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Medical image fusion is an important technique to address the limited depth of the optical lens for a completely informative focused
image. It can well improve the accuracy of diagnosis and assessment of medical problems. However, the difficulty of many
traditional fusion methods in preserving all the significant features of the source images compromises the clinical accuracy of
medical problems. Thus, we propose a novel medical image fusion method with a low-level feature to deal with the problem.
We decompose the source images into base layers and detail layers with local binary pattern operators for obtaining low-level
features. The low-level features of the base and detail layers are applied to construct weight maps by using saliency detection.
The weight map optimized by fast guided filtering guides the fusion of base and detail layers to maintain the spatial consistency
between the source images and their corresponding layers. The recombination of the fused base and detail layers constructs the
final fused image. The experimental results demonstrated that the proposed method achieved a state-of-the-art performance for

multifocus images.

1. Introduction

The depth-of-field limitations may potentially limit the com-
plete and accurate understanding of the medical problem of
the human body, organs, and cells and even the performance
of medical diagnostics and analysis [1-3]. Medical image
fusion is an essential technique for combining multiple
images with complementary information to provide more
comprehensive descriptions of the medical problems [4].
To date, medical image fusion has become a relevant research
field due to its efficiency and wide applications in medical
analysis. The growing appeal of high-performance medical
diagnostic devices prompts the development of low-cost
computing and imaging techniques. There are many medical
image fusion methods proposed to address the problems
mentioned above. These methods include two categories:
spatial domain methods and transform domain methods [5].

The spatial domain methods deal with pixels or regions
in spatial domains directly based on the pixel intensities
[6]. The fundamental problem of spatial domain methods is
the selection of the clearest image pixels or regions from
the source images in order to construct the fused image.
The regions with greater energy or larger changes of pixels

are considered to be in focus during the fusion process. The
spatial domain methods mainly include pixel-based methods
[6-8] and region-based methods [9-11]. These methods are
simple and fast. However, the pixel-based methods are sensi-
tive to noise, which may potentially lead to the incorrect
choice of pixels. Due to difficulties in the selections of block
sizes or segmentation algorithms [12, 13], the region-based
methods suffer from blocking artifacts. Also, the visual qual-
ity of the final fused image could be compromised when blur
and sharp pixels are segmented to the focused regions [5].
The transform domain methods deal with the coefficients
of the transformed source images in the transform domain.
The transform domain methods that approximate and detail
coeflicients at different scales integrate these coeflicients to
new multiscale representation by employing various fusion
rules. And finally, an inverse transformation is performed
on these coeflicients to reconstruct a fused image [4]. Based
on the hypothesis that the greater the frequency content in
the transform domain, the higher the corresponding con-
trasts in the spatial domain, the regions with greater coeffi-
cients of high frequency are accepted as being in focus
during the fusion process. These methods mainly include
the following: the Laplacian pyramid (LAP) [14], discrete
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wavelet transform (DWT) [15], curvelet transform (CVT)
[16], contourlet transform (CT) [17], and non-subsampled
contourlet (NSCT) [18]. These methods can achieve better
signal-to-noise ratios [19]. However, they suffer from time
and space consumption, loss of contrast, selection of the
decomposition level, and decomposition type. The simple
fusion rules of these methods cannot always successfully
identify the detailed and structured information from coeffi-
cients, and may cause the degradation of image quality [20].
Due to spatial inconsistencies, these methods are unable to
effectively preserve the edge and texture information, which
may lead to halo artifacts near the edges, as well as spurious
data and distortions.

In recent years, deep learning as a novel technique is
applied to medical image fusion for better fusion perfor-
mance. Liu et al. [21] fused the medical image by integrating
MCA and convolutional sparse representation (CSR) into a
unified optimization framework. It can outperform some
benchmarking and state-of-the-art SR-based fusion methods.
Xia et al. [22] proposed a novel fusion scheme for multi-
modal medical images which utilizes both the features of
the multiscale transformation and deep convolutional neural
network. Hou et al. [23] designs a novel fusion scheme for CT
and MRI medical images based on convolutional neural net-
works and a dual-channel spiking cortical model. Ding et al.
[24] fused medical images by combining convolutional neu-
ral networks and non-subsampled shear-let transform to
simultaneously cover the advantages of them both for medi-
cal image fusion. Wang et al. [25] proposed a medical image
algorithm based on the Siamese convolutional network and
contrast pyramid. These algorithms can effectively preserve
the detailed structure information of source images and
achieve good human visual effects. These methods have
achieved better fusion performance. However, the need for
tuning millions of parameters during the training stage, as
well as the difficulty of exploration, seriously affected the
fusion quality.

Recently, edge-preserving filter-based fusion methods
are introduced to solve the problems mentioned above
and they simplify the representation of source images
while retaining the robust edges [26]. They include the
guided filtering method [27], L, gradient minimization
method [28], cross-bilateral filter (BF) method [29],
weighted least square filter method [30], and rolling guid-
ance method [31]. The guided filtering method retained
the spatial consistency of the base and detail layers by
using a weighted average technique. The L, gradient min-
imization method preserved and enhanced human visual
system interests by using visual weight maps. The cross-
bilateral filter method fused the source images by using
the detailed information of the source images. The rolling
guidance method prevented noise and image distortion
through the spiking cortical model, while the iterative
guided filtering method suppressed the noise by using a
guided filter in an iterative mode. All these methods
achieved excellent performance for medical image fusion.
This paper mainly focuses on the improvement of the
conventional image fusion method.
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As we know, low-level features such as color, texture,
edge shape, and structure are the significant features for
image representation. These features are the key to image
saliency detection and image understanding. It is significant
for medical analysis and decisions according to medical
images. The low-level feature is the salient feature for focused
region detection. It can improve the accuracy of the focused
region detection by using low-level features. Then, more
structured and detailed information can be transferred into
the fused image from the source images. Thus, high-quality
fusion result can be obtained. To further improve the medical
image fusion quality by using a low-level feature, we propose
a novel medical image fusion scheme with a low-level feature.
In the beginning, the proposed method decomposes the
source images into base and detail layers by using local binary
patterns operators for the low-level feature. Then, weight
maps of the base and detail layers are constructed based on
the low-level feature. Thirdly, the base and detail layers are
fused according to the optimized weight map with a fast
guided filter. Finally, the fused base and detail layers are com-
bined to produce the final fused image. The fast guided filter
(FGF) is one of several popular filters for edge-preserving
smoothing, which is independent of the filter size. Due to
its flexibility and speed of computation, it is feasible to use
in different real-time applications. The objective of this paper
is to investigate its potential applications in medical image
fusion.

This paper’s main contributions fell into the following
three points:

(1) We propose a novel multifocus image fusion method
with a low-level feature

(2) We propose a novel weight construction method
according to low-level feature saliency and spatial
context

(3) We extract the low-level feature by using local binary
patterns operators

The rest of this paper is organized as follows: Section 2
explains the basic concept of FGF which discusses its feasibil-
ity and advantages for medical image fusion, whereas Section
3 defines the fusion method with FGF. Section 4 discusses
experimental results followed by conclusions and future
work in Section 5.

2. Related Works

2.1. Fast Guided Filter. FGF is one of several popular tech-
niques for edge-aware image filtering, whose computing time
is independent of the filter size [26]. In this study, the FGF is
applied to medical image fusion. In theory, FGF is driven by a
local linear model and the relation between the guidance
image I and filter output image O in a local square window
wy. centered at the pixel k is defined as follows:

where i denotes a pixel and g;, and b, are liner coeflicients in
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wy. The size of w; is (2r + 1)(2r + 1). The linear coefficients
a, and b, are used to minimize the squared difference
between the filter input image P and the filter output image
O. The linear coeflicients a; and b, can be obtained by linear
regression as follows:

(1/|“’|)Ziewk1ipi — Py
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where 1, and o, are the mean and variance of I in the win-
dow wy, respectively, |w| denotes the pixel number in k, and
P denotes the mean value of P in w,. € is a regularization
parameter, which controls the degree of smoothness on P.
The filtering output image O is defined as follows:

O,

i=a;l; +b; (3)
where 4, and b, are two smoothed maps and denote the mean
value of g and b, respectively, in w;. The main computation of
FGF is for the smoothed maps of @, and b,. In order to
improve the computational efficiency, all the box filters are
performed on the low-resolution maps. Moreover, 4, and b,
are bilinearly upsampled to the original size.

2.2. Feasible and Superiority. Figure 1 lists the comparison of
BF and FGF for image filtering. The enlarged region of the fil-
tering results for the source image demonstrates that FGF can
well inhabit gradient-reversal artifacts and preserve the low-
level features.

It is known that a suitable fusion method should transfer
most of the useful low-level feature, such as edges, texture,
and structure information, from the source images to the
fused image. FGF is a novel edge-preserving smoothing tech-
nique, which can effectively remove noise, weak edges, and
small details while preserving the overall low-level features
of an image. Activity level measurements and focus regions
or pixel extractions are two essential problems affecting the
fusion quality. As mentioned above, the transform domain-
based fusion methods use predesigned bases to represent
the source images. The spatial domain-based fusion methods
use activity-level measurements based on high-pass spatial
filtering. FGF is able to well preserve the low-level feature
such as colors, boundary, structures, edges, and textures cor-
responding to those of the source images. The low-level fea-
ture of base and detail layers can be used to perform more
effective activity-level measurements and accurately discrim-
inate the focused regions from the defocused regions. The
fusion of the source images can be transformed into the sub-
fusion of base and detail layers. FGF can well extract the low-
level feature from the source images. Therefore, it was deter-
mined that it is feasible to apply FGF to medical image
fusion. The advantages of the FGF-based fusion method over
other existing methods are fourfold: (1) FGF can effectively
suppress gradient-reversal artifacts [15] and produce visually
pleasing edge profiles, (2) FGF is independent of the filter size
and well suited for real applications with highly computed
efficiency, (3) FGF is flexible and easy to implement, and

(4) the FGF-based fusion method can be adapted to different
field applications.

Considering the advantages of FGF mentioned above, we
propose a novel FGF-based fusion method to extract the low-
level features for saliency map construction and guide the
medical image fusion, as detailed in Section 3.

3. Proposed Approach

3.1. Fusion Algorithm. We assumed that there are two regis-
tered source images I, and I,, which are preregistered. As
shown in Figure 2, the proposed fusion algorithm consists
of four main steps:

Step 1. (two-scale image decomposition).

The local binary pattern (LBP) operators [32] are applied
to decompose the source images I,,I, into base layers B,,B,
and detail layers D,,D, respectively. It can be defined as fol-
lows:

I=B+D, (4)

where I is the source image, B is the base layer of I, and D is
the detail layer of I.

Step 2. (construction of decision map for subfusion).

Laplacian filtering (LF) and Gaussian low-pass filtering
(GLF) are performed on the source images I,, I, to obtain
the saliency maps S, and S,, respectively, which are com-
pared to construct weight maps P, and P,, respectively.
Weight maps P, and P, are optimized for W¥, W% and WP
, WP, respectively, with FGF guided by source images I,
and I,, respectively.

Step 3. (subfusion of different layers).

Following the fusion rules and optimized weight maps,
B, and B, are integrated to obtain Fy, which denotes the
fused base layerD,. Moreover, D, is integrated to obtain the
fused detail layer Fy,.

Step 4. (two-scale image reconstruction).

Fp and F}, are combined to construct the final fused
image F.

F=Fy+Fp,. (5)

3.2. Fusion Rule. As mentioned above, the low-level features
of the source images such as colors, boundary, structures,
edges, and textures can be used to perform more effective
activity-level measurements and accurately discriminate the
focused regions from the defocused regions. The relationship
between the source images “skull” and their corresponding
layers is shown in Figure 3. It can be seen that the low-level
features of the source images are corresponding to the low-
level feature of different layers, such as the structure, the tex-
tures, and the edges of the tissue.
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In order to measure the activity level, we apply Laplacian
filtering and Gaussian low-pass filtering to detect the salient
feature and construct the saliency maps of the source images.
The Laplacian filter highlights the change in light intensity
surrounding a pixel. It can extract the outline of the target
and generalize the details. Laplacian filtering is used for
obtaining the high-pass component of the source image.
Gaussian low-pass filter is a linear smoothing filter, which
is suitable for eliminating Gaussian noise and is widely used
in the denoising process of image processing. Gaussian filter-
ing is a process of weighted averaging of the entire image.
The value of each pixel is obtained by weighted averaging
of itself and other pixel values in the neighborhood. In this
study, Gaussian low-pass filtering is used for computing the
local average of the absolute value of the obtained high-pass
component, which constructs the saliency maps S. The
saliency map is defined as follows:

S=ILx*G, (6)

where S is the saliency map. L is the Laplacian filtering. G is
Gaussian low-pass filtering. The obtained saliency maps rep-
resent the saliency level of detail information. The pixel max-
imum of the saliency maps is computed to construct the
corresponding weight maps P, which are defined as follows:

. . 1)
Py(i, ) =

0,

. . 1,
Py(i,j) =

0’

where “1” in weight maps indicated that the pixel location (
i, ) in source images was in focus. However, the weight maps
are not well consistent with the object boundaries in the
source images. It may produce artifacts in the fused image.
As shown in Figure 3, the base layers are spatially smooth
and the detail layers have large moment of detailed informa-
tion. Spatial consistency demands that those pixels with sim-
ilar color or brightness tend to have similar weights. Thus,
the weights for base layers should be spatially smooth and
the weights for detail layers should be sharp. FGF is applied
to optimize the binary maps with the source image I serving
as a guidance image. A large filter size and large blur degree
are used for the fusion of base layers. A small filter size and
small blur degree are used for the fusion of detail layers. Opti-
mized weight maps W are defined as follows:

$1(67) 2 S, (s ),
otherwise,
S, (i) 2 $1(6 )

otherwise,

W = FGF(P,I). (8)

Then, the base and detail layers obtained by using LBP
are fused with optimized weighted maps W. The multilayers
of the source images are fused as follows:

Fy=W7'B, + W3B,,
)

Fp=W?D, + WoD,,

where Fy and F, represent the fused base layer and the fused
detail layer, respectively.

4. Experimental Results

In this section, some commonly used testing image sets are
used to assess the performance of the proposed method. To
be more objective in the performance assessment, the pro-
posed method is compared with some of the existing fusion
algorithms in terms of visual quality and quantitative
evaluation.

4.1. Experimental Settings

4.1.1. Testing Images. In the experiments, nine pairs of med-
ical images of the database [21, 33] are used as the testing
image sets, as shown in Figure 4. These images have a resolu-
tion of 256 x 256 pixels and 256 levels, except for the ninth
group of images that have a resolution of 464 x 464.

4.1.2. Compared Algorithms. These comparison methods
include traditional fusion methods, as well as recently pro-
posed fusion methods. The traditional fusion methods are
the Laplacian pyramid- (LAP-) based fusion algorithm, dis-
crete wavelet transform- (DWT-) based fusion algorithm,
and non-subsampled contourlet- (NSCT-) based fusion algo-
rithm. The recently proposed fusion methods included
cartoon-texture decomposition- (CTD-) based fusion algo-
rithm [34], multiscale image decomposition- (MSID-) based
fusion algorithm [35], cross-bilateral filtering- (CBE-) based
fusion algorithm [24], and guided filtering fusion- (GFF-)
based algorithm [22]. The compared algorithms and pro-
posed algorithm are all programmed in MATLAB language,
and all the experiments are conducted with MATLAB
R2011b in a Windows environment, on a computer with an
Intel Core (TM) i7-4770 and 4G memory. Due to the lack
of a source code, this study uses the Eduardo Fernandez Can-
ga’s MATLAB image fusion toolbox [36] as the reference for
the LAP and DWT. The NSCT toolbox [37] is used as a ref-
erence for the NSCT. The toolboxes of CTD and FGF avail-
able from [21, 34] are used for the CTD and the proposed
fusion methods. The source codes of the GFF are derived
from [38] as the reference for the fusion based on the GFF.
The evaluation toolboxes are taken from [39] and used for
the fusion performance evaluations.

4.1.3. Parameter Setting. The decomposition level of the
DWT was 4. Also, the pyramid filter “9-7” and orientation
filter “7-9” with {4, 4, 3} levels of decomposition were set
for the NSCT. The parameters of the recently proposed
fusion methods, such as CTD, MSID, CBF, and GFF, are
found to be the same with the corresponding papers. The
local window radius and the regularization parameters of
the FGF are set as r; =45, r, =7.5, ¢, = 0.25, and &, = 10°°.

4.1.4. Evaluation Metrics. Four commonly used evaluation
metrics, i.e., mean square error (MSE), mutual information
(MI) [40], Q*P/F [41], and Qy [42], are used to evaluate the
effectiveness of the proposed method. These metrics measure
the information preservation ability of the fusion method.
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FIGURE 5: Experimental results Aof “MI-1” obtained using different fusion methods.
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FIGURE 6: Enlarged regions from fusion results of “MI-1” obtained using different fusion methods.

MSE measures the similarity between the source images and
the fused image. MI measures the degree of the information
transferred from source images to the fused image. Q*#/F
measures the amount of edge information transferred from
the source images to the fused image. Q, measures the
amount of the structural information preserved from the
source images to the fused image by using structural similar-
ity. The larger value of these metrics (MI, Qy, and Q*#'F) and
the lower value of MSE represent a large amount of informa-
tion preserved from the source images and signifies a better
fusion performance.

4.2. Quality Assessment. For assessing the visual quality of
fusion results obtained by different methods, Figures 5 and
6 show the fusion results of “MI-1” and their corresponding

enlarge regions. Figures 7 and 8 show the fusion results of
“MI-4” and their corresponding enlarged regions. Figures 9
and 10 show the fusion results of “MI-5” and their corre-
sponding enlarged regions. Figures 11 and 12 show the fusion
results of “MI-8” and their corresponding enlarged regions.
LAP can well extract low-level features from the source
images except for suffering from the instability of the rela-
tionship of decomposition coefficients between different
levels. The extraction of point-wise singularities for DWT is
better than that of in-line singularities. The shift invariance
of NSCT improves the extraction capacity of low-level fea-
tures from the source images. However, a large number of
decomposition coeflicients consume more memory space
and processing time. Moreover, LAP, DWT, and NSCT pro-
duce the fusion results in the transform domain by
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FI1GURE 7: Experimental results of “MI-4” obtained using different fusion methods.

(f) CBE
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() GFF

FIGURE 8: Enlarged regions from fusion results of “MI-4” obtained using different fusion methods.

processing the transform coefficients. However, the spatial
inconsistency compromises fusion performance. The fusion
results demonstrate noticeable blurs, such as the edge of the
soft tissue of the brain (Figures 5(a)-5(c)), the edge of the
skull (Figures 7(a)-7(c), 9(a)-9(c), and 11(a)-11(c)), the
upper edge of the enlarged detail regions (Figures 6(a)-6(c),
8(a)-8(c), 10(a)-10(c), and 12(a)-12(c)).

CTD is an improved technique for the problems of L1-
regularized optimization. It can well extract the low-level fea-
tures such as structural patterns and latent detail information
of source images with cartoon-texture decomposition. The
source image can be split into cartoon components and tex-
ture components with a split Bregman algorithm. The salient
low-level features are compared to construct the decision

map for the fusion of cartoon and texture components. How-
ever, the construction of the decision map for cartoon and
texture components is affected by the imprecise morpholog-
ical operation, such as erosion and dilation. Thus, the low-
level feature of the source image cannot be well transferred
to the fused image. The corresponding artifacts of CTD can
be seen in the edge regions of the enlarged detail regions
(Figures 6(a)-6(d)).

MSID is based on saliency detection and multiscale
image decomposition. MSID is efficient to emphasize visual
saliency by extracting low-level features. It can improve the
capacity of focused region detection. Weight maps of this
algorithm are capable of detecting and identifying focused
and defocused regions of the source images. However, the
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F1GURE 9: Experimental results of “MI-5” obtained using different fusion methods.
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F1Gure 10: Enlarged regions from fusion results of “MI-5” obtained using different fusion methods.

weight maps for final approximation layer compromise the
fusion performance and produce the noticeable blurs such
as the blurred edge of the soft tissue of the brain
(Figure 5(e)), the apparent blur edge of the skull
(Figures 7(e), 9(e), and 11(e)), the incomplete edge, and low
contrast in the enlarged detail regions (Figures 6(e), 8(e),
10(e), and 12(e)).

The cross-bilateral filter considers both gray-level simi-
larities and geometric closeness of the neighboring pixels
without smoothing edges, but it uses one image for finding
the kernel and the other to the filter and vice versa. CBF
applies joint bilateral filtering to extract low-level features
for suppressing the gradient reversal artifacts of the bilateral
filter. It fuses source images by weighted average using the
weights computed from the detail layers. However, the fusion

of different layers based on weight maps may be affected by
the combination of the pixels with different intensities. The
low contrast and visible blurs can be seen in the fused images,
such as the incompleteness of the soft tissue of the brain
(Figure 5(f)), the obvious blur edge of the skull (Figures 7(f
), 9(f), and 11(f)), and the low contrast in the enlarged detail
regions (Figures 6(f), 8(f), 10(e), and 12(f)).

GFF is based on a two-scale decomposition of an image
into a base layer containing large-scale variations in intensity
and a detail layer capturing small-scale details. GFF is an effi-
cient fusion method. It combines pixel saliency and the spa-
tial context for medical image fusion. It improves the fusion
performance by combining the different layers with opti-
mized saliency maps constructed from the low-level features.
However, the weight map operations used in the fusion
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F1GURE 11: Experimental results of “MI-8” obtained using different fusion methods.
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(g) GFF
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F1GURE 12: Enlarged regions from fusion results of “MI-8” obtained using different fusion methods.

process can result in the loss of some low-level features of the
source images due to inaccurate weight values. It can be seen
in the fused images, such as the blurring artifacts, e.g., the
corresponding enlarged detail regions (Figures 8(g) and
12(g)).

The proposed method decomposes the source images
into base layers and detail layers by using local binary pattern
operators. The saliency low-level features such as texture,
edge, and structure are extracted by Laplacian filtering and
Gaussian low-pass filtering. These features are compared to
construct the saliency maps, which optimized to weight maps

for the fusion of different layers by using fast guided filtering.
Fast guided filtering is adopted as a local filtering for optimi-
zation of the weight maps. Different filter sizes and blur
degrees control the pixel saliency and spatial consistency by
adjusting the value of the parameters in the fast guided filter.
Different layers are fused with corresponding weight maps
based on the guidance of the source images. The pixel
saliency and spatial consistency can be well improved, which
ensures the better fusion performance of the proposed
method. The visual quality assessment of the fusion results
obtained by different methods has demonstrated that the
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TaBLE 1: Performance of different fusion methods for medical images.
(a)
MI-1 MI-2 MI-3
Method MI Qy Q™'  MSE MI Qy QP MSE MI Qy QY MSE
LAP 2.178 0.675 0.727 57.741 2.068 0.872 0.739 45.730 2.609 0.903 0.627 44.14481354
DWT 2.931 0.827 0.611 79.965 3.129 0.961 0.787 54.263 2.599 0.832 0.565 53.49580383
NSCT 2.177 0.620 0.465 90.939 2.825 0.584 0.793 65.552 2.796 0.566 0.612 65.61071777
CTD 5914 0.943 0.664 74.500 3.940 0.936 0.830 51.555 4.483 0.975 0.673 41.62849426
MSID 2.195 0.616 0.499 59.269 1.582 0.844 0.496 43.559 2.232 0.848 0.436 44.26103973
CBF 4.412 0.924 0.775 74.774 2.837 0.928 0.776 51.407 2.904 0.905 0.626 42.7221756
GFF 3.259 0.887 0.780 78.395 2.157 0.768 0.797 49.230 2.669 0.751 0.639 42.53501129
Proposed 6.032 0.959 0.820 46.075 4.063 0.964 0.851 43.405 4.574 0.988 0.737 38.04077911
(b)
MI-4 MI-5 MI-6
LAP 2.739 0.901 0.607 50.271 2414 0.897 0.656 40.721 2.671 0.897 0.614 46.824
DWT 2.690 0.834 0.535 55.560 2.541 0.850 0.614 51.070 2.670 0.829 0.551 55.585
NSCT 2.824 0.540 0.577 70.298 2.684 0.543 0.667 62.506 2.793 0.558 0.573 69.043
CTD 4.779 0.959 0.665 30.326 4.101 0.921 0.695 41.111 4.673 0.967 0.649 44.490
MSID 2431 0.850 0.434 45.375 2.093 0.858 0.465 40.912 2.293 0.845 0.430 45.553
CBF 2.945 0.892 0.594 43.758 2.765 0.909 0.656 40.511 2.928 0.890 0.606 44.624
GFF 2.762 0.756 0.625 41.943 2.462 0.741 0.654 39.297 2.642 0.742 0.617 44.171
Proposed 4.863 0.974 0.692 36.298 4.113 0.994 0.736 38.885 4.694 0.988 0.712 43.713
(c)
MI-7 MI-8 MI-9
LAP 2.803 0.900 0.613 46.924 2.888 0.907 0.624 42.013 3.249 0.796 0.614 33.56437
DWT 2.783 0.817 0.558 51.125 2.732 0.799 0.553 49.897 3.197 0.794 0.490 51.27275
NSCT 2.976 0.577 0.624 66.102 2.987 0.584 0.630 63.085 3.318 0.779 0.529 55.56722
CTD 4.887 0.982 0.677 39.625 4.848 0.979 0.683 37.383 3.704 0.870 0.593 47.99319
MSID 2.514 0.848 0.437 43.682 2.575 0.851 0.460 40.935 3.112 0.725 0.445 34.95961
CBF 3.043 0.891 0.597 41.760 3.075 0.897 0.613 38.117 4.378 0.880 0.616 26.81659
GFF 2.786 0.755 0.623 41.034 2.849 0.755 0.634 38.010 4.061 0.910 0.675 27.27437
Proposed 4.926 0.998 0.720 37.291 4.927 0.994 0.711 34.563 4.112 0.983 0.703 25.4412

proposed method has achieved better visual quality than that of
other methods. The detailed visual information of the fusion
results demonstrates the superiority of the proposed method.

4.3. Quantitative Analysis. In order to compare the fusion
performance of different fusion methods, four evaluated met-
rics mentioned above are applied to the fused medical
images. These metric values are listed in Table 1. The bar
charts of the average values of the three metrics (MI, Qy,
and Q*%F) in Table 1 are shown in Figure 13. The average
running time of the compared algorithms is listed in Table 2.

It is easy to see that the MI and Q*#'F values of CTD and
the proposed are higher than those of other fusion methods.
The Q*#'F values of LAP and DWT are higher than those of
NSCT. The Q4B'F values of NSCT are lower than those of

other fusion methods. The Q, and MI values of MSID are
lower than those of other fusion methods. The MSE values
of NSCT are higher than those of other fusion methods.
The MSE values of the proposed method are lower than those
of other fusion methods. The values of Table 1 and the
change of the trend chart (MI, Qy, and Q*#'F) demonstrate
the proposed method has achieved better performance.
Table 2 demonstrates that the NSCT required the longest
computational times, followed by CBF and CTD. The reason
is that the processing of coefficients consumes most of the
fusion time. The statistic model of CBF consumes most of
the fusion time. The sliding window of CTD consumes the
running time. As previously mentioned, this study demon-
strates that the proposed method costs little time for the
medical images.



12 Computational and Mathematical Methods in Medicine
1.200 5.000
- 4.500
© 1.000 1 - 4.000
=
5 o804 ' ' - r 3-00
5 ‘ [ | F3.000 g
= 0.600 - : 2500 £
b= ~
o L 2.000 =
2 0.400 -
- 1.500
S
LAP DWT NSCT CTD MSID CBF GFF Proposed
Fusion method
mm QAB/F
mm QY
MI
FIGURE 13: Average metric values of different methods for medical images.
TABLE 2: Average running time of different fusion methods for medical images.
Method LAP DWT NSCT CTD MSID CBF GFF Proposed
Time (s) 0.254 0.105 20.750 3.140 1.484 11.746 0.162 0.142
5. Conclusion References

This study presented a novel medical image fusion method
based on the low-level feature. The fast guided filtering is
applied to the saliency map of the source images to construct
the weight map of the multilayers of the source images. The
base and detail layers obtained by local binary pattern opera-
tors are fused according to their corresponding weight maps,
and the fused base and detail layers are combined to produce
the final fused image. This study’s experiments are per-
formed on nine pairs of medical images. The experimental
results demonstrate that the proposed method obtains a
state-of-the-art performance in both qualitative and quanti-
tative evaluations. The optimization in parameter adaptabil-
ity is exciting and worthwhile for further investigations.
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