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Simple Summary: Obesity is involved in many aspects of prostate cancer progression as a risk factor
for prostate cancer, especially in the process of biochemical recurrence in the prostate. Approximately
27–53% of prostate cancer patients can develop biochemical recurrence after radical prostatectomy,
which poses difficulties in the clinical management of prostate cancer, and this is closely related to the
release of exosomes from adipose tissue in the obese state. In this review, we summarize the crosstalk
between prostate cancer peripheral adiposity and prostate cancer and discuss the potential role of
exosomes in this process and the prospects for the use of adipose exosomes. Exosomes play an impor-
tant role in the crosstalk between the two this may be a new basis to explain obesity as a biochemical
recurrence after prostate cancer surgery and a potential avenue for future prostate therapy.

Abstract: The molecular mechanisms of obesity-induced cancer progression have been extensively
explored because of the significant increase in obesity and obesity-related diseases worldwide.
Studies have shown that obesity is associated with certain features of prostate cancer. In particular,
bioactive factors released from periprostatic adipose tissues mediate the bidirectional communication
between periprostatic adipose tissue and prostate cancer. Moreover, recent studies have shown
that extracellular vesicles have a role in the relationship between tumor peripheral adipose tissue
and cancer progression. Therefore, it is necessary to investigate the feedback mechanisms between
prostate cancer and periglandular adipose and the role of exosomes as mediators of signal exchange
to understand obesity as a risk factor for prostate cancer. This review summarizes the two-way
communication between prostate cancer and periglandular adipose and discusses the potential role
of exosomes as a cross-talk and the prospect of using adipose tissue as a means to obtain exosomes
in vitro. Therefore, this review may provide new directions for the treatment of obesity to suppress
prostate cancer.

Keywords: adipose tissue around prostate cancer; adipose exosomes; tumor microenvironment;
obesity; prostate cancer

1. Introduction

Prostate cancer (PCa) is the most common cancer among men in developed countries.
It is also one of the cancers with significantly increased incidence in developing coun-
tries [1,2]. The reasons for the increasing incidence of PCa in Asian countries year by year
cannot be explained solely by an increase in the level of screening and diagnosis based on
the implementation of PSA. This increased incidence of PCa also largely reflects the rise in
risk factors associated with PCa. Obesity is associated with a more aggressive tumor, poorer
treatment outcomes, and a higher risk of mortality for PCa patients [3,4]. Several clinical
studies have indicated that a higher visceral adiposity is associated with higher grade
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or aggressiveness of PCa [5,6]. Various mechanistic studies of obesity-mediated cancer
progression have further shown that obesity influenced the aggressiveness of PCa due to in-
creased systemic inflammation, hyperinsulinemia, altered adipokine profile, and increased
lipid function [7,8]. Although there are very few adipocytes in the prostate [9], clinical
and in vitro laboratory studies have evaluated the relationship and potential mechanisms
between periprostatic carcinoma adipose (PPAT) and PCa progression [10–13] (Table 1).

Table 1. Cross-talk between PPAT and PCa.

Type of Research Times Research Subjects Conclusion References

Clinical Research 2011 932 patients treated with brachytherapy
or radiation therapy.

There was an association between thickness and size
of PPAT and high risk of PCa. [14]

Clinical Research 2012 652 prostate cancer patients
The thickness of PPAT was associated with the
detection rate of prostate cancer, especially
high-grade PCa.

[6]

Clinical Research 2014 184 patients who underwent radical
retropubic prostatectomy.

PPAT area and ratio (PPAT volume/prostate volume)
were associated with high-risk PCa. [15]

Clinical Research 2014 308 patients treated with radiotherapy. PPAT regions were associated with PCade
aggressiveness and were associated with skin color. [5]

Clinical Research 2015 190 PCa patients undergoing MRI. PPAT thickness was an independent predictor of PCa
and high-grade PCa. [16]

Clinical Research 2017 371 patients with PCa, 292 patients with
high-grade Pca.

PPAT thickness was a potential detection metric for
PCa and advanced PCa. [17]

Clinical Research 2017 162 patients who underwent MRI prior
to prostatectomy. PPAT fat ratio correlated with PCa aggressiveness. [18]

Clinical Research 2021
175 prostate cancer patients (mean age

62.5 years, mean prostate-specific antigen
5.4 ng/dL).

A higher periprostatic fat ratio was found to be
significantly associated with a higher Gleason score
by parametric magnetic resonance imaging (mpMRI).

[19]

Clinical Research 2021
175 prostate cancer patients (mean age

62.5 years, mean prostate-specific antigen
5.4 ng/dL).

Increased periprostatic fat volume was associated
with disease progression in prostate cancer patients. [19]

Clinical Research 2020
85 men with advanced PCa receiving

ADT who had not received
hormone therapy.

PPAT thickness was a predictor of survival in patients
with advanced PCa not receiving hormonal therapy. [20]

Basic Studies 2012 PPAT in prostate cancer patients,
PC3, LNCaP.

PPAT-derived factors increased migration of PC3 and
LNCaP cell lines, while PPAT had a strong
proliferative effect on PC3 cell lines.

[21]

Basic Studies 2021

PPAT from 14 PCa patients (median age
62 years, median BMI 28.3) who

underwent radical prostatectomy,
DU145, PC3

Conditioned medium (CM) culture of PPAT promoted
migration of human androgen non-dependent PCa
cell lines and upregulated CTGF expression.

[22]

Basic Studies 2018 DU145, PPAT in 36 Caucasians and
36 African-Caribbeans

Fatty acid (FA) content in PPAT is associated with
PCa progression. [23]

Basic Studies 2021 PPAT in vitro culture collection of
conditioned medium, DU145, PC3.

PPAT secreted IGF-1 to upregulate TUBB2B
β-microtubulin heterodimer to promote resistance to
doxorubicin in prostate cancer.

[24]

Basic Studies 2012 PPAT, PC-3, and LNCaP cell lines from
prostate cancer patients.

PPAT increased MMP (matrix metalloproteinase)
activity to regulate the microenvironment of
extraprostatic tumor cells and promoted prostate
cancer cell survival and migration.

[21]

Basic Studies 2019 Prostate cancer cell lines C4-2B, Du-145,
and PC-3.

Free fatty acids released by PPAT promoted tumor
progression by affecting the HIF1/MMP14 pathway
by stimulating NOX5/ROS.

[25]

Basic Studies 2018 Primary NK cells, C4-2, 3T3-L1.
Inhibition of the IL-6/leptin-JAK/Stat3 signaling axis
in adipocytes enhanced immune killing of CRPC
(castration-resistant prostate cancer) cells by NK cells.

[26]

Basic Studies 2021 Adipocytes isolated from PCa patients
and PC3, 22RV1

Decreased autophagic activity and increased
intracellular lipid droplet content in PC3 cells after
co-culture with adipocytes.

[27]

Basic Studies 2012 PPAT, LNCaP, PC3 in PCa patients. PPAT-released pro-MMP-9 induced invasiveness of
LNCaP (androgen-dependent) cells. [28]

Basic Studies 2009 PPAT collected from patients undergoing
radical prostatectomy.

PPAT regulated the aggressiveness of prostate cancer
by providing IL-6. [13]

Obesity is associated with the incidence of different cancers, poor treatment outcomes,
and high cancer-related mortality rates [29]. Although individual studies have found
that the incidence of PCa, lung, colorectal, and ovarian cancer is inversely associated
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with patient BMI [30]. Beyond that, a significant association between obesity and PCa
progression has been established, especially in relation to more malignant and biochemical
recurrence (biochemical recurrence defined as patients without postoperative endocrine
therapy and radiotherapy, with two consecutive prostate-specific antigen (PSA) ≥ 0.2 µg/L
during follow-up) of PCa [31–33]. Meta-analyses have also shown that obesity is related
to more advanced prostate cancer [4,34]. Cells from tissues surrounding or adjacent to
prostate cancer, such as stromal cells, endothelial cells, immune cells, and adipose stem
cells, can form a tumor microenvironment that promotes prostate cancer survival [35]. This
also indicates that peri-Pca adipose tissue and its tumor mesenchymal cells can promote Pca
growth through various mechanisms, including the release of growth factors, inflammatory
signaling activators, and the release of fatty acids to provide energy for Pca. Besides the
specific regulation of these biological factors, exosomes secreted by peri-Pca adipocytes may
also play a key role in Pca growth. For example, changes in the amount and status of white
adipose tissue (WAT) and brown adipose tissue (BAT) caused by obesity affect the amount
and cargo of exosomes released into circulation. The unhealthy expansion of adipose tissue
in the obese state leads to local hypoxia, which induces chronic inflammation. Adipocyte
dysfunction then induces changes in exosomes [36], thus mediating PCa progression
through various molecular mechanisms [37].

As a new mode of cellular communication, extracellular vesicles contain cellular
molecules with various physiological roles. They can be divided into two categories based
on their size: vesicles of 50–1000 nm formed via germination and exosomes of 40–160 nm
from the somatic membrane [38]. Exosomes have many sources, including all living cells
containing RNA, bioactive lipids, and proteins [39], with various functions related to
biological processes. Exosomes participate in pathological and physiological regulatory
processes by transporting these substances. Besides the pro-carcinogenic role of tumor
mesenchymal adipocyte exosomes, peritumor adipose tissue may also communicate this
process through exosomes. Exosomes may play a key role in the cross-talk between PCa
and peri-tumor adipose tissue. However, studies have not comprehensively evaluated the
PPAT phenotype and its detailed cross-talk with PCa. Furthermore, the role of exosomes in
the association between PCa and peri-cancerous fat is unclear. It is also unclear whether
removal of this fat and inhibition of exosome release is beneficial for patients and whether
obesity exacerbates the ability of exosomes to mediate this process.

2. Cross-Talk between PCa and PPAT

PPAT is the adipose tissue surrounding the surface of the prostate (Figure 1). PPAT
varies in thickness and structure at different locations in the prostate [40]. However, PCa
cells communicate with adipose tissue cells in the same way (defined as extraperitoneal
extension of the tumor) after PCa invasion. This process is usually associated with a
significantly poorer prognosis for PCa [41,42]. Adipocytes within the omentum promote
the initial homing of ovarian cancer cells to the omentum and provide fatty acids to
cancer cells, thus promoting rapid tumor growth by secreting adipokines [43]. PPAT,
which is external to the cancerous tissue, also plays a role in PCa progression. Studies of
PPAT thickness, expression of inflammatory factors, and the involvement of obesity in
prostate cancer progression have shown that changes in local adipose tissue in the prostate
body can influence the behavior of PCa [13]. In addition, PCa induces pro-tumorigenesis
in peripheral adipose tissue. For example, preadipocytes triggered by PCa cell-culture
medium undergo tumor-like transformations, including genetic variability, epithelial–
mesenchymal transition (EMT), and tumor-like lesion formation in vivo [44]. This suggests
that the continuous positive feedback process between PCa and PPAT accelerates the
continuous deterioration of PCa.
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Figure 1. PPAT in robot-assisted radical prostate cancer surgery. The orange color in the image
represents PPAT and the blue color represents prostate cancer.

2.1. PPAT Promotes Survival and Progression of Prostate Cancer

Like the obesity epidemic, the understanding of adipocytes and adipose tissue is
expanding. Major advances in the last decade have provided new insights into the role
of adipose tissue in normal physiology and obesity-related complications. As a result,
adipocyte biology studies have focused on the global metabolic disease pandemic [45].
Adipocytes can secrete various effectors, including exosomes, miRNAs, lipids, and inflam-
matory cytokines, which play an important role in paracrine and endocrine influencing
local and systemic metabolic responses. Adipose tissue acts as an endocrine organ or
embedded energy store to actively promote tumor growth and metastasis by secreting
extracellular matrix components, such as adipokines, pro-inflammatory cytokines, and
pro-angiogenic factors [21,46–48]. However, obesity exacerbates this process. A study re-
ported that obesity is associated with a poorer PCa prognosis [49]. Obesity may lead to the
development of high-grade prostate cancer by increasing aromatase activity and regulating
the secretion of various cytokines such as adipokines, vascular endothelial growth factors,
and prostaglandins [50,51]. However, it is unclear how the interaction and single effect of
multiple factors influence the tandem process between obesity and PCa.

The main biologic factors released by adipocytes (adipokines and inflammatory fac-
tors) are recognized biological mediators of cross-talk between PPAT and PCa. Secretion of
multiple biologic factors by adipocytes was associated with a significant increase in the pro-
liferation, migration, and invasive capacity of PCa cells [21,46,52]. In one study, adipokine
CCL7 overexpression was detected in prostate specimens collected from obese patients after
puncture and radical PCa surgery. Adipokine CCL7 was positively correlated with PCa
pathological malignancy than normal punctured prostate tissue, suggesting that PPAT can
enhance the malignancy of PCa cells [52]. PPAT contains MMP (matrix metalloproteinase:
plays an important role in many cellular behaviors) with higher activity than abdominal
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visceral adipose tissue [21]. Activated MMP can degrade extracellular matrix proteins and
thus promote the invasion of cancer cells into surrounding tissues [53]. In vivo experiments
also revealed that mature epididymal adipocytes from rats or humans with PCa accelerated
the growth and differentiation of normal rat or human prostate epithelial cells. These are
also accompanied by enhanced expression of VEGF (vascular endothelial growth factor)
and PdGF (platelet-derived growth factor) in prostate epithelial cells and activation of the
PI3K pathway in PC3 cells [54,55]. Adipose tissue in obese patients is always in a state of
chronic inflammation, characterized by overexpression of inflammatory factors secreted by
adipose tissue [56], including IL-6 (interleukin-6: cytokines involved in the inflammatory
response), IL-8 (interleukin-8: cytokines involved in the inflammatory response), MCP-1
(monocyte chemoattractant protein 1), and TNF-α (tumor necrosis factor α), possibly due to
excessive infiltration of immune cells, such as macrophages in obese tissues [57]. However,
further studies should assess whether the degree of inflammation in PPAT is correlated
with obesity or metabolic syndrome. Several in vivo and in vitro experiments have shown
that these inflammatory factors are closely associated with the progression of PCa [58–60].
Another study also showed that the degree of inflammation in PPAT was associated with
adipocyte size, insulin and triglyceride circulating levels, and high levels of PCa [61].
Furthermore, the appearance of cachexia in advanced tumor stages may be due to the
metabolic changes in adipocytes caused by cancer cells, which leads to lipolytic pathway
activation, making adipocytes a key energy source for cancer cells. This situation also
applies to PPAT with advanced PCa. For example, the expression of lipolytic enzymes and
CGI-58 was more pronounced in late PCa [62]. FTIR microspectroscopy (an optically based
technique that can measure the transitions in vibrational modes of the functional groups
of bio-molecular constituents within cells) also showed that lipid translocation occurs
between adipocytes and PCa cells [63]. NMR spectroscopy (a technique applying nuclear
magnetic resonance phenomena for the determination of molecular structure) showed that
patients with high-grade PCa have higher rates of monounsaturated/saturated fatty acids
than those in low-grade patients [64]. Fatty acids serve as an important energy source
for cancer cells, and studying how PPAT affects the uptake and utilization of fatty acids
by PCa and the detailed mechanism of action of these fatty acids on PCa may improve
the understanding of the mutual cross-linking between obesity and PCa. PPAT can also
interfere with the expression of hormones that promote PCa progression. PPAT, as a source
of local extra-gonadal androgens, promotes the growth and metastasis of PCa. PPAT also
expresses aromatase, which converts androgens to estrogens [65] and plays a crucial role in
the pathogenesis and progression of PCa. For example, estrogens can activate wild-type
and mutant androgen receptors, limiting ADT treatment [66]. In addition, obesity may
exacerbate this process by altering the metabolic and endocrine characteristics of multiple
adipose tissues, thereby increasing the release of multiple biological factors, as well as the
mobilization of free fatty acids [52,67,68]. Obesity also increases the rate of preadipocyte
migration in WAT, leading to obesity-induced PCa progression [69,70]. PPAT is more
active in metabolism and secretion in obese men than in lean men. For example, PPAT in
obese men has higher MMP-9 activity, which leads to better induction of PC3 cell lineage
and endothelial cell proliferation [71]. PPAT from obese men has a higher expression of
chemokine CXCL1 than that of lean men [72], which may lead to PCa susceptibility to bone
metastasis [73].

2.2. PCa Affects the State and Production of PPAT

Cancer-associated adipocytes (CAA) are defined as the result of interactions between
adipocytes and tumor cells, leading to the remodeling of adipocytes into a more poorly
differentiated state of adipocytes, consistent with the finding that PPAT is richer in pre-
cursor adipocytes than other visceral adipose tissue [12]. This precursor cell phenotype is
associated with more aggressive tumors, including PCa [52,74]. CAA is associated with the
exacerbation of some of the malignant features of cancer cells, which ultimately constitute a
positive feedback loop with cancer cells in the malignant progression of tumors [21,75]. For
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example, PCa–conditioned medium (CM) more affects preadipocytes than non-malignant
PCa cells. Preadipocytes disturbed by PCa–CM participate in several biological processes
of PCa progression by undergoing PCa-like tumor-like transformations [44]. Meanwhile,
human PCa cells injected into the right side of thymus-free nude mice can be recruited
to transplant preadipocytes on the other side. This preadipocyte migration enhances tu-
mor growth and angiogenesis [76]. Some researchers have suggested that PCa cells can
also differentiate into adipocyte-like cells and exert PPAT-like pro-cancer effects [77]. Fur-
thermore, CAA undergoes considerable morphological and functional alterations during
cancer progression. CAA undergoes dilapidation and acquires a fibroblast-like phenotype
in cancer cells, especially at the front of tumor invasion [78]. This phenotypic change is
often accompanied by increased secretion of adipocyte differentiation marker proteins
(adiponectin, leptin and fatty acid binding proteins, and intestinal proteins) as well as
the pro-inflammatory cytokines IL-6 and PAI-1 (plasminogen activator inhibitor-1). This
creates a tumor microenvironment that promotes a shift in tumor cell phenotype (increased
aggressiveness) [78]. For example, the expression of inflammatory factors (IL-6, IL-8, G-
CSF) is significantly higher in PPAT than in serum. IL-6 expression is 375 times higher in
PPAT than in serum and significantly correlates with pathological disease grade [13]. This
suggests the possibility that PCa and PPAT are interrelated and is potential evidence for
the evolution of PPAT into tumor-associated fibroblasts [79].

Visceral and subcutaneous adipose tissue are also associated with more aggressive
pathological features of PCa. The interaction of PCa with adipose metabolism and testos-
terone and the effects of 5a reductase inhibitors on prostate and peripheral adipose suggest
that a cross-talk may exist between periprostatic adipose tissue and tumors [80]. PCa also
regulates the production of leptin via fat-resident regulatory T cells and several leptin recep-
tors, which are associated with the quality of periglandular adipose tissue [81,82]. In vitro
experiments of differentiated adipocytes and tumor cells without direct contact have also
confirmed that paracrine cytokines from tumor cells induce lipolysis in adipocytes and
promote the release of free fatty acids [83]. This also alters the fatty acid composition of
PPAT. For example, a study compared the fatty acid composition of PPAT from 12 PCa
patients and 11 patients with BPH (benign prostatic hyperplasia) confirmed high levels of
palmitic acid and dihomo-γ-linolenic acid and low levels of arachidonic acid in PPAT [84].
Similarly, magnetic resonance spectroscopy showed that PPAT from patients with higher
levels of PCa contained a higher ratio of monounsaturated/saturated fatty acids in the fatty
acids [16,64]. Therefore, studying the specific processes by which PCa interferes with the
release and composition of PPAT fatty acids may give potential avenues for intervention
and treatment of PCa. In conclusion, these results suggest that PCa can regulate the state of
PPAT and the release of biomolecules to accelerate PCa development in various ways.

3. Exosomes as a Mediator of Positive Feedback between Adipose Tissue and Cancer

Recent studies related to adipocytes and extracellular vesicles (EVs) of cancer origin
have provided new understanding of the interactions between adipocytes and tumors.
Adipose exosomes play a crucial role in cancer progression by transporting fatty acids,
biooxidative enzymes, protein degrading enzymes, metabolites, and multiple non-coding
RNAs into cancer cells [85–88] (Table 2). Tumor exosomes can also transport miRNAs,
circRNAs, adipokines, and inflammatory factors to adipocytes, thus influencing adipose
tissue differentiation and substance release. This can make the adipose further evolve
into tumor-associated adipocytes, thereby providing an environment for cancer survival
and progression (Table 3). Therefore, the exosomes may act as mediators for PPAT-PCa
cross-talk.
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Table 2. Tumorigenic effects of adipocyte-derived exosomes.

Exosome Cargo Source Role in Tumor References

MMP3 3T3-L1 adipocytes
Induction of lung cancer metastasis

through activation of the
MMP3/MMP9 process.

[87]

miRNA-21 Cancer-associated adipocytes Inhibition of the apoptotic process in
ovarian cancer cells. [89]

- 3T3-L1 adipocytes

Reducing degradation of caspase
3/PARP molecules in PCa and

improving resistance to doxorubicin
in prostate cancer.

[37]

- Adipocytes in the obese state

Enhanced estrogen receptor
expression and growth, motility and

invasion, stem-cell-like properties
and epithelial–mesenchymal

transition of triple-negative breast
cancer cells through induction of

HIF-1α activity.

[90]

miR-3940-5p, miR-22-3p,
miR-16-5p Adipose mesenchymal stem cells Inhibiting the proliferation and

migration of rectal cancer. [91]

circ-DB 3T3-L1 adipocytes

Inhibiting miR-34a and activating
USP7/Cyclin A2 signaling pathway
promote hepatocellular carcinoma
growth and reduce DNA damage.

[92]

miR-381-3p Adipose mesenchymal stem cells
Inhibition of apoptosis and

progression of triple-negative breast
cancer cells.

[93]

microRNA-1236 Adipose mesenchymal stem cells
Inhibiting SLC9A1 and Wnt/β-linked
protein signaling to reduce cisplatin

resistance in breast cancer cells.
[94]

- Adipose mesenchymal stem cells
Increasing COLGALT2 expression to
promote osteosarcoma proliferation

and metastasis.
[95]

miR-27a-3p 3T3-L1 adipocytes

Inhibiting ICOS+ T cell proliferation
and IFN-γ secretion to alter the
immune microenvironment of

lung adenocarcinoma.

[96]

miR-23a/b 3T3-L1 adipocytes
Targeting the VHL/HIF axis to

promote HCC cell growth
and migration.

[88]

hsa-miR-124-3p Adipose mesenchymal stem cells Inhibiting the growth and
proliferation of ovarian cancer cells. [97]

microRNA-21 Cancer-associated adipocytes Targeting APAF1 promotes paclitaxel
resistance in ovarian cancer cells. [89]

- Adipose mesenchymal stem cells
Mediated Wnt signaling pathway

induces migration of breast
cancer cells.

[98]
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Table 3. Effects of tumor-derived exosomes on adiposity.

Exosome Cargo Source Role in Adipose References

miRNA-126 Breast cancer
Decreases the uptake of glucose by fat

cells and increases their secretion of
lactate and pyruvate.

[99]

miRNA-155 Breast cancer
Promotes beige/brown differentiation
and remodeling of adipocytes through
downregulation of PPARγ expression.

[100]

ciRS-133 Gastric cancer Regulating preadipocytes and regulating
preadipocyte differentiation. [101]

IL-6 Lung cancer Inducing adipocyte lipolysis by
mediating the STAT3 pathway. [102]

Parathyroid hormone-related
protein Lewis lung carcinoma Inducting lipolysis and adipose tissue

browning through the PKA pathway. [103]

miR-425-3p A549, H1299 and AGS Inducing white adipocyte atrophy. [104]

miR-155 Stomach cancer cells

Inhibiting adipogenesis and promoting
brown adipose differentiation via

C/EPBβ pathway in adipose
mesenchymal stem cells.

[105]

ciRS-133 Gastric cancer cells
Activation of PRDM16 and inhibition of

miR-133 promote differentiation of
preadipocytes into brown adipocytes.

[101]

circ_0004303 Gastric cancer cells Promoting migration and invasion of
adipose mesenchymal stem cells. [106]

miR-146b-5p Human colorectal cancer tissue
Promoting adipose tissue browning and

inhibiting HOXC10 to
accelerate lipolysis.

[107]

- HepG2 Inducing adipose MSCs to differentiate
into cancer-associated myofibroblasts. [108]

Adrenomedullin Human pancreatic cancer
tissue exosomes

Activating p38 and ERK1/2 MAPK and
promoting lipolysis by phosphorylating

hormone-sensitive lipase.
[109]

H-ras, miR-125b, miR-155,
and GTPases C4-2B prostate cancer cells Inducing prostate-tumor-like

transformation of adipose stem cells. [44]

3.1. Tumor Exosomes Mediate the Alteration of Adipose Tissue and Release of Biomolecules

Exosomes contain mRNA, miRNA, lncRNA, circRNA, DNA, and bioactive cellular
metabolites. As a result, exosomes are involved in cellular communication and biological
regulation by transporting these substances to the target receptor cells [110]. The miRNA
profile of tumor-derived exosomes is similar to that of the tumor cells of origin. Dysreg-
ulated exosomal miRNAs can promote cancer migration and proliferation [111]. Tumor-
derived exosomes deliver specific miRNAs (miRNA-144, miRNA-126, and miRNA-155)
from breast cancer cells to peripheral adipocytes to transform resident cells. For example,
exosomal miRNA-144 acts as a mediator between tumor cells and adipocytes, promot-
ing the beige/brown differentiation of adipocytes [99,112]. Adipocytes in melanoma
patients secrete more specific exosomes (containing more proteins related to fatty acid
oxidation (FAO)), which induce metabolic reprogramming of tumor cells to favor FAO
and promote cancer cell aggressiveness [85]. Similarly, exosomes from pancreatic cancer
cells can also promote lipolysis by activating p38 and extracellular signaling regulation
(ERK1/2) to phosphorylate hormone-sensitive lipases. These catabolized lipids provide
energy for the survival of nearby tumor cells [109,113]. In addition, the hepatocellular
carcinoma cell line HepG2 secretes exosomes containing specific proteins and activated
phosphokinases to act on the NF-κB signaling pathway in adipocytes, thereby releas-
ing adipose exosomes that promote hepatocellular carcinoma growth and angiogenesis
and recruit more macrophages [114]. Cancer cell exosomes can also transport HOTAIR
(HOX transcript antisense RNA) to endothelial cells, thus increasing VEGFA expression
to stimulate angiogenesis, explaining why most cancer-cell-derived exosomes can pro-
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mote angiogenesis [115]. Released exosomes from gastric cancer cells deliver ciRS-133 to
preadipocytes, thus regulating preadipocyte differentiation to brown adipocytes by acti-
vating the PR structural domain of PRDM16 [114]. In conclusion, cancer cells differentiate
adipocytes into CAA via exosomes, providing a potential material basis for their own
survival and progression.

3.2. Adipose Exosomes Induce the Development of Multiple Tumors

Currently, studies on exosomes have mainly focused on cancer-cell-derived exosomes,
and few studies have focused on CAA exosomes. In fact, the exosomes released from
adipocytes cross-talked by tumor cells have obvious structural and functional changes [85].
For example, melanoma-associated adipocyte exosomes contain proteins involved in FAO
and induce metabolic reprogramming in tumor cells. The number of secreted exosomes
and their effect on tumor aggressiveness are further amplified by the dual effect of obesity
and cancer, which exacerbates the symbiotic relationship between adipocytes and cancer
cells [85]. For example, MMP3 is highly expressed in adipocyte-derived exosomes in obese
lung cancer patients, which is usually transferred to lung cancer cells. As a result, MMP3
promotes the activity of MMP9 in lung cancer cells, thus mediating cancer cell invasion
in vitro and in vivo [87]. The specific miRNAs are upregulated in CAA exosomes, induc-
ing survival and progression of many cancer cells. For example, miR-21 is significantly
upregulated in triple-negative breast and colorectal-cancer-associated adipose exosomes.
Exosomes transport miR-21 from adipose tissue to cancer cells, inhibit apoptosis and pro-
mote chemoresistance by binding to apoptosis protease-activating factor-1 (APAF1) [89].
Similarly, miR-210 in exosomes released from adipose stem cells promotes endothelial
cell proliferation, invasion, and migration, thus mediating tumor angiogenesis by tar-
geting RUNX3 [116]. The miR-27a-3p in adipocyte-secreted exosomes targets ICOS, an
immune-microenvironment-related gene that is significantly upregulated in obese lung
adenocarcinoma (LUAD) patients, to promote antitumor immunity in LUAD [96]. In
addition, exosomes released from adipose tissue in obese mice contain pro-inflammatory
proteins. These exosomes can produce potential stimulatory effects in local and peripheral
adipose tissue sites, thus mediating the obesity-associated inflammatory response and
insulin resistance and promoting the progression of several cancers [117]. Therefore, CAA
exosomes play a crucial role in tumor progression.

3.3. Exosomes Mediate Cross-Talk between PPAT and PCa

Adipose tissue distributed in the periphery of the gland does not act directly on cancer
cells by releasing multiple cytokines or by creating a hypoxic environment as adipocytes in
the interstitial stroma of the gland do. Studies have reported that IL-6 levels are significantly
higher in PCa peripheral adipose tissue (PPAT) than in serum (100-fold). Furthermore,
IL-6 levels in peripheral blood are not correlated with IL-6 levels in PPAT. Notably, IL-6
levels in PPAT are correlated with higher Gleason scores, while serum IL-6 levels are not
correlated with higher Gleason scores [13]. This suggests that PPAT may not affect the level
of inflammatory factors in the body and thus the progression of cancer by directly releasing
inflammatory factors. Since the prostate is often separated from the surrounding PPAT by a
fibromuscular capsule in the physiological state and the surrounding adipose tissue is more
distant than the interstitial adipocytes of the tumor, tight cellular junctions and paracrine
secretion as well as the long-distance blood transport of tumor cytokines may not be the
main ways to affect it [40,118]. So, in what way does PCa mediate this process? It is certain
that a more efficient mediator of crosstalk exists between PPAT and PCa. Exploring this
mediator and interfering with it may be a new avenue for PCa therapy. Unlike normal stem
cells, adipose stem cells cultured with PC cell-conditioned medium (CM) can form prostate-
like tumor lesions in vivo and replicate invasive PCa cells in targeted tissues. This may be
due to PCa cell-derived exosomes transporting oncogenic-factor-related transcripts (H-ras
and K-ras), multiple miRNAs (miR-125b, miR-130b, and miR-155), and the Ras superfamily
of GTPases (Rab1a, Rab1b, and Rab11a) [44]. Also, miR-145-containing exosomes released
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from adipose stem cells exhibit growth-inhibiting properties of PCa cells [119]. Although
this contradicts the ability of PCa cell CM of inducing proliferation of PC3 cell lines and
endothelial cells, it suggests that bidirectional exosomes can be released from adipose tissue
disturbed by PCa cells. However, the role of adipose exosomes in PPAT with PCa is unclear.
Regardless, only a few studies have reported on PCa and adipose exosomes. A systematic
evaluation and meta-analysis of 86,490 patients with PCa found an association between
obesity and biochemical recurrence after radical prostatectomy [120]. Obesity status of
“overweight” and “obese” PCa patients is a key risk factor for biochemical recurrence
after radical PCa treatment [121]. Therefore, it is crucial to investigate the interaction
between PPAT and PCa, especially the role of exosomes, to provide a basis for explaining
the susceptibility to biochemical recurrence after radical PCa resection in obese patients.

4. Obesity Alters the Number and Structure of Exosomes Involved in the Cross-Talk
between Adiposity and Cancer
4.1. Obesity Affects the Number and Status of Adipose Exosomes

Adipocytes in obese individuals rapidly grow into mature adipocytes due to the infil-
tration of inflammatory factors and the construction of a hypoxic environment affecting the
various stages of adipocyte differentiation [122–124]. Mature adipocytes secrete different
populations of extracellular vesicles (EVs), including small extracellular vesicles (sEVs) and
large extracellular vesicles (lEVs). The obvious intrinsic proteins of lEVs are caveolin-1,
flotillin-2, and β-actin, which are involved in the shedding of microvesicles. sEVs con-
tain endosomal sorting complex Alix, CD9, CD63, and CD81, and have high cholesterol
levels [125]. The differential expression of these exosomal surface proteins suggests that
they can be used in clinics [126]. During adipose immaturity, adipocytes in the undifferen-
tiated state secrete increased levels of exosomes. These exosomes contain higher levels of
arachidonic acid and adipogenic markers (PPARγ and PREF1). Interestingly, adiponectin
expression in exosomes was evident at day 15 of adipose precursor cell differentiation.
The uptake of these high adiponectin-expressing exosomes by tumor cells accelerates the
rapid growth of various tumors, including breast cancer [43]. In vivo studies have shown
that injection of adipose-derived exosomes into mice induces insulin resistance, promotes
macrophage polarization processes, and stimulates the secretion of pro-inflammatory cy-
tokines, thus promoting the release of adipose exosomes [117]. Therefore, exosome contents
depend on the stage of adipocyte differentiation. Obesity can mediate exosome alterations,
thus inducing tumor growth by affecting the differentiation potential of adipocytes.

4.2. Obesity Alters the Cargo and Function of Adipose Exosomes

Obesity can directly or indirectly induce cancer progression by affecting adipocyte-
derived exosomal cargo. Dysfunctional adipocytes in obese subjects impair the assembly
and classification of biological components in exosomes. Obesity also alters the metabolic
state, thus affecting the payload and function of adipocyte exosomes. For example, a
study characterized exosomes released from adipose tissue from seven obese patients
(age: 12–17.5 years, BMI: 33–50 kg/m2) and five lean patients (age: 11–19 years, BMI:
22–25 kg/m2) and found that 55 miRNAs were differentially expressed in obese vs. lean
visceral adipose donors (p < 0.05; fold change ≥ |1.2|). The obesity-derived exosomes
can also downregulate ACVR2B and regulate the TGF-β1/Wnt/β signaling pathway in
A549 cells. Exosomes released from insulin-resistant adipocytes through exposure to pro-
inflammatory cytokines (highly expressed in the obese state) or adipose tissue isolated
from adult subjects with T2D upregulates genes related to migration, invasiveness, and
EMT. Such exosomes exhibit pro-cancer stem-cell-like cell formation and pro-invasive
and pro-metastatic behaviors in breast cancer cell models compared with insulin-sensitive
adipocytes or adipocytes isolated from adipose tissue of non-diabetic subjects [127]. Studies
using a palmitate-induced hypertrophic 3T3-L1 adipocyte model found increased levels
of miR-802-5p in the secreted exosomes of these adipocytes. In turn, miR-802-5p down-
regulates heat shock protein 60 (HSP60), upregulates CCAAT/enhancer binding protein
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(C/EBP) homologs, and enhances oxidative stress and phosphorylation of c Jun NH(2)
terminal kinase (JNK) and insulin receptor substrate 1 (IRS1), leading to the development of
insulin resistance [128]. The insulin-resistance-induced diabetes and exosomes with highly
expressed miR-802-5p in serum are associated with tumor progression [129]. Obesity accel-
erates the enlargement of the fat pad, leading to hypoxia within the adipose tissue. Hypoxia
upregulates adipocyte exosomal proteins associated with metabolic processes. Studies
using the 3T3-L1 adipocyte model [130] showed that exosomal proteins related to lipid
synthesis (acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and fatty acid
synthase) are upregulated under hypoxic conditions (three to four times higher than under
normoxic conditions) [130]. Indeed, studies in obese patients have confirmed the effect of
obesity on adipocyte-derived exosomal cargo. For example, clinical studies have found
that subcutaneous adipocyte-derived exosomes from obese patients contain higher levels
of proteins associated with FAO [85]. In addition, exosomes released from large adipocytes
can be transferred to small adipocytes, thereby stimulating adipogenesis and hypertrophy
of small adipocytes [131]. These exosomes may be transported into the tumor mesenchyme
through the bloodstream, inducing maturation and differentiation of cancer-associated
adipocytes and thus providing sufficient energy and material for cancer progression.

4.3. Adipose Exosomes Mediate PCa Progression in Obese Patients

Current research on the causes of obesity-mediated cancer progression focuses on
soluble factors, such as increased circulating levels of insulin and other growth factors,
altered inflammatory status, and the release of inflammatory molecules and fatty acids from
dyslipidemia [8,132]. However, obesity also increases the migration rate of preadipocytes in
WAT, thereby mediating PCa progression [133]. In the case of PPAT, obesity also alters the
gene expression profile of PPAT, promoting proliferation and immune escape of cancer cells.
This creates a microenvironment conducive to PCa progression [134]. Obese men have
higher levels of angiogenic capacity in PPAT than lean individuals [71]. Several studies
have also indicated that adipocytes can directly construct the tumor microenvironment,
forming an adipose tissue containing multiple cells, including immune cells, fibroblasts,
preadipose stem cell populations, and mature adipocytes. These cells are associated with
the formation and development of various cancers [135,136]. Furthermore, increasing
evidence has shown that adipocyte EVs have a key role in tumor progression and tumor-
cell–adipocyte interactions in obese patients [137,138]. An experiment investigating the
effect of 3T3-L1-derived EVs on the invasiveness of PC3 and DU145 cells found that EVs
released from adipocytes stimulate the proliferation of PCa cells and significantly enhance
their migratory and invasive abilities. This could be because adipose EVs can trigger a
rapid glycolytic process, thus increasing glucose uptake, lactate release, and ATP synthesis
in PCa cells [37]. EVs also causes AKT activation and HIF-1α stabilization, commonly
associated with overproliferation, metastasis, and chemoresistance in PCa [139–142]. This
recent study suggests that exosomes released in the obese state may be important in the
onset and progression of PCa. Taken together, these studies bring new insights into the
impact of under-studied adipose deposits, especially PPAT, and their released EVs on PCa
(Figure 2).
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5. Conclusions

The biological processes in adipose tissue, which are cancer-associated, are constantly
disturbed by cancer, either directly or indirectly, and this in turn accelerates the further
spread of cancer cells in some possible ways [50,51,84]. Especially for the peripheral tissues
of cancerous tissues, this symbiosis suggests that cancer may not only communicate with
cells in the vicinity of the tumor tissue mesenchyme but may also have some crosstalk with
tissues relatively distant from the cancerous tissue, such as peripheral adipose. Therefore,
it is important to explore the mechanism of this mutual cross-talk to confirm the existence
of this relationship and explain obesity as a cancer risk factor. Exosomes are biological
vesicles secreted by cells and can mediate cancer progression by transporting various
oncogenic molecules [143]. Exosomes, as biological vesicles secreted by cells with sub-
stance transport, signaling, and low antigenic and easy circulation characteristics [144], can
mediate cancer progression by transporting various oncogenic molecules [145,146]. Also,
tumor-derived exosomes can be transported to adipose tissue to participate in adipocyte
remodeling [85,146]. These results suggest that exosomes play a key role in the mutual
cross-talk between peripheral adiposity and cancer. Obesity exacerbates this process and
can directly alter the release of multiple cytokines from adipocytes, thus influencing cancer
development and progression. Obesity can also indirectly promote tumor survival and pro-
gression by inducing related diseases [133]. Obesity also exacerbates the positive feedback
between cancer and adipose tissue by interfering with the production and cargo of adipose
exosomes and thus remotely controlling the cross-talk between adiposity and cancer [37].
Therefore, the effects of obesity and adipose exosomes on PCa and PPAT during their
mutual crosstalk are bound to be the focus of future studies.

6. Discussion

Obesity is a risk factor for many malignancies, including PCa, colon, breast, liver,
and pancreatic cancers. The induction of cytokine release, vascular microenvironment
formation, and tumor mesenchymal cell remodeling are all common pathways by which
obesity mediates cancer progression. Indeed, the complexity of cancer progression suggests
that tumor cells can act not only directly on themselves to maintain their own survival but
also indirectly by altering the tumor microenvironment including the release of specific
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cytokines or vesicles to maintain tumor cell survival or progression. In addition, there
appears to be a more powerful disturbing effect of tumor cells on peritumor tissues. For
example, tumor tissue can not only affect interstitial cells but can also further induce
cancer development by potentially interfering with the state of the tissue surrounding
the cancer [37,50,147]. However, there are no robust studies on how tumor cells interfere
with surrounding tissues and how surrounding tissues mediate the progression of cancer.
Similarly, there is still a lack of sufficient evidence on how peri-cancerous fat is disturbed
by cancer and how peri-cancerous fat further contributes to cancer progression.

Whether the presence of PPAT as one of the possible factors of PCa progression may
influence the further spread of the lesion leading to multiple recurrences of the cancer as
well as maintaining high carcinogenicity and carcinogenicity in the body and thus affecting
the use of chemotherapeutic drugs, etc. is uncertain. This leads one to consider the need for
simultaneous excision of periglandular adipose tissue during radical surgery for PCa. PPAT
is more distant than tumor mesenchymal adipocytes. Therefore, they may not interact
as mesenchymal cells interact, such as tight junctions and paracrine secretion. Unlike
adipose tissues in other parts of the body, inflammatory factors are highly expressed in
PPAT [13]. This suggests the existence of a new mediator that is mediating the mutual
crosstalk between PCa and PPAT. Here, we propose that exosomes may be an important
way to mediate this process. For example, several studies have shown that exosomes
released from PCa cells can mediate stem cell remodeling of adipose tissue [145] and adi-
pose stem-cell-derived exosomes mediate the inhibition of PCa growth via PCa stromal
cells [119]. In addition, interfering with the production of adipose exosomes may be an
effective way to halt the progression of PCa and to inhibit the crosstalk between PPAT
and PCa. The drugs that inhibit vesicle production and release and affect the expression
of exosome surface membrane proteins can also reduce exosome production. However,
these drugs still have deadly side effects, and more research is needed to confirm their
exact value in oncology treatment. Many cancer cells, including PCa can release both
pro- and anti-cancer bipartite exosomes, and adipocytes can also release exosomes that
activate inflammatory responses in the tumor microenvironment and thus inhibit cancer
proliferation and spread [148–150]. Therefore, the extraction of potential oncogenic exo-
somes from adipose exosomes may promote tumor targeting therapy. However, isolating
and identifying these specific exosomes is difficult, thus limiting the exosome research
work. Adipose exosome research has widely employed the method of interfering with the
expression of specific oncogenic molecules in exosomes. Drugs interfering with the source
cells or exosome delivery disruption tools can effectively inhibit PCa progression.

Exosome therapies overcome the challenges associated with cellular therapies, in-
cluding immune rejection, tumorigenic controversy, tissue-specific antigen targeting on
the membrane surface, low immunogenicity, and non-invasive passage through the tissue
barrier. In addition, adipose tissue may be potentially more promising for use than other
tissue exosomes, as follows. (1). Tumor-derived exosomes can activate macrophages in
adipose tissue. More monocytes/macrophages may be recruited to adipose tissue after the
activation of resident macrophages, further enhancing the inflammatory response. This
inflammatory environment further promotes the proliferation of adipocytes and increases
the number of associated exosomes. The increased adipocyte size caused by obesity may
result in the release of more exosomes from adipose tissue. The combined effect is more
efficient for exosome acquisition. (2). The ease of access to adipose tissue and the simplicity
of ethical review (Figure 3). Furthermore, liposuction, the most common plastic surgery pro-
cedure in the 20th century, can obtain large amounts of human-derived adipose tissue [151].
This access to large amounts of adipose tissue offers the possibility of bulk acquisition
and use of human-derived exosomes. (3). Current research on exosomes focuses on MSC
exosomes, especially on the regenerative repair functions of MSC exosomes, such as im-
provement of recalcitrant hair loss, post-traumatic skin healing, spinal cord injury repair,
and osteoarthritis [119,152,153]. A prospective, faceted, randomized placebo-controlled
trial confirmed that adipose MSC exosomes can be used in skin brightening. The prepa-
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rations containing ASC exosomes significantly reduce melanin levels than placebo [154].
These studies indicate that the use of MSC exosomes is very promising, and the production
of MSC exosomes is bound to become a major concern, and adipose tissue, as the most
important source of known MSCs, is bound to become a priority for future sources of
large-scale production of stem cell exosomes.
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