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THE BIGGER PICTURE Diabetic retinopathy (DR) is the most common disease caused by diabetes.
Challenges are held to address real-world issues encountered in the design of DR automated screening
systems to advance the technology in this area. Thus, we described a challenge named "Diabetic Reti-
nopathy (DR)—Grading and Image Quality Estimation Challenge" in conjunction with the IEEE Interna-
tional Symposium on Biomedical Imaging (ISBI 2020) for fundus image assessment and DR grading.
The scientific community responded positively to the challenge. In the challenge, we provided a
deep DR image dataset (DeepDRiD) containing regular DR images and ultra-widefield (UWF) DR im-
ages, both having image quality and DR grading diagnosis. We discussed details of the three best al-
gorithms in each sub-challenges. The results by the top algorithms showed that image quality assess-
ment can be used as a target for further exploration.

Proof-of-concept Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
We described a challenge named ‘‘Diabetic Retinopathy (DR)—Grading and Image Quality Estimation Chal-
lenge’’ in conjunction with ISBI 2020 to hold three sub-challenges and develop deep learning models for DR
image assessment and grading. The scientific community responded positively to the challenge, with 34 sub-
missions from 574 registrations. In the challenge, we provided the DeepDRiD dataset containing 2,000 reg-
ular DR images (500 patients) and 256 ultra-widefield images (128 patients), both having DR quality and
grading annotations. We discussed details of the top 3 algorithms in each sub-challenges. The weighted
kappa for DR grading ranged from 0.93 to 0.82, and the accuracy for image quality evaluation ranged from
0.70 to 0.65. The results showed that image quality assessment can be used as a further target for explora-
tion. We also have released the DeepDRiD dataset on GitHub to help develop automatic systems and
improve human judgment in DR screening and diagnosis.
INTRODUCTION

Diabetic retinopathy (DR) is the most common disease caused

by diabetes, and it leads to vision loss in adults and mainly af-
This is an open access article under the CC BY-N
fects the working-age population.1–4 Approximately 600 million

people are estimated to have diabetes by 2040, and one-third

of them are expected to have DR.1 DR is diagnosed by visually

inspecting a retinal fundus image for the presence of one or
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more retinal lesions, such as microaneurysms, hemorrhages,

soft exudates, and hard exudates.5 An internationally accepted

method of grading the DR levels classifies DR into non-prolifer-

ative DR (NPDR) and proliferative DR (PDR).4 NPDR is the early

stage of DR and is characterized by the presence of microaneur-

ysms, whereas PDR is an advanced stage of DR and can lead to

severe vision loss. The number and degree of retinal lesions vary

in different DR grading, and the specific grading standards of

NPDR and PDR are listed in Table 1.4 Furthermore, Figure S1

shows different levels of DR disease presentation.

DR has some severe implications, such as blindness, and its

whole population screening is still hampered by several fac-

tors.6–10 First, DR screening places a cumbersome burden on

ophthalmologists. Second, healthcare workers are faced with

inadequate training, resulting in low-accuracy problems in DR

grading.11 Therefore, computer-aided diagnostic tools are

needed to assist manual screening, reducing the burden on oph-

thalmologists, and helping trained providers to grade fundus im-

agesmore accurately.12–16 Recent studies have been conducted

to collect raw fundus images and achieve accurate pixel- or im-

age-level expert annotations;11,17–19 these efforts play an impor-

tant role in facilitating the research community in developing,

validating, and comparing DR gradings. Large numbers of raw

fundus images and their corresponding physician annotations

have important clinical implications for developing robust auto-

mated DR grading models.

In medical image analysis, grand competitions present sub-

stantial opportunities to quickly advance the state-of-the-art

methods. Organizers define a clinically relevant task and

build a sufficiently large and diverse dataset to allow participants

to develop algorithms for solving one or several clinically related

problem(s). Moreover, algorithms proposed by participants are

consistently evaluated in a fair performance comparison. Many

successful challenges have been organized in recent years, spe-

cifically in DR fields, i.e., IDRiD,20 Kaggle 2015,21 Messidor,22

Kaggle 2009,23 ROC,24 E-Ophtha,25 and DiaretDB.26
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In 2018, we participated in the ‘‘Diabetic Retinopathy—Seg-

mentation and Grading Challenge’’ (IDRiD) to grade DR levels,

segment fundus lesions, and locate retinal landmarks (macula

and optic disc) in regular fundus images.20 The development

of our automated screening system for DR was further refined

during and after the competition. The details of the model

development are described in Dai et al.’s work.11 When devel-

oping the system, we found certain problems hindering the

practicality of the automatic DR screening system. First,

low-quality fundus images due to significant artifacts and

poorly lit areas increase training difficulty. Moreover, fundus

images from different devices pose a challenge for the stabil-

ity of automated screening systems. Finally, dual views of

regular fundus images are rarely seen in the previous DR chal-

lenges. To address all these limitations, we organized ‘‘Dia-

betic Retinopathy—Grading and Image Quality Estimation

Challenge’’ (DeepDRiD) in ISBI 2020, and we designed three

sub-challenges: (1) regular fundus DR grading for images in

different quality, (2) image quality assessment for availability,

and (3) ultra-widefield (UWF) DR grading for different device

transferring. The following is the setup of our challenge:

d In the DeepDRiD, we presented regular fundus photo-

graphs for left and right eyes from each patient in dual

views (macula-centered and optic-disc-centered) for the

system development by participants.

d We provided a detailed quality assessment score for each

image from the dataset.11 We also provided a sub-chal-

lenge to assess image quality in four aspects: artifact,

clarity, field definition, and overall score.

d We prepared a dataset from UWF fundus photography,

containing one double-view shot per patient. This dataset

offered the possibility to develop, validate, and test DR

screening systems with multiple devices.

In this paper, we discuss details of the three best algorithms

in each sub-challenge. All participants used convolutional

mailto:huarting99@sjtu.edu.cn
mailto:dinggang.shen@gmail.com
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Table 2. Image quality scoring criteria

Type Image quality specification Score

Artifact no artifacts 0

artifacts are outside the aortic arch with

scope less than ¼ of the image

1

artifacts do not affect the macular area

with range less than ¼

4

artifacts cover more than ¼ but less than

½ of the image

6

artifacts cover more than ½ without fully

covering the posterior pole

8

cover the entire posterior pole 10

Clarity clarity only level I vascular arch is visible 1

level II vascular arch and a small number

of lesions are visible

4

level III vascular arch and some lesions

are visible

6

level III vascular arch and most lesions

are visible

8

level III vascular arch and all lesions are

visible

10

Field

definition

field definition do not include the optic disc

and macula

1

only contain either optic disc or macula 4

contain optic disc and macula 6

the optic disc or macula is outside the 1

papillary diameter and within the 2 papillary

8

diameter range of the center

the optic disc and macula are within 1 10

Table 1. International Clinical DR Severity Scale

Disease

severity

level Descriptions

Findings observable

on dilated

ophthalmoscopy

Grade 0 no apparent

retinopathy

no abnormalities

Grade 1 mild NPDR microaneurysms only

Grade 2 moderate

NPDR

between just microaneurysms and

severe NPDR

Grade 3 severe

NPDR

any of the following:

more than 20 intraretinal hemorrhages

in each of 4 quadrants;

definite venous beading in more than

2 quadrants; prominent

intraretinal microvascular abnormalities

in more than 1

quadrant; no signs of PDR retinopathy

Grade 4 PDR one or more of the following:

neovascularization; vitreous/preretinal

hemorrhage

PDR, proliferative diabetic retinopathy; NPDR, non-proliferative diabetic

retinopathy.
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neural networks. Their algorithms differed mainly in terms of

the detailed neural network architecture, training strategy,

and pre- and post-processing methods. By examining their

models, we validate the performance of image quality and

DR grading, and we also summarize the relationship between

these two tasks.
papillary diameter of the center

Overall

quality

quality is not good enough for the diagnosis

of retinal diseases

0

quality is good enough for the diagnosis of

retinal diseases

1

Methods
Materials

In the DeepDRiD challenge, we included patients from different

projects in Shanghai, including participants in the Shanghai

Diabetic Complication Screening Project, Nicheng Diabetes

Screening Project, and Nation-wide Screening for Complica-

tions of Diabetes, for regular fundus images. The other part of

fundus images included regular fundus images and UWF retinal

images by retinal specialists at the outpatient ophthalmology

clinic in the Sixth People’s Hospital of Shanghai Jiao Tong Uni-

versity in China. From thousands of examinations available, we

randomly selected 2,000 regular fundus images from 500 pa-

tients to form the regular fundus dataset. Each patient in the da-

taset has four fundus images, and each eye has two records,

centered on the macula and optic disc. An example patient is

shown in Figure S2A. Furthermore, 256 UWF images from

another 128 patients formed our UWF dataset. The study was

approved by the Ethics Committee of Shanghai Sixth People’s

Hospital and conducted in accordance with the Declaration of

Helsinki. Informed consent was obtained from participants.

The study was registered on the Chinese Clinical Trials Registry

(ChiCTR.org.cn) under the identifier ChiCTR2000031184.

Inaddition toconstructing theDeepDRiDdataset,weperformed

the following procedures to ensure image quality and accuracy of

lesion diagnostic labels. Original retinal images were uploaded to

the online platform, and the images of each eye were assigned

separately to two authorized ophthalmologists. They labeled the
images using an online reading platform and gave the image qual-

ity assessment scores and graded diagnosis of DR. The third

ophthalmologist who served as the senior supervisor confirmed

or corrected when the diagnostic results were contradictory. The

final grading resultwas dependent on the consistencywithin these

three ophthalmologists. Clinically, five levels of DR are distin-

guished, based on the International Clinical DR (ICDR)4 classifica-

tion scale: (1) no apparent retinopathy (grade 0), (2) mild NPDR

(grade 1), (3) moderate NPDR (grade 2), (4) severe NPDR (grade

3), and (5) PDR (grade 4). Furthermore, the major factors affecting

fundus image quality assessment are image artifact, low clarity,

and low field definition, as shown in Figure S2B. The specific

criteria of image quality assessment and DR grading can be

seen in Tables 1 and 2. The DeepDRiD dataset is available to the

public (MendeleyData: https://doi.org/10.5281/zenodo.6452623).

For regular fundus images, the data were split into 60% for

training (Regular Set-A: 300 patients, 1,200 images), 20%

for testing (Regular Set-B: 100 patients, 400 images), and 20%

for testing (Regular Set-C: 100 patients, 400 images). The UWF

data were divided into UWF Set-A (77 patients, 154 images),

UWF Set-B (25 patients, 50 images), and UWF Set-C (26 pa-

tients, 52 images). Moreover, Set-A and Set-B of regular fundus
Patterns 3, 100512, June 10, 2022 3
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Table 3. Basic characteristics of the patients in DeepDRiD dataset (mean ± SD)

DR levels

Regular fundus UWF fundus

Set-A Set-B Set-C Set-A Set-B Set-C

No. of images 1,200 400 400 77 25 26

No. of participants 300 100 100 154 50 52

Male (%) 51.00 44.00 46.00 54.55 57.69 48.00

Age (years) 70.63 ± 7.70 65.13 ± 1.89 61.36 ± 7.23 74.64 ± 4.86 64.96 ± 1.71 58.28 ± 4.88

BMI (kg m�2) 25.17 ± 3.13 24.88 ± 3.21 25.01 ± 2.58 24.90 ± 2.89 25.19 ± 2.61 24.06 ± 3.30

Waist (cm) 90.15 ± 9.24 88.36 ± 9.75 88.03 ± 8.87 88.43 ± 9.07 92.00 ± 8.86 84.73 ± 7.55
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images and UWF images were provided to participants in model

development, and the Set-C was used as an online validation

set to evaluate the final performance. In addition, we provided

patient-level DR grading results, including a comprehensive

assessment of the DR grading results of both eyes. The distribu-

tion of DR severity in regular fundus images dataset (Regular

Set-A, Regular Set-B, and Regular Set-C) is shown in Table 3.

In the 256-image UWF fundus dataset, we collected labeling of

DR grading levels according to the ICDR classification scale.

The DR grading procedure for ophthalmologists is the same as

that of the regular fundus. In this dataset, we only obtained two

UWF fundus images from the right and left eye of each patient.

We provided DR grading levels for the fundus image of each

eye in the UWF image centered on the optic disc. Example fig-

ures of UWF fundus in different DR levels are shown in Figure S3.

A detailed information of DeepDRiD dataset can be seen in

Note S1.

Challenge setup

The DeepDRiD was composed of various stages, giving a well-

organized work process to facilitate the success of contests. Fig-

ure 1 depicts the workflow of the overall organization of the chal-

lenge. The challenge was officially announced on the ISBI 2020

website on October 25, 2019. Following the DR challenge held

with ISBI in 2018,20 we decided to promote the progress further

through the second challenge using a new dataset (DeepDRiD).

The challenge was subdivided into three tasks as follows:

d Sub-challenge 1: DR disease grading: classification of

fundus images according to the severity level of diabetic

retinopathy using dual-view retinal fundus images.

d Sub-challenge 2: image quality estimation: fundus quality

assessment for overall image quality, artifacts, clarity,

and field definition.

d Sub-challenge 3: UWF fundus DR grading: explore the

generalizability of a DR grading system. The robust and

generalizable models were expected to be developed to

solve practical clinical issues.

We set up a website to share information about the challenge

and provide an interface for all challenge-related issues. The

challenge website is accessible directly at https://isbi.deepdr.

org. On the website, the participants could register and find a

general overview of the challenge, including the deadlines, a

brief description of the biomedical background of the problem,

a description of the dataset, the rules of the challenge, the eval-

uation metrics, and Python code snippets for accessing the im-

ages and the annotations. Finally, the participants could submit

their results and access a forum to ask questions and provide
4 Patterns 3, 100512, June 10, 2022
comments through the website. It consisted of an open-testing

round (Regular Set-B and UWF Set-B) for teams to refine and

calibrate their models, and a final evaluation round (Regular

Set-C and UWF Set-C). Participants were granted access to

the dataset, forum, and submission system after they registered

and accepted the rules of the challenge. Anonymous participa-

tion was not allowed. The complete DeepDRiD datasets were

shared on GitHub (Mendeley Data: https://doi.org/10.5281/

zenodo.6452623). The challenge aimed for a fair comparison of

algorithms. Due to the large size of the public dataset in fundus

images, participants were allowed to use other data sources

but were required to mention which data they used.

The participants had to submit their results as CSV files

through the challenge website. The deadline for submissions

was March 4, 2020. A maximum of three submissions was al-

lowed per participant, with a four-page ISBI style paper accom-

panying each submission describing their methods. The three

submissions had to be methodologically different. Resubmis-

sions with simple hyper-parameter tuning were not allowed. Dur-

ing the workshop at ISBI 2020, we presented the challenge re-

sults and invited the top three teams to present their methods.

The results, presentations, and algorithms of participants were

shared on the challenge website after the workshop. Subse-

quently, the challenge was reopened for registration and sub-

missions. In submission result analysis, we used quadratic

weighted kappa (ku) as the assessment metric for sub-chal-

lenges. Moreover, in sub-challenge 2, the overall quality is eval-

uated by accuracy. The details of the evaluation method can be

seen in supplemental information: evaluation metrics.

RESULTS

We had 574 registered participants before March 1, 2019, when

the test dataset was released. The teams explored a wide

range of machine learning and deep learning models, ranging

from CatBoost,27 LightGBM,28 XGboost,29 VGG,30 ResNet,31

SE-ResNeXt,32 to EfficientNet,33 and combinations of several

types of models. In total, 34 teams submitted their models in

our challenge. To help the participating teams avoid overfitting

problems, we also provided a separate validation set (Regular

Set-B and UWF Set-B) during the competition to help them vali-

date the model results. In Figure 2, we gave the results of three

sub-challenges in the rank scores.

Summary of competing solutions
We only present the methodology and results of the top three

best-performing algorithms in each sub-challenge to keep the

https://isbi.deepdr.org
https://isbi.deepdr.org
https://doi.org/10.5281/zenodo.6452623
https://doi.org/10.5281/zenodo.6452623


Figure 1. Workflow of the ISBI 2020: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge
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paper concise. We discuss the algorithms of the nine teams in

terms of the following steps: data preprocessing, data augmen-

tation, model pre-training, and training strategies of classifying

deep learning models. We provide a summary and then discuss

each of these four steps. The detail models and specific training

strategies are shown in Note S2. Moreover, we summarize the

commonalities in the good results achieved by these team ap-

proaches. These teams all considered the background of medi-

cal expertise and considered the diagnostic processes of pro-

fessional physicians in the preprocessing of the data, the

training of the models, and the integration of the final results.

d The improvement of model generalization performance is

achieved by pre-training the model with extensive use of

routine fundus images published in publicly available data-

sets and DR grading results from professional physicians.

d Considering the task-to-task correlation, knowledge

migration from source to target data is utilized, enabling

the model to learn important information quickly.

d Simultaneous training and integration of multiple models

are used to improve the performance and performance

of the models using training strategies in the field of deep

learning.

The winning teams in three sub-challenges have different

characteristics. In sub-challenge 1 (DR grading using regular

fundus), the winning team did not use complex data preprocess-

ing and augmentation operations, but used advanced deep

learning training tools from the training means. In sub-challenge
2 (image quality assessment), the winning team used rich data

preprocessing and augmentation operations to design the

model. The winning team in sub-challenge 3 (UWF DR grading)

won the competition by pre-training and knowledge transfer of

large-scale data.

Data preprocessing

We analyzed different preprocessing steps used in each of three

sub-challenges: DR grading based on regular fundus; image

quality assessment based on regular fundus; and DR grading

based on UWF fundus. In DR severity grading of regular fundus

images, public dataset providing large size of regular fundus

images and their DR grading results, such as IDRiD,20 Kaggle

2015,21 Messidor,22 Kaggle 2009,23 ROC,24 E-Ophtha,25

DiaretDB,26 and REFUGE 2,34 were used. In a previous study,

general preprocessing methods were introduced to improve

model performance of DR grading. Some teams adopted these

preprocessing algorithms, including Ben’s preprocessing

method,35 image transformation based on bilinear interpolation,

reducing the black edges of fundus images, and so on. In the im-

age quality assessment task based on the regular fundus, the

preprocessing algorithms used by participants were fundamen-

tally the same as the DR severity grading task also based on the

regular fundus. Moreover, due to difference between the regular

fundus and UWF fundus, the preprocessing steps were different

in the DR grading task based on regular fundus and UWF fundus.

In the UWF fundus, all teams used the center-cut method to cut

the edge of the UWF fundus images. For more details, we refer to

Table 4.
Patterns 3, 100512, June 10, 2022 5



Figure 2. Bar chart for leaderboard in three sub-challenges

The colored bars indicate the top three teams in each challenge.
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Data augmentation

The color distribution of fundus images can influence the

robustness of the convolution neural networks (CNNs). Most

teams used data augmentation methods, such as color adjust-

ment, mirroring, rotation, and so on, to maintain the generality

of CNNs. In sub-challenge 1, two teams adopted the same mir-

roring method: horizontal flip, vertical flip, and horizontal and

vertical flip; they also used rotation augmentation with different

rotation angles. As most teams participating in sub-challenges

2 and 3 used the pre-trained network migration based on sub-

challenge 1, they did not use data augmentation methods. In

sub-challenge 2, only the top 1 team used additional color

adjustment methods, i.e., CutMix,36 RICAP,37 and Mixup.38

Furthermore, the top 1 team in sub-challenge 3 adopted plenti-

ful augmentation strategies. The results from sub-challenges 2

and 3 show that, although pre-trained network transfer helps

the network learn new tasks quickly, the use of data augmen-

tation methods is still helpful in improving network results. Ta-

ble 5 shows the detailed data augmentation method adopted

by nine teams.

Model pre-training

Many eye diseases are diagnosed based on fundus images.

Thus, it is common for public datasets in fundus images to build

models for different eye diseases. In our challenge, most teams

selected to use model pre-training to improve their model ability.

Table 6 shows model pre-training details.

Classifying deep learning models

In three sub-challenges, all teams used current deep learning

models to construct classification frameworks. Most teams

adopted EfficientNet33 as their deep learning backbones, and

obtained great model performance, whereas some teams

selected classical ResNet31 and its variant SE-ResNeXt.32 A

team in sub-challenge 2 used a private dataset with regular

fundus image and pixel-level structure labels, and selected

UNet39 and VGG30 as their deep learning classification model.

Most teams chose regular classification loss functions, such as

cross-entropy loss (CE), L1 loss, and smooth L1 loss. One

team in sub-challenge 2 proposed and adopted cost-sensitive

loss.40 The teams that selected different training strategies to

develop deep learning models are detailed in Table 7.
6 Patterns 3, 100512, June 10, 2022
Solution results
To fairly evaluate the performance of the individual competition

team models, the quadratic weighted kappa score ku was used

to rank the algorithms. The ku ranged from 0.9303 to 0.9033 for

all nine participating teams in sub-challenge 1, from 0.6981 to

0.6938 for the sub-challenge 2, and from 0.9062 to 0.6437 for

sub-challenge 3. In sub-challenge 1, almost all teams achieved

good performance (>0.90); in sub-challenge 2, almost all teams

achieved unsatisfactory performance (<0.70). This may be partly

due to the fact that the teams in the competition did not take

into account well the unevenness of the categories, and the rela-

tively small differences between classes that are difficult to

extract. In sub-challenge 3, all the teams performed evenly in dis-

tribution (0.60–0.90). Correlation between different fundus images

was considered, and better accuracy was achieved using a team

of transfer learning and sliding window learning. For the scores of

the top 3 teams in each sub-challenge, we refer to Table 8. We

also give a summary of the participation of these nine teams for

all sub-challenges in Table S4. The performances of the proposed

methods on the final validation (Set-C) are shown in six subtasks

(divided into three sub-challenges). The leaderboard ranks in the

three sub-challenges are also illustrated.

Sub-challenge 1: DR disease grading

This section presents the performance of all competing solutions

in the DR grading task using regular fundus pictures. The results

received from the participating teams were analyzed using ku as

a validation measure. ku was calculated on the validation set

(Regular Set-C) for each of the different techniques. Of the 34

participating teams in the challenge, 11 teams participated in

sub-challenge 1. Of these 11 teams, 9 (see Table S5) performed

well in the DR grading task and then were invited to participate in

the challenge workshop. The top three groups were those of Xi

Fang, Jiang Li, and Jaemin Son. The classification results of

the three teams reflect that all of their models achieved good

classification performance, with sensitivity and specificity com-

parable with physicians on the grading from normal to PDR. In

addition, the classification results showed a slightly higher de-

gree of confusion for mild lesions than for moderate and severe

lesions. In Note S3, we detail the model performance and result

analysis.



Table 5. Differences in data augmentation

RK Mirroring Rotation Color Other

Sub-challenge 1: DR grading

1 N N N N

2 H/V/HV R: �30, +30 N N

3 H/V R: �20, +20 ID/N R/ET/

/HV GT/AT

Sub-challenge 2: image quality assessment

1 N N CM/RC/MU N

2 N N N N

3 N N N N

Sub-challenge 3: DR grading based on UWF fundus

1 H/V R: �20, +20 ID/N R/ET/

/HV GT/AT

2 N N N N

3 N N N RCC

H, horizontal flip; V, vertical flip; HV, horizontal and vertical flip; R, min

degree, max degree:rotation angle; ID, image disturbance; N, noise;

R, resize; ET, elastic transformation; GT, grid transformation; AT, affine

transformation; RCC, random center cut; CM,36 RC,37 andMU,38 prepro-

cessing method in reference; RK, rank.

Table 4. Differences in preprocessing

RK Cut Color Resize Filling

Sub-challenge 1: DR grading

1 N N N N

2 black edge Ben’s35 Bi (512) N

3 black edge N Bi (1,024) N

Sub-challenge 2: image quality assessment

1 N N Bi (512) N

2 N N N N

3 black edge N N flip

Sub-challenge 3: DR grading based on UWF fundus

1 center N N N

2 center N N N

3 N N N N

Black edge, cut the black edges in the fundus; center, preserve the center

of the image as input; Ben’s, Ben’s preprocessing algorithm;35 Bi(i), use

bilinear interpolation to resize the fundus image to i pixels size; flip, use

a symmetrical flip pattern to fill the black edges; N, never use this strat-

egy; RK, rank.
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Sub-challenge 2: Image quality estimation

This task was performed using the validation algorithm

described in Note S2 on Set-C to evaluate four aspects of image

quality: artifacts, clarity, field definition, and overall quality. The

algorithm produced scores for the above four aspects. The

best-performing solution in the on-site sub-challenge two was

proposed by Poorneshwaran J M, followed by Adrian Galdran

and Yerui Chen. For the teams performing poorly in several tasks

of image quality detection, their overall accuracy of image quality

detection was also not high. The main reason seems to be the

inaccurate differentiation of the degree of DR image quality

due to the uneven distribution of classes in the dataset and the

relatively high degree of similarity between classes. The detailed

result can be seen in Note S3.

Sub-challenge 3: UWF fundus DR grading

The results for DR grading of UWF fundus images were

obtained by the same evaluation method as used for sub-chal-

lenge 1 using ku. Table S6 shows the results of the field evalu-

ation, summarizing the performance of all participating algo-

rithms in the UWF fundus DR grading task. Jaemin Son

developed the winning method for the UWF fundus DR grading,

and Jaemin Son, Xi Fang, and Jie Wang won the best top 3

performers in this task.

DISCUSSIONS

Summary of holding and analyzing the challenge
In this paper, we present the details of the DeepDRiD challenge,

including relevant information regarding the dataset, evaluation

metrics for multiple sub-challenges of the competition, the orga-

nization of the challenge, solutions, and results by the partici-

pating teams on all sub-challenges. The sub-challenges

included grading DR severity, quality detection and assessment

of fundus photo images, and UWF fundus images DR grading.

With 34 teams participating the challenge and reporting the re-

sults, we consider our challenge successful. We did our best
to create a relevant, stimulating, and fair competition for

advancing the collective knowledge of the research community.

The best methods for DR lesion severity grading used a

considerable number of common tips: (1) efficient extraction of

features through data augmentation, (2) transfer learning of large

amounts of fundus data with and without physician labels, and

(3) loss function modification. In addition, many grading net-

works used the EfficientNet-based framework33 to learn grading

features quickly and efficiently, which improved the performance

of the models. The rich parameter adjustment methods and

model fusion methods also provided new ideas to further solve

the DR grading problem. In the quality assessment task, the ac-

curacy of image quality detection ranged between 0.68 and 0.70.

The results did not reach the performance required for clinically

feasible automatic screening of good quality fundus images;

therefore, there is still much work to do in image quality assess-

ment. Attention must be paid to features of both artifacts and

clarity to improve the overall assessment results considering

the misclassification cases. In sub-challenge 3, the results of

five teamswere used for evaluation.We observe that using those

readily available regular fundus images for knowledge transfer

has a very significant effect on the DR grading task for the

same UWF images of the fundus of the eye.

Limitations of the study
This challenge provided data collected in routine clinical practice

using an acquisition protocol consistent with all images. The

data were acquired with the same camera simultaneously after

pupil dilation and followed to provide annotations corresponding

to the quality assessment protocol. Several experts jointly eval-

uated the images in this dataset, and images disagreed by ex-

perts were excluded from the dataset. Even after these efforts

(for providing the best possible data), the annotation process

(especially for image quality) remained inherently subjective.
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Table 7. Differences in deep learning models

RK Model frameworks Loss function Training strategies

Sub-challenge 1: DR grading

1 EfficientNet33 SL1 MMoE + GMP + ES +

OHEM + CV + O + T

2 EfficientNet33 SL1 + CE + DV +

PL

CV + TTA

3 EfficientNet33 L1 + CE(5 class) PLT

Sub-challenge 2: image quality assessment

1 SE-ResNeXt32 CE TL

2 ResNet31 CS + L1 TL

3 VGG,30 UNet39 CE TL

Sub-challenge 3: DR grading based on UWF fundus

1 EfficientNet33 L1 + CE(5 class) PLT

2 EfficientNet33 SL1 MMoE + GMP + ES +

OHEM + CV + O + T

3 EfficientNet33 CE TL

SL1, smooth L1 loss; CE, cross-entropy loss; DV, dual view loss; PL, pa-

tient-level loss; CS, cost-sensitive loss;40 L1, L1 loss; CE(5 class), mean

loss of 5 class (one versus others); MMoE, multi-gate mixture of expert;41

GMP, generalized mean pooling;42 OHEM, online hard example min-

ing;43,44 CV, cross-validation; O, oversampling; ES, early stopping; TL,

transfer learning; TTA, test time augmentation;45,46 PLT, pseudo-labeled

and labeled training.

Table 6. Differences in model pre-training

RK Pre-training dataset

Sub-challenge 1: DR grading

1 Kaggle2015 + APTOS

2 Kaggle2015 + APTOS

3 labeled and unlabeled dataset

Sub-challenge 2: image quality assessment

1 ImageNet

2 Kaggle2015

3 private fundus lesion segmentation data

Sub-challenge 3: DR grading based on UWF fundus

1 labeled and unlabeled

2 Kaggle2015 + AOTOS

3 N

The public datasets used are Kaggle2015,21 APTOS.47 Labeled: Kag-

gle2015,21 APTOS,47 and IDRiD;20 unlabeled: REFUGE,34 MESSIOR,22

and E-ophtha.25 RK, rank.
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Thus, manual judgment is a limiting factor in the method devel-

opment, especially for the methods trained and evaluated in a

supervised manner. Our challenge provides the potential to

develop DR lesion grading solutions, fundus image quality

assessment, and DR grading using UWF fundus images. Despite

the complexity of the tasks and also just 1.5 months for method

development, it still received a very positive response from the

community. Nevertheless, there is still room for improvement,

especially in evaluation of image quality. Therefore, although

the competition is over, the dataset is still publicly available for

research purposes, to attract more researchers to study the

problem and develop new solutions to meet current and future

clinical standards.

Insights on the future directions
Based on our analysis of the organization of this challenge and

the results from the challenge, we propose the following ideas

for future directions. First, almost all teams in this challenge

used deep learning models as the main network framework to

solve this problem. The results also show that the deep learning

models do achieve good results, which demonstrates the great

potential of deep models in this problem. Second, in the pre-

training of the model, almost all teams used a wide range of gen-

eral fundus images for model pre-training and parameter migra-

tion. This is based on the relatively extensive research interest

and a large number of datasets publicly available for this problem

on the one hand, and the significant importance of pre-training

for model performance improvement on the other hand. Finally,

in different subtasks, we can find that the models that achieved

victory have different characteristics, some are more focused on

preprocessing and augmentation methods and some are more

focused on the model architecture and training means. This

means that developing models for specific medical problems re-

quires more problem-specific analysis.

Suggestions for organizing medical grand challenges
To help the research community better organize medical grand

challenges, we also give a few of our tests. First, the motivation
8 Patterns 3, 100512, June 10, 2022
for the challenge needs to come from the clinician’s real-world

problems. For example, in our challenge, all three subtasks

come from the difficulties and challenges encountered in auto-

mated deep learning screening during DR screening. In addition,

reasonable and compliant access to data prior to organizing the

challenge requires that we communicate and collaborate with

clinicians as early as possible. Second, the organization, promo-

tion, and conduct of the challenge needed to be as rich in diver-

sity as possible: diversity of competition organizers, diversity of

participants, etc. (from different countries and regions, different

professional backgrounds, etc.). Finally, a long research base

will also help the organizers to better organize the competition

and sustainably lead the direction.

Conclusion
By leveraging hospital research data and physician resources,

we provide a finely labeled dataset of realistic DR screening

scenarios that demonstrate the diagnostic potential of the

DeepDRiD challenge models on conventional DR grading, DR

image quality assessment, and ultra-wide angle fundus DR

grading. These models obtained comparable diagnostic perfor-

mance with general ophthalmologists on DR grading and pre-

liminary attempts on image quality assessment. Furthermore,

these new deep learning prediction models and their training

strategies can be used to enhance the diagnostic capabilities

of healthcare workers to improve the accuracy of DR screening

in true screening scenarios. Nevertheless, there is still a clear

opportunity to further improve the models in this competition.

We believe that, with access to higher quality and more

comprehensive image quality assessment data, as well as a

wider range of challenge participants, more accurate models

could be developed.



Table 8. DeepDRiD online leaderboard

Rank Team Affiliation Score

Sub-challenge 1

1 Xi Fang et al. Shanghai Jiao Tong University 0.9303

2 Jiang Li et al. Shanghai Jiao Tong University 0.9262

3 Jaemin Son et al. VUNO Inc. 0.9232

Sub-challenge 2

1 Poorneshwaran

J M et al.

Healthcare Technology

Innovation Center

0.6981

2 Adrian Galdran

et al.

Bournemouth University 0.6950

3 Yerui Chen et al. Nanjing University of Science

and Technology

0.6938

Sub-challenge 3

1 Jaemin Son et al. VUNO Inc. 0.9062

2 Xi Fang et al. Shanghai Jiao Tong University 0.8620

3 Jie Wang et al. Beihang University 0.8230
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Bin Sheng (shengbin@sjtu.edu.cn).

Materials availability

This study did not generate any new materials.

Data and code availability

The DeepDRiD dataset is available at https://github.com/deepdrdoc/

DeepDRiD (Mendeley Data: https://doi.org/10.5281/zenodo.6452623).

Evaluation metrics

For DR disease-grading tasks, in sub-challenges 1 and 3, the quadratic

weighted kappa (ku ) was used as the evaluation metric to determine the per-

formance of the participating algorithms. Submissions were scored based

on the quadratic weighted kappa, ku, which measures the agreement between

two ratings (ground-truths results and submitted results). This metric varied

from 0 (random agreement between raters) to 1 (complete agreement between

raters). If there was less agreement between the raters than expected by

chance, the metric could go below 0. The quadratic weighted kappa, ku,

was calculated between the scores, which were expected/known, and the

predicted scores.

The results had five possible ratings: 0, 1, 2, 3, and 4. The quadratic

weighted kappa was calculated as follows. First, an N3N histogram matrix,

O, was constructed, such that it corresponded to the number of adoption re-

cords that had a rating of i (actual) and received a predicted rating, j. An N3 N

matrix of weights, w, was calculated based on the difference between the

actual and predicted rating scores. An N3N histogram matrix of expected rat-

ings, E, was calculated, assuming no correlation between rating scores. This

was calculated as the outer product between the actual rating’s histogram

vector of ratings and the predicted rating’s histogram vector of ratings,

normalized such that E and O had the same sum. From these three matrices,

the quadratic weighted kappa was calculated. The ku metric is expressed as

kw = 1 �
P

i;jwi;j,Oi;j
P

i;jwi;j,Ei;j

: (Equation 1)

The weight penalization, wi;j, is defined by wi;j = ði� jÞn
ðC� 1Þn, where C is the

number of classes. The values of n = 1 and n = 2 lead to linear and quadratic

penalizations, respectively. The values of ku is in the interval of kw ˛ ½ � 1; 1�,
where �1 means perfect symmetric disagreement and 1 means perfect

agreement.

In sub-challenge 2, the scoring metric was classification accuracy, as

described as
Accuracy =
TP+TN

N
; (Equation 2)

where TP is true positive samples, FP is false positive samples, and

N = TP+FP+TN+FN is the total numbers.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100512.
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