Mean (SD) 64.3 (13.2) 61.9 (11.4) 60.0 (11.6) 65.1 (10.1) 62.4 (11.6)

Median [Min, Max] 66.5 [23.4, 92.4] 64.0 [24.0, 86.0] 62.0 [27.0, 86.0] 67.0 [35.0, 86.0] 64.0 [23.4, 92.4]

Gender

Female 67 (35.3%) 101 (33.7%) 137 (31.8%) 101 (34.4%) 406 (33.4%)

Male 123 (64.7%) 199 (66.3%) 294 (68.2%) 193 (65.6%) 809 (66.6%)

Stage

Stage I 31 (16.3%) 30 (10.0%) 21 (4.9%) 41 (13.9%) 123 (10.1%)

Stage II 29 (15.3%) 97 (32.3%) 138 (32.0%) 85 (28.9%) 349 (28.7%)

Stage III 71 (37.4%) 96 (32.0%) 272 (63.1%) 128 (43.5%) 567 (46.7%)

Stage IV 59 (31.1%) 77 (25.7%) 0 (0%) 31 (10.5%) 167 (13.7%)

Missing — — — 9 (3.1%) 9 (0.7%)

OS, overall survival.
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database. For the residual seven proteins, we observed strong

positive staining of MPDZ, THSD7B and TUBB6 in the tumor

tissue compared with the negative staining of these proteins in

normal tissue, which is consistent with the abovementioned results

that the decreased expression of these three genes is linked to poor

prognosis. Weak positive staining of ANKRD6 was also present in

tumor tissue compared with the negative staining in normal tissue,

also consistent with the survival data. The protein levels of

NOTCH3 and RBP1 showed similar results between normal and

tumor tissues. The decreased level of PDE12 indicated the poor

prognosis of GC patients, and we observed weaker PDE12 staining

in tumor tissue (Figure 4).

The nine-consensus-prognostic-gene
signature is an independent predictive
factor for GC patients

We observed that the distribution of tumor stage (p < 0.001)

showed a difference between the high-risk and low-risk subgroups,

but sex (p = 0.76) and age (p = 0.24) showed no difference

(Supplementary Figure S2). To further evaluate the prognostic

value of the nine-consensus-prognostic-gene signature, we

performed multivariate Cox analysis, which also enrolled the

clinical features of age, sex, and tumor stage.

We observed that stage III was a risk factor forOS (p< 0.001, HR:

7.26, 95%CI: 2.548–20.68), as well as stage IV (p < 0.001, HR: 17.408,

95%CI: 5.936–51.05). The signature is also an independent predictive

factor; patients in the high-risk group met a 2.963-fold death risk

compared with low-risk group patients, and the 95% CI ranged from

1.868 to 4.70 (Figure 5A). We used the ROC curve to evaluate the

separated prognostic value of each factor as well as the combined

model. Tumor stage could predict the OS of GC patients with good

values (AUC: 0.806, 95% CI: 0.741–0.870), and the nine-consensus-

prognostic-gene signature showed a preferable result (AUC: 0.730

95% CI: 0.648–0.813). After adding the clinical features to the overall

combinedmodel, the AUC value increased to 0.860, with a 95%CI of

0.802–0.919 (Figure 5B). We also assessed the prognostic value of the

nine-consensus-prognostic-gene signature in the clinical subgroup

and presented excellent results, including age < 65 years (p < 0.001,

HR: 4.80, 95% CI: 2.452–9.399), ≥ 65 years (p < 0.001, HR: 3.07, 95%

CI: 1.684–5.592), stage I + II disease (p = 0.016, HR: 3.97, 95% CI:

1.294–12.174), stage III + IV disease (p < 0.001, HR: 2.91, 95% CI:

1.781–4.759), male sex (p < 0.001, HR: 3.91, 95% CI: 2.253–6.789),

and female sex (p = 0.001, HR: 3.48, 95% CI: 1.621–7.483)

(Figure 5C).

Tumor stage and signature-based
nomogram shows a good result

Moreover, we constructed a nomogram based on the two

independent predictive factors, tumor stage and the nine-

consensus-prognostic gene signature (Figure 6A). The red

point in the nomogram is an example of how to use the

nomogram. The patient’s tumor is at stage IV, and the risk

score is approximately five; therefore, the total point is 155,

indicating that the risk of death is 0.501 at 1 year, 0.927 at

3 years, and 0.982 at 5 years. The nomogram-predicted

results of the events were consistent with the actual

results, as shown in the calibration curve of 1-year, 3-

years and 5-years, and along with the p values all higher

than 0.05 calculated by the Hosmer–Lemeshow analysis

(Figure 6B, 1-year: p = 0.624,3-years: p = 0.795 and 5-

years: p = 0.824).

DCA calculated the net benefit to evaluate the clinical utility

of the nomogram, and the results showed that in the broad

threshold of OS (10%–80%), the clinical net benefit of the

nomogram was greater than that of age or stage (Figure 6C).

Clinical impact curves of the nomogram to predict OS showed

great prediction abilities when the risk threshold was less than 0.4

(Figure 6D).

Recognizing the molecular pathways and
precision therapeutic strategy

Tumor heterogeneity is impacted by diverse inner activated

signaling pathways and always leads to different clinical

outcomes and is important to guide the selection of

appropriate therapeutic strategies. We assessed the signaling

pathway activation of 50 HALLMARK typical tumor pathways

and observed that patients in the high-risk group contained the

activation pathways of apical junction, epithelial mesenchymal

transition, WNT/beta-catenin signaling, as well as immune-

associated pathways, including IL2/STAT5, IL6/JAK/STAT3,

Notch signaling and the inflammatory response pathway

(Figure 7A, Supplementary Table S1). For the low-risk group,

cell cycle-associated G2 M, E2F and MYC target pathways were

activated, as well as the oxidative phosphorylation and hormone

response pathways (Figure 7A, Supplementary Table S1). The

enrichment among GO terms also displayed similar results: the

high-risk group enriched the pathways of collagen fibril and

extracellular structure organization and mesenchyme

morphogenesis, while the low-risk group enriched the

pathways of mitochondrial gene expression and translation,

ATP synthesis coupled electron transport and respiratory

electron transport chain (Figure 7B, Supplementary Tables S2,

S3). We further evaluated the association between the nine-

consensus-prognostic-gene signature and immune infiltration

by the “ESTIMATE” R package and revealed that the

increased risk score was tightly linked with the ESTIMATE

score, which indicated that the higher the risk score was, the

higher the immune infiltration (RPearson = 0.43, p < 0.001,

Figure 7C). The detailed infiltration score of 28 immunocytes

estimated by ssGSEA also revealed that the high-risk group
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FIGURE 1
Selection of the 44 prognostic genes in GC patients. (A), Scatter plot showing the prognostic value of genes in both the GSE62254 and
GSE15459 cohorts; (B), Eleven genes with the top average AUC values; (C), Heatmap showing the expression of 44 selected genes in the
GSE15459 cohort; (D), Heatmap showing the expression of 44 selected genes in the GSE62254 cohort.
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contained higher infiltration of immunocytes, especially

macrophages, mast cells, type 1 T helper cells, regulatory

T cells, natural killer cells and natural killer T cells

(Figure 7D, Supplementary Table S4). To guide clinical

treatment, we evaluated the response to cisplatin and 5-

fluorouracil treatment and revealed that patients in the low-

risk group were more suitable for 5-fluorouracil therapy than

patients in the high-risk group (p < 0.001, Figure 7E), while the

treatment efficiency of cisplatin in both groups was similar (p =

0.130, Figure 7E). The high-risk group contained activated

immune pathways and higher infiltration of immunocytes. We

also revealed that high-risk group patients were more suitable for

anti-CTLA4 immunotherapy but not anti-PD-1 therapy

(Figure 7F).

FIGURE 2
LASSO regression for the selection of prognostic genes. (A), Optimal (minimum) lambda selection for overall survival in the LASSO regression
model; (B), LASSO coefficient profiles of variables selected for GC patients’ overall survival.
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Validation of the nine-consensus
prognostic gene signature in the
GSE62254 and GSE84437 cohorts

First, we validated the prognostic efficiency of the nine-

consensus-prognostic-gene signature in the GSE62254 cohort,

which was used to select the 44 prognostic genes in the

GSE15459 cohort. We first evaluated the prognostic value of

the nine selected genes in the GSE62254 cohort, including

NOTCH3 (p < 0.001, HR: 2.92, 95% CI: 2.10–4.07), MATN3

(p < 0.001, HR: 2.40, 95% CI: 1.63–3.53), PRICKLE2 (p < 0.001,

HR: 2.39, 95% CI: 1.60–3.58), MPDZ (p < 0.001, HR: 2.35, 95%

FIGURE 3
Prognostic value of the nine-consensus prognostic gene signature in the GSE15459 cohort. (A), K-M plot showing the prognostic value of the
nine selected genes; (B), Kaplan–Meier curves for overall survival time of patients in the GSE15459 cohort. High-risk and low-risk groups were
separated by the median value of risk score; (C), Time-dependent ROC curves showing the predictive efficiency of the risk signature for GC patients
in the GSE15459 cohort.
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CI: 1.51–3.66), ANKRD6 (p < 0.001, HR: 2.40, 95% CI:

1.69–3.41), PDE12 (p < 0.001, HR: 0.44, 95% CI: 0.31–0.61),

RBP1 (p < 0.001, HR: 2.66, 95% CI: 1.79–3.95), TBSD7B (p <
0.001, HR: 2.71, 95% CI: 1.78–4.12), TUBB6 (p < 0.001, HR: 2.39,

95% CI: 1.70–3.37) (Supplementary Figure S3). The risk score of

each patient in the GSE62254 cohort was calculated along with

the abovementioned formula, and we observed that the risk score

could significantly separate GC patients into poor and favorable

prognosis subgroups (p < 0.001, HR: 2.65, 95% CI: 1.892–3.709,

Figure 8A). The prognostic AUC value was as high as 0.683 at

1 year, 0.713 at 3 years and 0.723 at 5 years (Figure 8D). The

nine-consensus-prognostic-gene signature also acted as an

independent prognostic factor in GSE62254 after adjusting for

the clinical features of age, sex and stage (p < 0.001, HR: 2.253,

95% CI: 1.593–3.190, Figure 8G).

The validation of a prognostic signature in an external cohort

that was not involved in the selection progress of the factors used

to construct the model is essential; therefore, we further evaluated

the prognostic value of the nine-consensus-prognostic-gene

signature in the GSE84437 cohort. We also evaluated the

prognostic value of the nine selected genes in the

GSE84437 cohort, including NOTCH3 (p = 0.001, HR: 1.91,

95% CI: 1.38–2.64), MATN3 (p < 0.001, HR: 1.81, 95% CI:

1.32–2.47), PRICKLE2 (p < 0.001, HR: 1.88, 95% CI: 1.37–2.57),

MPDZ (p < 0.001, HR: 1.82, 95% CI: 1.38–2.40), ANKRD6 (p =

0.002, HR: 1.67, 95% CI: 1.24–2.25), PDE12 (p < 0.001, HR: 0.60,

95% CI: 0.46–0.80), RBP1 (p = 0.003, HR: 1.80, 95% CI:

1.30–2.49), TBSD7B (p < 0.001, HR: 1.68, 95% CI: 1.27–2.22),

and TUBB6 (p < 0.001, HR: 2.00, 95% CI: 1.44–2.77)

(Supplementary Figure S4). Interestingly, we observed a

separated prognosis in the risk score-separated high- and low-

risk subgroups (p < 0.001, HR: 2.06, 95% CI: 1.554–2.735,

Figure 8B). The prognostic AUC value was as high as 0.630 at

1 year, 0.620 at 3 years and 0.641 at 5 years (Figure 8E). The nine-

consensus-prognostic-gene signature also acted as an

independent prognostic factor in GSE84437 after adjusting for

the clinical features of age, sex and stage (p < 0.001, HR: 1.880,

95% CI: 1.416–2.500, Figure 8H).

TCGA-STAD cohort was chosen as the second validation

cohort. We calculated the risk score of each patient along with

the formula and separated them as low-risk and high-risk

subgroups with the median value. We observed that patients

FIGURE 4
The protein level by IHC staining among normal stomach tissue and gastric cancer tissue.
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with high-risk in TCGA-STAD cohort showed a 1.64-fold of

death than patients in low-risk group (p < 0.001, 95% CI:

1.134–2.360, Figure 8C), and the prognostic AUC value was as

high as 0.715 at 5 years (Figure 8F). The nine-consensus-

prognostic-gene signature also acted as an independent

prognostic factor in GSE84437 after adjusting for the

clinical features of age, sex and stage (p = 0.0013, HR:

1.870, 95% CI: 1.277–2.730, Figure 8I).

Comparison between the nine-consensus
prognostic gene signature and proposed
molecular subtypes

For the ACRG/GSE62254 cohort, Crestescu et al. (Cristescu

et al., 2015) reported the Lauren classification and pointed out the

ACRG molecular subtype, we compared the contribution of the

nine-consensus prognostic gene signature to the proposedmolecular

FIGURE 5
The nine-consensus-prognostic-gene signature is an independent prognostic factor for GC patients. (A), Forest plot showing the hazard ratios
from multivariate Cox regression analysis in the GSE15459 cohort; (B), ROC curves showing the prognostic efficiency of the signature, clinical
parameters and combined model; (C), The prognostic value of the signature in clinical subgroups.
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subtypes. The distribution of clinical features andmolecular features

showed in Figure 9A. We observed that more EMT subtypes in

high-risk subgroup, as well as more Diffuse classification. Similarly,

the average risk score in diffuse class is higher than that in intestinal

class (Figure 9B, p = 0.06); EMT subtype contained the highest

average risk score than the other three subtypes (Figure 9C, all p <
0.001). These results confirmed our risk subtyping to the prediction

of prognosis, because that several studies already reported that the

FIGURE 6
Prognostic nomogram based on the nine-consensus prognostic gene signature and clinical features. (A), Nomogram for predicting the
probability of 1-, 3-, and 5-years mortality; (B), Calibration plots of the nomogram for predicting the probability of 1-, 3-, and 5-years overall survival;
(C), DCA showing the performance of the nomogram and other clinical features for predicting overall survival; (D), Clinical impact curves of the
nomogram for predicting overall survival.
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EMT activation or diffuse histology links with the poor prognosis of

gastric cancer (Oh et al., 2018; Tanaka et al., 2021; Li Y. et al., 2022; Li

M. et al., 2022). Moreover, we combined the risk subgroups with

Lauren classification and ACRG molecular subtype. We found that

high-risk patients with diffuse histology characteristic presented the

worst prognosis than other patients (Figure 9D, p < 0.001), as well as

high-risk patients belonged to EMT subtype (Figure 9E, p < 0.001),

therefore, the nine-consensus prognostic gene signature is a

powerful addition to identify the gastric patients with poor

prognosis.

FIGURE 7
Specific molecular features and suitable treatment strategies for low-risk and high-risk GC patients. (A), Heatmap showing the enrichment of
50 HALLMARK tumor pathways; (B), Enrichment of GO terms in two risk groups; (C), Correlation between nine-consensus-prognostic-gene
signature generated risk score and the tumor infiltration ESTIMATE score; (D), Heatmap showing the infiltration of 28 immunocyte gene sets; (E),
Estimated IC50 of cisplatin and 5-fluorouracil treatment in high-risk and low-risk subgroups; (F), Submap analysis showing the potential
response to anti-CTAL4 and anti-PD-1 therapy in high-risk and low-risk subgroups.
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Discussion

Precision treatment for cancer patients is increasingly

important, and several studies have also reported personalized

therapeutic strategies in GC. The Cancer Genome Atlas Research

Network reported the comprehensive molecular characterization

of GC, divided into positive for Epstein–Barr virus, microsatellite

unstable, genomically stable and chromosomal instability

subtypes (The Cancer Genome Atlas Research Network,

2014). Zhou et al. (2020) revealed immune activation

subgroups among GC patients. The immune activation

subtype was associated with favorable survival and benefited

more from anti-PD-1 therapy. The immunosuppressive subtype

featured high immune infiltration, stromal enrichment, and

transforming growth factor (TGF)-β signaling pathway

activation but failed to respond to checkpoint blockade

therapy, which might be suitable for the treatment of anti-

PD-L1 plus anti-TGF-β together. Hu et al. (2021)identified a

bipartite GC subtyping by the comprehensive analysis of

multiomics data. CS1 contains the activated extracellular

FIGURE 8
Validation of the nine-consensus-prognostic-gene signature in GSE62254, GSE84437 and TCGA-STAD cohorts. (A), Kaplan–Meier curve for
overall survival time of patients in the GSE62254 cohort; (B), Kaplan–Meier curve for overall survival time of patients in the GSE84437 cohort; (C),
Kaplan–Meier curve for overall survival time of patients in the TCGA-STAD cohort; (D), Time-dependent ROC curves showing the predictive
efficiency of the risk signature in the GSE62254 cohort; (E), Time-dependent ROC curves showing the predictive efficiency of the risk signature
in the GSE84437 cohort; (F), Time-dependent ROC curves showing the predictive efficiency of the risk signature in the TCGA-STAD cohort; (G),
Forest plot showing the hazard ratios from multivariate Cox regression analysis in the GSE62254 cohort; (H), Forest plot showing the hazard ratios
frommultivariate Cox regression analysis in the GSE84437 cohort. (I), Forest plot showing the hazard ratios frommultivariate Cox regression analysis
in the TCGA-STAD cohort.

Frontiers in Genetics frontiersin.org13

Ji et al. 10.3389/fgene.2022.909175

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.909175


biological process, CS2 contains the activation of cell cycle-

associated pathways, and the CS1 group has a shorter overall

survival time. Several specific pathway-generated signatures also

provide the prospect to predict the prognosis of GC patients,

including pyroptosis (Shao et al., 2021), hypoxia (Liu et al., 2020),

glycolysis (Yu et al., 2020), autophagy (Qiu et al., 2020), stemness

characteristics (Mao et al., 2021), lncRNAs (Nie et al., 2020),

miRNAs (Zhang et al., 2019), and m6A genes (Wu et al., 2020).

Most of the published classifiers and signatures generated based

on the TCGA-STAD cohort only focus on specific pathways or gene

sets. In the current study, we used GSE15459 and GSE62254 to first

filter the cross-platform prognostic genes and then used LASSOCox

analysis to reduce the dimensionality of these genes, identified nine

pivotal GC prognostic genes, and further generated the nine-

consensus-prognostic-gene signature. We also evaluated the

protein levels of the nine candidates by the Human Protein Atlas

database and obtained consistent comparison results between

normal vs. tumor and expression levels and prognosis.

The biological function of the nine genes has also been

reported by several studies. Cui et al. (2020)reported that

elevated NOTCH3 levels lead to poor prognosis in GC

patients, and high NOTCH3 expression results in lower

infiltration of activated CD8+ T cells and higher infiltration of

Treg and M2 macrophages. Kang et al. (2021)identified that

FIGURE 9
Comparison of the nine-consensus prognostic gene signature and proposedmolecular subtypes. (A), Heatmap showing themolecular features
and clinical features in low- and high-risk subgroups; (B), Box plot showing the comparison of risk score between Lauren classification subgroups;
(C), Box plot showing the comparison of risk score between ACRG subtypes; (D), K-M plot showing the diverse overall survival between Lauren
classification plus risk subgroups; (E), K-M plot showing the diverse overall survival between ACRG subtypes plus risk subgroups.
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NOTCH3 can upregulate the expression of PHLDB2 and activate

the AKT pathway to promote the carcinogenesis of GC.Wu et al.

(2018) confirmed that the MATN3 protein levels in GC tissues

were high compared to normal tissues via IHC staining, and the

high protein level of MATN3 was associated with markedly

decreased OS compared to patients with low protein levels.

For MPDZ, Tetzlaff et al. (2018)reported that MPDZ can

physically interact with the intracellular carboxytermini of

DLL1 and DLL4, further interact with the adherent junction

protein Nectin-2, and promote the activation of Notch signaling.

In pancancer analyses, ANKRD6 was reported to be linked with

poor prognosis and increased infiltration of M2 macrophages

(Bai et al., 2021), while Yu et al. (2014)demonstrated that a

significant association was observed between

ANKRD6 overexpression and TNM stage, nodal metastasis

and triple-negative status of breast cancer. Knockdown of

ANKRD6 can decrease cell proliferation and invasion and

might through the phosphorylation regulation of JNK. Few

studies have focused on the biological functions of PRICKLE2,

PDE12, RBP1, THSD7B, and TUBB6 in gastric cancer.

In the current study, the nine-consensus-prognostic-gene

signature shows a wonderful prognostic value to identify OS

results, with an AUC value as high as 0.812 in the training

GSE15459 cohort and time AUC values of 0.620–0.723 in the

validation and external validation cohorts, which is better than

several proposed signatures (Song et al., 2017; Chen et al., 2021;

Huo et al., 2021a; Huo et al., 2021b). In addition, we revealed that

the nine-consensus-prognostic-gene signature is an independent

prognostic factor after adjusting for clinical features and

presented preferable prognostic value in different subgroups of

GC patients. Moreover, the combined prognostic value of the

signature and other clinical features increased to 0.860. We

constructed the nomogram using only tumor stage and the

nine-consensus-prognostic-gene signature, which also

displayed good consistency of the nomogram-predicted events

and actual events at 1, 3, and 5 years. Several nomograms have

also been constructed and published for gastric cancer. Jeong

et al. (2020)reported a nomogram composed of age, sex, and the

expression levels of CAPZA, PPase, OCT-1, PRDX4, gamma-

enolase, and c-Myc; Zhu et al. (2020)illustrated a nomogram via

eight independent variables based on the SEER database,

including race, grade, surgery, chemotherapy, and metastases

of bone, brain, liver, lung; Dong et al. (2019)reported an

individualized nomogram incorporating the primary tumor,

peritoneum region and Lauren type recognized by computed

tomography to evaluate occult peritoneal metastasis in patients

with advanced gastric cancer. We hope the nomogram generated

in the current study by the nine-consensus-prognostic-gene

signature and tumor stage can provide novel insight for the

prognostic prediction of GC patients along with the already

proposed nomograms.

We observed the activation of apical junction, epithelial

mesenchymal transition, WNT/beta-catenin signaling, immune

associated pathways and higher immunocyte infiltration in the

poor prognosis high-risk group. Epithelial-mesenchymal

transition (EMT) is an important fundamental process in

embryogenesis, wound healing, and fibrotic diseases (Thiery

et al., 2009). Abnormal activation of EMT also plays an

important role in the development, invasion and metastasis of

gastric cancer (Zhao et al., 2013; Yue et al., 2019; Lin H. et al.,

2021). Tian et al. reported that SERPINH1 can regulate EMT and

GC progression via the Wnt/β-catenin pathway. Wu et al. (2021)

reported that lncRNA SNHG11 can promote GC progression by

activating the WNT/beta-catenin pathway. Regarding immune

infiltration and GC prognosis, Jiang et al. (2021)separated GC

into 3 immune cell infiltration clusters using unsupervised

clustering based on the ESTIMATE and CIBERSORT algorithms,

and cluster 3 with high immunocyte infiltration also presented the

worst prognosis. Morihiro et al. (2019)also reported that a high

protein level of PD-L1 was an independent poor prognostic factor.

In the country, Kemi et al. (2020)developed the immune cell score

(ICS) based on the infiltration of CD3+ lymphocytes and CD8+

lymphocytes, and the 5-years survival was 41.6% in the high ICS

group, 31.7% in the intermediate ICS group and 22.2% in the low

ICS group. This contradiction might be caused by the different

activation statuses of the tumor microenvironment, as Zhou et al.

(202) and Sato et al. (2020)reported that the immune-hot or

immune-activated status inhibits tumor progression with a

favorable prognosis, while the immune-cold or

immunosuppressed group has a poor prognosis.

Conclusion

Collectively, we constructed a robust nine-consensus-

prognostic-gene signature for the prediction of GC prognosis.

With validation in multiple cohorts, the nine-consensus-

prognostic-gene signature and nomogram independently,

quantitatively, and accurately predicted patient clinical

outcomes. In addition, the signature also proved to be a

reliable indicator of personalized treatment of GC patients.
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