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A gene prioritization method based on a swine
multi-omics knowledgebase and a deep learning
model
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Xinyun Li1, Xiaolei Liu1✉, Xiaohui Yuan 2✉ & Shuhong Zhao 1✉

The analyses of multi-omics data have revealed candidate genes for objective traits. How-

ever, they are integrated poorly, especially in non-model organisms, and they pose a great

challenge for prioritizing candidate genes for follow-up experimental verification. Here, we

present a general convolutional neural network model that integrates multi-omics informa-

tion to prioritize the candidate genes of objective traits. By applying this model to Sus scrofa,

which is a non-model organism, but one of the most important livestock animals, the model

precision was 72.9%, recall 73.5%, and F1-Measure 73.4%, demonstrating a good prediction

performance compared with previous studies in Arabidopsis thaliana and Oryza sativa. Addi-

tionally, to facilitate the use of the model, we present ISwine (http://iswine.iomics.pro/),

which is an online comprehensive knowledgebase in which we incorporated almost all the

published swine multi-omics data. Overall, the results suggest that the deep learning strategy

will greatly facilitate analyses of multi-omics integration in the future.
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In the past few decades, with advanced sequencing technolo-
gies, huge volumes of omics data have been produced and used
to interpret the underlying genetic mechanisms of biological

processes. For example, genome resequencing data were used to
study the domestication history of species1–3; RNA-seq data were
used to locate functional genes for specific tissues4–6; and meta-
genomics data helped to interpret the molecular pathways that
underlie the interactions between organisms and the microbial
environment7–9. In addition, proteomics10, metabolomes11,
methylation12, miRNA13, and other omics data have all partici-
pated in our understanding of the mechanisms of various bio-
logical processes14. However, analyses have always been
conducted on one type of omics data, such as a genome-wide
association study (GWAS), which only utilize genomic informa-
tion to generate a list that contains dozens or even hundreds of
candidate genes, but these analyses always stop at the “associa-
tion” level15. Even though there are massive amounts of multi-
omics data, it is a challenge to integrate the information to
identify further the credible candidate genes. We face the problem
of having too much data, but too little knowledge.

Recent research has integrated information from multiple
omics to reduce the false positives caused by studies of single
omics and to improve the probability of identifying credible
candidate genes5,14,16–20. There are two commonly used strategies
to integrate information from multiple omics. One is to narrow
the large set of candidate genes by selecting the overlapping
regions based on evidence from different layers of multiple omics,
such as selecting the candidate genes that significantly affect the
objective traits in both genomics and transcriptomics21,22. The
other strategy is to map credible candidates by constructing a
network to interpret its functions and biological meanings, such
as pathway analysis and co-expression network analysis, to locate
the genes within the pathways that are associated with objective
traits23,24. However, limited by sample size and experimental
design, it is very rare to obtain the evidence from multiple omics
information for a specific candidate gene in a single experiment.
Developing a new method to make efficient reuse of omics data is
urgent and essential.

Because multiple omics data are heterogeneous, it is difficult to
incorporate multiple omics information in a classic statistical
model. The machine learning method has proved to be a powerful
tool to handle a large amount of heterogeneous information, and
it has great potential to solve the problem of multiple omics
integration25. In fact, machine learning methods have already
been widely used in biological research, such as clinical
studies26,27, disease risk assessment28,29, genomic prediction30–32,
and mining of biological literature33,34. Deep learning, which is a
branch of machine learning, is helpful in solving the problem of
extracting target features using traditional machine learning
methods. Deep learning can learn the intricate regulatory rela-
tionships among the diversified multi-omics and, at the same
time, it has excellent potential to integrate the features of multi-
omics information. Recently, deep learning methods have been
used successfully to assist the diagnosis and assessment of disease
risk by integrating features of multiple omics35–37. However, its
application is limited to specific samples or scenarios and to reuse
multi-omics data is still challenging. Additionally, the poor
interpretability of deep learning models also perplexes research-
ers38. At the moment, text mining technology, which is used
widely to extract knowledge of relationships between genes and
traits from published literature, brings a ray of hope for solving
this problem. To incorporate this information into the multiple
omics integration model not only improves the interpretation of
results, but it also saves time when searching a vast amount of
literature manually.

Obviously, multi-omics analysis depends on advanced inte-
gration methods and a large amount of regular multi-omics
information. Most existing integration methods are shared in the
form of source code only, where multi-omics data are not
included. To provide the integration method with an easy-to-use
multi-omics database would benefit data reuse and model
sharing.

With these design criteria in mind, we constructed a multi-
omics database for swine, which is an important non-model
organism and one of the most important livestock animals. The
database contains almost all the published pig genome data,
transcriptome data, and QTX data. Using these data, we trained
the integration model based on a machine learning strategy to
prioritize candidate genes for objective traits and to evaluate the
biological significance of the model parameters. The convolu-
tional neural network model had the highest model accuracy and
an in-depth understanding of complex biological processes. In
addition, to facilitate the use of the integration model and multi-
omics information, we developed a user-friendly, online website
named ISwine for multi-omics integration analysis and data
search. With this framework, users can use multi-omics infor-
mation easily to prioritize the genes of interest for a specific trait.
ISwine will serve as a knowledgebase for swine research and
potentially provide a new strategy for multi-omics integration
analysis to benefit research on other species.

Results
Omics data collection and management. ISwine collected the
public multi-omics data of swine from 305 projects and 653
published sources (Table 1). All the resequencing data from 42
projects were included in this study, which contained 864 pig
individuals (Supplementary Table 1). A total of 32.88 terabytes
(TB) of resequencing data were aligned against the Sscrofa11.1
reference sequence by using BWA (Burrows–Wheeler Aligner)
software39. To call variants with high confidence, potential
duplications were filtered for each individual, and individuals
with <3-fold depth and 70% genome coverage were removed
(Supplementary Fig. 1 and Supplementary Data 1). A total of 825
qualified individuals were retained for subsequent analyses, which
included 29 Asian native breeds, 20 European native breeds, three
European commercial breeds, two American native breeds, and
five other breeds (Supplementary Fig. 2 and Supplementary
Table 2).

After applying stringent quality control criteria (details
described in “Methods”), a total of 81,814,111 SNPs and
11,920,965 indels were identified, of which 51.4 million were
intergenic, 35.8 million were intronic, and 1.2 million were exonic
(Supplementary Table 3). Compared with the variants that were
included in the pig dbSNP (Build 150) database40, our variant
data set covered >74.02% of its variants, and 46,451,715 variants
were considered as novel because they were not in the pig dbSNP
(Supplementary Fig. 3). These novel SNPs will improve the
catalog of porcine genetic variants substantially, and the high
coverage of dbSNP reflected that the genomic data set in this

Table 1 Overview of the multi-omics data used to construct
the integrated swine omics knowledgebase.

Omics Samples Classification Scale Source

Genome 864 59 breeds 32.88 TB 42 projects
Transcriptome 3526 95 tissues 20.0 TB 263 projects
QTXs – 89 traits 26,357

entries
653 studies
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study is a reliable reference for porcine research. This is especially
true for cases where the NCBI has not maintained data on swine
dbSNP since 19 April 2018.

Consistent with previous studies41, the population genetic
structural analysis showed a clear evolutionary split and
introgression between Asian and European pigs (Supplementary
Figs. 4 and 5). The neighbor-joining tree also showed this
divergence where the Asian and European pigs defined their own
separate clades, and each clade split into a domesticated clade and
a wild clade, respectively (Supplementary Fig. 6). It was very clear
that both Asian domestic pigs and wild boars were divided into a
southern clade and a northern clade, respectively, and interest-
ingly, the European Gottingen Minipig showed more genomic
similarity to Asian southern pigs than to European native breeds
(Supplementary Fig. 6). Overall, the structure analysis suggested
that the collected genomic data were of high quality and covered
the pig genomic diversity quite well.

The swine transcriptome data, which consisted of 20.0 TB of
sequencing data, 263 projects, and 3526 samples (Supplementary
Data 2), were downloaded and analyzed. A strict quality control
procedure was carried out to ensure the validity of the data. First,
we removed the samples with mapped reads <6M (Supplemen-
tary Fig. 7), and second, we deleted the samples with dubious
tissue information based on the Euclidean distance of the samples
(Supplementary Fig. 8). After deleting 244 samples by the two
steps, the remaining 3282 samples were mainly grouped together
in the tissue classification (Supplementary Data 3). However, the
degree of dispersion varied among different tissues, which may
have been related to the temporal and spatial specificity of the
tissues or the sample collection method (Supplementary Fig. 9).
To facilitate the retrieval of sample information, we classified all
samples into seven main categories and 95 subcategories based on
tissue classification and their relative position in the swine’s body
(Supplementary Data 4). After statistical analysis, we found that
the samples were mainly concentrated in the blood and
longissimus dorsi muscle categories, which was consistent with
the areas of pig research that focused primarily on a disease
model and meat production. In addition, the liver, endometrium,
back fat, and heart tissues also had a sample size >100
(Supplementary Data 4 and Supplementary Fig. 10), which
provided a high-quality reference dataset for gene expression to
train the multi-omics integration model.

To better interpret the omics data, we obtained 8371
quantitative trait-associated loci (QTALs), 1,542 quantitative
trait-associated genes (QTAGs), and 16,444 quantitative trait-
associated nucleotides (QTANs) from 653 studies (Supplemen-
tary Data 5) by using a text mining technique42 combined with
manual markup; these information are referred to as QTXs. After
mapping all reported QTXs to the pig genome Sscrofa11.1, a total
of 24,238 QTXs were retained, which covered 96.6% of the entire
genome (Supplementary Data 6 and Supplementary Fig. 11).
Because some extremely long QTALs were detected in time with
low marker densities, we cut the QTALs that were longer than
two mega base pairs (MB) to 2 MB along the center of the QTAL.
The retained QTXs covered 72.01% of the entire genome and
74.59% of the total genes, which was consistent with the general
consensus that most genes were involved in various life activities.
We selected gene sets with QTXs that were reported >30 times
(Supplementary Data 7, Supplementary Fig. 12) and found that
the genes focused mainly on disease and development-related
functions (Supplementary Table 4). A trait ontology was built to
facilitate the construction of connections between omics informa-
tion and trait information. The traits were divided into 11 major
categories and 89 subcategories (Supplementary Data 8). QTXs
were concentrated mainly in the “Fat Related Traits”, “Blood
Related Traits”, and “Meat Quality Traits” categories, which was

consistent with the mainstream research on pigs (e.g., production,
disease, and reproduction) (Supplementary Fig. 13 and Supple-
mentary Table 5).

Construction of gene prioritization model. A total of 842 sam-
ples was prepared for training the gene prioritization models,
which consisted of 421 pairs of all QTAGs and relevant traits as
positive samples and randomly assigned 421 pairs of genes and
traits as negative samples (Supplementary Data 9). Then, 80% of
the samples were used as the training set, and the remainder were
used as the test set. To make full use of multi-omics data, the
features of variation counts, expression levels, QTALs/QTANs
number, and the WGCNA (Weighted Gene Co-expression Net-
work Analysis) module for each gene of the training dataset were
obtained for integration analysis. Using these features, four
models were trained to prioritize the candidate genes obtained
from GWAS or any other omics analysis that was associated with
a trait of interest. This included two machine learning models
with great interpretation capacity, logistic regression classifier
(LR), and linear support vector classifier (linearSVC), which are
linear models that are used normally in binary classification
problems. The two additional models were two neural network-
based deep learning models, multi-layer perceptron (MLP) and
convolutional neural networks (CNN), which have the potential
to mine the interactions among the features. The candidate genes
with a probability >50% were denoted as credible candidate genes
(Fig. 1). For each model, a 4-fold cross-validation procedure was
conducted to evaluate the model’s performance, and this sug-
gested that the CNN model performed best. The accuracy, pre-
cision, recall, and F1-Measure of the CNN model were all >70%.
However, this is not particularly high for the binary classification
problem, but it has great application value in biological research
when the false positive rate is as low as 30% (Table 2 and Sup-
plementary Fig. 14).

The lime framework (https://github.com/marcotcr/lime) was
conducted further to understand the working principle of the
CNN model, which suggested that “Nonsynonymous_indel”,
“Intron_snp”, “Expression”, “Module”, and “QTAL” played
important roles in gene prioritization (Fig. 2a and Supplementary
Table 6). Non-synonymous variations affected gene function by
changing protein coding and gene expression level, expression
module determined the occurrence and intensity of gene
function, and QTAL information from published sources
provided direct evidence for gene function. These features were
consistent with the rules of artificial gene function judgement,
which meant that the model had strong interpretability and
indicated that the gene prioritization model held strong biological
meaning.

To further confirm the role of each omics in the gene
prioritization model, we trained the LR, LinearSVC, MLP, and
CNN models using the features of genomes, transcriptomes, and
data from the literature. We found that among these models, the
performances of models that trained by multi-omics information
were better than that of single omics, and the methods based on
neural network were superior to the linear methods (Supplemen-
tary Table 7). Interestingly, the performance of the model
constructed using only genomic features was the best, followed by
the model that used transcriptomes, and the model based on the
literature was the worst. This was consistent with the evaluation
results of lime framework, which indicated that the evaluation
results of the integrated model were reliable. In addition, the
performance of the model trained only with genomic features was
closer to the integrated model, and this may be because the
genomic features accounted for 71.43% (10/14) of all features.
However, from a biological point of view, the information based
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on transcriptomes and the literature were more interpretable. All
the transcriptome features and literature features were signifi-
cantly different in the positive and negative samples (Supple-
mentary Table 8 and Supplementary Fig. 15), which also
confirmed the interpretability; this suggested that some unknown
regulatory mechanism in the genomic layer needed to be mined.
The integration of a number of features from multiple omics not
only improved the performance of the prediction model, but it
also enhanced the interpretability of the model.

Evaluation of gene prioritization model. A total of nine traits
from seven GWAS studies43–49 were selected for testing the
performance of the gene-prioritization model (Supplementary
Table 9). All candidate genes were evaluated by the CNN model,
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Fig. 1 Schematic of the gene prioritization framework for the integrated swine omics knowledgebase. The circles represent a list of candidate genes
from GWAS or any other omics analysis. The rectangles represent positive training samples and negative training samples. The dotted box represents a
CNN model trained by using variation counts, expression level, QTANs/QTALs number, and WGCNA module features of the training data. The output
layer of the model shows the probability that the gene is a credible candidate gene by using the “softmax” function. The candidate genes with a probability
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Table 2 Comparison of the performance of the four machine
learning models for gene prioritization.

Models Accuracy Precision Recall F1-Measure

LR 0.657 0.686 0.571 0.623
LinearSVC 0.639 0.658 0.571 0.612
MLP 0.692 0.678 0.726 0.701
CNN 0.734 0.729 0.738 0.734

The F1- Measure of the two linear models (LR and LinearSVC) with strong explanatory power
were lower than deep learning models (MLP and CNN) that were based on neural networks,
which suggested the deep learning models were superior to the linear models. Between MLP
and CNN, the accuracy, precision, and F1- Measure of CNN were higher than MLP, and the
performance of CNN was slightly better than MLP.
LR Logistic regression, LinearSVC Linear Support Vector Classifier, MLP Multi-Layer Perceptron,
CNN Convolutional Neural Networks.
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and the candidate genes with a score over or under 50 were
designed as “credible” or “non-credible”, respectively. Overall,
50.41–82.58% of the candidate genes were predicted to be non-
credible candidate genes, which greatly narrowed the scope of
credible candidate genes (Supplementary Table 9). To assess the
prioritizing effect further, we selected the top 10 genes (CT10)

from predicted credible candidate genes, the last 10 (CL10) genes
from predicted credible candidate genes, and the top 10 (NT10)
genes from predicted non-credible candidate genes for each trait
for validation by consulting the literature. The number of credible
candidate genes in CT10 was much greater than CL10 (P=
2.36 × 10−3), and the credible candidate gene number in CL10
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was greater than NT10 (P= 9.53 × 10−3), which indicated that
the recommendation of credible candidate genes by the CNN
model was reliable (Fig. 2b and Supplementary Table 10). The
statistical results indicated that the proportion of credible can-
didate genes in different scoring ranges increased with the gene
score, which meant that a candidate gene was reliable if its gene
score was high enough (Fig. 2c, Supplementary Table 11).

The feature differences of candidate genes in different scoring
ranges were also compared to reveal the working principles of the
CNN model. Nine of the 14 features, which included Module,
Expression, Intron_snp, Synonymous_snp, Nonsynonymous_snp,
Upstream_indel, Intron_indel, Synonymous_indel, and Nonsyno-
nymous_indel showed significant differences among three groups
(CT10, CL10, and NT10) of genes (Supplementary Table 12 and
Supplementary Fig. 16). However, except for the features of
Intron_snp, Intron_indel, Expression, and Module, the trends of
the other five features neither increased nor decreased in CT10,
CL10, and NT10, which indicated that these features were utilized
in a nonlinear way. Although there were no significant differences
in features of QTAL and QTAN, both of them exhibited changing
trends within the three groups, which indicated that they may be
potentially correlated to credible candidate genes; this was
consistent with our general perception. Interestingly, a large
proportion of credible candidate genes was located far away from
the GWAS peaks, which indicated that distal regulation should be
considered in the identification of credible candidate genes (Fig. 2d
and Supplementary Table 13).

ISwine: an integrated swine omics knowledgebase. To facilitate
model usage, an integrated swine omics knowledgebase named
ISwine was constructed to prioritize candidate genes based on
multi-omics information. ISwine consists of an integrated swine
omics database and a computing framework for gene prioritiza-
tion. The integrated swine omics database is composed mainly of
three basic databases on genome variation, gene expression, and
QTX and a multi-omics integration database, which uses data on
multi-omics for gene prioritization and to provide information
about genes (e.g., sequences and annotation). ISwine further
provides three tools for users to mine or to visualize multi-omics
data, which include BLAST, Primer, and JBrowser (Fig. 3 and
Supplementary Fig. 17).

Three basic databases provide information, as comprehensively
as possible, on swine genome variation, gene expression, and
QTXs. The variation database consists of genotypes of 825
individuals at 93.7 million variations, the frequencies and
annotations of all variations, and individualized information
(e.g., name, sex, geographic location, and breed) (Fig. 3a, b). The
expression database provides the expression of 25,880 genes with
3282 samples, the sample properties of tissues, treatment,
preservation, etc., and differential expression genes (Fig. 3c, d).
The QTX database includes genome coordinate positions,
variation types, sources, associated traits, and trait ontology for
24,238 QTXs, and a user rating system is also provided to
improve the reliability of QTX information (Fig. 3e, f).

The integrated database not only provides the call interface to
basic databases, but also contains the basic information,
sequences, annotation, and homologous genes for all genes,
which can help users to better judge the gene function (Fig. 3g, h).
Combined with the CNN model embedded in the integration
database, by providing the physical positions/gene IDs for genes
of interest and selecting the objective trait and the tissues
potentially related to the trait, users can easily obtain the priority
and scores of candidate genes to identify credible candidate genes
(Fig. 3i). Users can further use the three tools implemented in
ISwine to perform downstream analyses (e.g., using Primer to

design primers for subsequent experiments (Fig. 3j), using
JBrowser to visualize the genome (Fig. 3k), and BLAST to
achieve the target gene sequences (Fig. 3l). To facilitate the usage
of databases, tools, and methods further, ISwine provides a user-
friendly interface to browse, search, visualize, download, and
analyze multi-omics information.

Discussion
Mining the information of multi-omics can help us to understand
the biomechanisms that underlie agricultural economic traits and
human diseases. However, there are always two challenges: one
challenge is to collect and organize the multi-omics information,
which are massive and have a lack of standardization, and the
other challenge is how to integrate heterogeneous multi-omics
information. Our study provides a new strategy to integrate the
massive quantity of multi-omics information, a knowledgebase,
which not only supplies various user interactive query functions
for browsing, searching, visualizing, and downloading multi-
omics data, but also provides a machine learning strategy-based
gene prioritization method to integrate multi-omics information.
As we know, GWAS is one of the most widely used methods to
identify candidate genes that underlie traits. However, it is always
a big challenge to rank credible candidate genes after association
tests, and our strategy may help researchers to get through the
“last mile” of GWAS.

ISwine is the first integrated multi-omics knowledgebase for
swine, and it is mainly composed of three basic databases titled
Variation, Expression, and QTX, and an integrated database with
an embedded gene prioritization method. The present version of
ISwine consists of almost all the published swine data, which
include 81,814,111 SNPs and 11,920,965 indels from 825 rese-
quencing individuals (32.9 TB), 25,880 genes from 3,282 RNA-
seq samples (20.0 TB), and 24,238 QTXs from 586 published
sources. For the database Variation, compared with existing swine
databases, such as pigVar50, dbSNP from NCBI (updates have
stopped), and the Genome Variation Map51, ISwine has the lar-
gest number of variations and the largest number of resequencing
individuals (Supplementary Table 14). The database Expression is
the first RNA-Seq based, swine gene expression database, which
incorporates data from 263 studies and a total of 95 various
tissues. pigQTLdb52 is the only existing database that provides
information similar to the ISwine QTX database. ISwine is dif-
ferent from pigQTLdb because it not only collected QTX infor-
mation, but it also focused on improving its interactivity with the
databases of other omics.

Abundant omics sequencing technology has greatly promoted
biological research and brought great challenges to the integration
of various omics data. ISwine provides an online gene prior-
itization platform based on multi-omics data, which can directly
help users obtain the rank of candidate genes for a trait of
interest. A machine learning model is trained by using the fea-
tures of variation counts, expression level, QTX number, and a
WGCNA module in the databases Variation, Expression, and
QTX, and it aims to identify the candidate genes with high
confidence. The 4-fold cross-validation results showed that the
accuracy, precision, recall, and F1-Measure of the CNN model
were all >73%. Compared with the recall of 64% and 79% in
Arabidopsis thaliana and Oryza sativa, respectively53, the pre-
diction performance of our model was good. Although the recall
in Oryza sativa was higher than in our study, the genes were only
prioritized in the QTL regions, while we prioritized genes in the
whole genome. However, there still existed ~27% false positive/
negative results in our study; one possible reason may have been
the quality of the training dataset, which affected the performance
of the gene prioritization model. In an ideal situation, all genes in
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Fig. 3 Interface and general functions of the integrated swine omics knowledgebase. a The population design module in variation database, b the
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e the physical map in QTX database, f the QTX information page in QTX database, g search engine of the integration database, h the gene information
incorporated into the integration database, i the gene prioritization model embedded in integration database, j the primer design module for primer design,
k the JBrowser module for genome visualization, and l the BLAST module for location of target gene sequences.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01233-4 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:502 | https://doi.org/10.1038/s42003-020-01233-4 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


positive cases should influence the trait either directly or indir-
ectly, and all negative genes should be completely unrelated to the
objective traits. However, in practice, due to the complexity of
gene functions, the training data set is never completely accurate.
Therefore, we checked all cases of positive and negative genes
manually to improve the quality of the training dataset.

In this study, linear models with strong explanatory power and
deep learning models based on complex neural networks were
designed. Linear models were more consistent with the concept of
the expert scoring system, but the deep learning models assumed
that the information of multi-omics had complex interactions.
The deep learning models were superior to the linear models,
which indicated that there was indeed a certain degree of inter-
action among multi-omics, and the rules based on linear super-
position only partially explained the biomechanism that underlay
traits of interest. The undeniable fact is that the deep learning
models were less interpretable because they were limited by their
complex network structure. Therefore, we tried to interpret the
CNN model with the best performance and found that the
important features of the model had strong interpretability, which
was consistent with the frequently used biological rules, such as
non-synonymous variations and gene expressions. At the same
time, the model also reflected some unexplainable features, which
could be caused by the complexity of the regulatory network of
life activities that cannot be explained fully by known explainable
features. The results also indicated that the deep learning models
had great potential to exploit new biological rules. With the
explosive increase in data, the deep learning models are bound to
play an important role in multi-omics integration analyses, the
exploration of biological regulation mechanisms, and studies of
gene-gene interaction networks.

ISwine introduced literature information into the integration
analyses innovatively, which improved the accuracy of the gene
prioritization model and its interpretability. Although the amount
of QTX data was far less than other omics, QTX information still
weighed heavily in the gene prioritization model, which means
that information from the literature played an important role in
multi-omics integration analyses. With the development of text
mining technology, a massive quantity of information from
published sources will be extracted, structured, and used for the
interpretation of omics data. Therefore, the importance of pub-
lished information will increase prominently, and it is a poten-
tially important research direction in the near future.

With the rapid increase of multi-omics data, multi-omics
integration methods are lacking and, therefore, integration tools
are needed. At present, multi-omics integration research can only
share ideas and results by sharing codes and text descriptions.
Meanwhile, multi-omics data are generated based on the design
of a single study, which makes the data difficult to reuse in other
research. To solve the problems, we designed ISwine, which
allows researchers to use the online gene prioritization system
with the latest deep learning model with only a few clicks.

However, the multi-omics integration knowledgebase and the
embedded gene prioritization method have only been developed
for swine. It has provided a novel strategy for multi-omics inte-
gration and could be expanded to multi-omics studies in other
species. In addition, our study only applied the multi-omics
integration model to the identification of credible candidate
genes. It could be applied to other analyses as well, for example, to
provide multi-omics information based on prior knowledge for
gene differential expression analysis and a GWAS model.

In summary, we present an integrated multi-omics knowl-
edgebase with an embedded CNN model for prioritizing genes of
interest by multi-omics integration analyses, and we demon-
strated the great potential of CNN model in multi-omics inte-
gration by applying it to a non-model organism—swine. To

facilitate the use of model and multi-omics data, we implemented
the comprehensive knowledgebase in a website named ISwine. It
contains abundant genomic, transcriptome, and QTX data and
massive annotation resources. A gene prioritization system was
designed to help users catch the credible candidate genes by
integrating information from different omics layers, and a
number of analysis tools, which included JBrowse, BLAST, and
Primer, were implemented to help users perform the subsequent
analyses. ISwine will help us to better understand the bio-
mechanisms that underlie the traits of interest in swine, and our
novel strategy will also benefit multi-omics integration research in
other species.

Methods
Data collection. Resequencing and RNA-seq data were downloaded from NCBI
Sequence Read Archive54 (SRA, http://www.ncbi.nlm.nih.gov/sra/), the European
Nucleotide Archive55 (ENA, https://www.ebi.ac.uk/ena), and NCBI Gene Expres-
sion Omnibus56 (GEO, http://www.ncbi.nlm.nih.gov/geo). This study included
3,526 RNA-seq samples from 263 projects and 864 resequencing samples from 42
projects; it covered almost all the published resequencing data and RNA-seq data in
swine researches.

QTX-related literature were obtained from US National Library of Medicine
National Institutes of Health57 (PubMed, https://www.ncbi.nlm.nih.gov/pubmed)
by using “swine GWAS” or “swine QTL” as keywords. A total of 653 full texts was
collected for QTX detection.

Information on genetic markers were obtained from ARKdb genome database58

(http://www.thearkdb.org) and NCBI Nucleotide database (www.ncbi.nlm.nih.gov/
nuccore/). Genome sequences and annotation of Sscrofa11.1 were download from
the Ensembl genome browser59 (http://www.ensembl.org).

Analysis of RNA-seq data. All collected datasets were processed through the
following procedure. The raw data were first converted to fastq files by using
SRAToolkit54 (V2.8.2), and the fastq files were trimmed by removing adapters and
low-quality bases using Trimmomatic60 (V0.36). The clean reads were then aligned
to the Sscrofa11.1 reference genome using HISAT261 (V2.1.0). Reads count for
each gene was extracted by using HTseq62 (V0.9.1), and only uniquely aligned
reads were retained for subsequent analysis. The differentially expressed genes
(DEGs) were then identified by using DEGseq63 and DESeq264. TPM (Transcripts
Per Million) was calculated by using Stringtie65 (V1.3.3b).

To detect the samples with incorrect tissue information, we calculated the
Euclidean distance between each pair of samples in each tissue and detected the
outliers by the Tukey’s fences method. The tissue information of these abnormal
samples was considered to be incorrect, and these samples were excluded from
subsequent analyses. The Tukey’s fences method defined any observations that
were outside the following range to be outliers:

Q1� k ´ Q3� Q1ð Þ;Q3þ k ´ Q3� Q1ð Þ½ �
where Q1 and Q3 represent the first and third quartile of Euclidean distance
observations, respectively; where k is a nonnegative constant, and k= 1.5 or k= 3
indicated an “outlier”. k was set to 3 in this study.

Identification and annotation of short variants from resequencing data.
Similar to RNA-seq data, all collected datasets were also processed through a
consistent bioinformatics pipeline. After conversion and trimming, the remaining
high-quality reads were aligned against the Sscrofa11.1 reference sequence by using
Burrows–Wheeler Aligner 0.7.1739 (BWA). The uniquely aligned reads with ≤5
mismatches were used for detection of short variants.

To obtain highly confident short variants, we employed GATK66 (V4.0.3.0)
variant calling pipelines, based on the GATK best practice online documentation.
The SNPs/indels were then filtered further by the “QUAL < 30.0 | | QD < 2.0 | | FS
> 60.0 | | MQ < 40.0 | | SOR > 3.0 | | ReadPosRankSum <−8.0” / “QUAL < 30.0 | |
QD < 2.0 | | FS > 200.0 | | SOR > 10.0 | | ReadPosRankSum <−20.0 | | MQ < 40.0 | |
MQRankSum <−12.5” option, and high-quality short variants were retained for
annotation by using ANNOVAR67 (V2018Apr16).

Collection of QTX information from the literature. We used the table mining
method as described in our previous study42 to identify QTX information from the
literature and checked the information manually. Each QTX record had at least two
attributes: a coordinate and a trait. To aggregate the information from different
genetic maps or physical maps, the Sscrofa11.1 reference genome was selected as a
reference physical map, and all other maps were converted to the reference physical
map by using Bowtie268 (V2.3.4.3).

Annotation of the Sus scrofa genes. Basic information, gene structure, and gene
sequences were extracted from the Sus scrofa genome file and the annotation file
(Ensembl release 95). GO annotations and homologous information were obtained
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from the Ensembl BioMart database59 (http://www.ensembl.org/biomart). KEGG
annotations were created by using KOBAS69 (V2.1.1), and InterPro annotations
were created by using InterProScan70 (V5.27-66.0).

Detection of co-expression modules. Weighted correlation network analysis
(WGCNA) was used to identify co-expression modules, and the R software package
WGCNA71 (V1.67) was implemented for all genes in our collected RNA-seq
samples. Genes with too many missing samples or zero variance were filtered by
the “goodSamplesGenes” algorithm in WGCNA for further analysis. Then, samples
were used to calculate Pearson’s correlation matrices, and the weighted adjacency
matrix was created with the following formula:

aij ¼ corðxi; xjÞ
�
�
�

�
�
�

β

where xiand xj represent gene expression of gene i and gene j, respectively, aij is the
adjacency between gene i and gene j, and β is the soft-power threshold. Once the
gene network was constructed, a topological overlap measure was used to detect
gene modules. The minimal gene module size was set to 30, and the threshold to
merge similar modules was set to 0.2.

GO term and KEGG pathway enrichment analysis. GO/KEGG enrichment
analysis provided all GO terms/KEGG pathways that were significantly enriched in
candidate genes compared with the genome background, and it selected the can-
didate genes that corresponded to biological functions. All candidate genes were
first mapped to GO terms/KEGG pathways in the annotation files by calculating
gene numbers for every term; then, it used a hyper geometric test to find sig-
nificantly enriched GO terms/KEGG pathways in candidate genes compared with
the genome background. The significance of each GO term/KEGG pathway was
calculated as:

P ¼ 1�
Xm�1

i¼0

M

i

� �
N �M

n� i

� �

N

n

� �

where N is the number of all genes with GO/KEGG annotations, n is the number of
candidate genes in N,M is the number of genes annotated for any certain GO term/
KEGG pathway, and m is the number of candidate genes in M. The calculated P-
values of all GO/KEGG terms were corrected by the Bonferroni Correction
method. Taking corrected P-value ≤ 0.05 as a threshold, the GO terms/KEGG
pathways that fulfilled this condition were considered as significantly enriched GO
terms/KEGG pathways for candidate genes.

Training set preparation. To create a reliable dataset to train the machine learning
model is very important, however, it is difficult to determine whether a gene is
related to an objective trait, especially in research on non-model organisms. In
swine research, the QTALs and QTANs were always identified by the statistical
analyses (e.g., QTL mapping or GWAS) only without any experimental certifica-
tion. Differently, the published studies for QTAGs were always conducted with an
additional experimental certification after statistical analysis, and these QTAGs
were more reliable than QTALs and QTANs. Therefore, we used QTAGs as
positive samples and, finally, we obtained 421 effective gene-trait pairs (Supple-
mentary Data 10). These samples affect “Behavioral Traits”, “Blood Related Traits”,
“Disease Related Traits”, “Exterior Traits”, “Fat Related Traits”, “Growth Related
Traits”, “Meat Quality Traits”, “Muscle Related Traits”, “Physiochemical Traits”,
“Reproduction Traits”, and “Slaughter Traits” (Supplementary Data 11). To gen-
erate credible data for negative samples, we randomly generated 750 hypothetical
QTAGs for the above traits, and then we removed the genes that might affect the
corresponding traits by consulting the literature manually. Finally, we also ran-
domly selected 421 genes as negative samples to ensure the balance of positive
samples and negative samples. Finally, a dataset that composed of 842 samples was
used to train the model; we randomly selected 80% of the samples as the training
set, and the remaining 20% was the test set (Supplementary Data 9).

Feature generation. We generated a total of 14 features to train the gene prior-
itization model, which included 10 genome features, two transcriptome features,
and two literature features.

Genome features: at the genomic level, we used the number of SNPs/indels
within or nearby the gene as a variation feature for two reasons: (1) when SNPs/
indels existed within a gene or in a regulatory region near a gene, they may have
played a direct role in regulating gene function and, therefore, also the trait,
especially nonsynonymous variations. (2) genes that do not have variations within
or near a large population always have difficulty affecting a trait. Because the effect
of variation in different regions of the gene was different, the number of SNPs and
indels located upstream (two kilobases upstream of the gene), downstream (two
kilobases downstream of the gene), introns, and exons (including both
synonymous and nonsynonymous mutations) were also recognized as genomic
features.

Transcriptome features: at the transcriptome level, genes need to be expressed
to perform their functions to affect traits, and the strength of gene functions is
always related to the gene expression level. Therefore, the expression levels of the
genes in the target tissues were treated as an expression feature, and the correlation
coefficient between the co-expression module and the tissue was used as a network
feature.

Literature features: considering a large number of published sources, if a gene
was reported to be associated with a trait a large number of times, it was more
likely to be a reliable candidate gene. Therefore, we used the number of QTALs and
QTANs, which overlapped with the gene region, as literature features.

Model training and gene prioritization. The scikit-learn framework72 (V0.21.3)
was used to train the logistic regression classifier (LR), linear support vector
classifier (linearSVC), and multi-layer perceptron (MLP) model. To choose
appropriate parameters, grid searches with 4-fold cross-validation were used to
estimate the best parameters for each model. The final parameters of LR were set
as: “penalty=‘none’, solver=‘newton-cg’”; the final parameters of linearSVC were
set as: “tol=0.00001, loss=‘squared_hinge’, C=0.1, penalty=‘l2’”; and for MLP, the
final parameters were set as: “activation=‘tanh’, solver=‘lbfgs’, hidden_layer_-
sizes=(8,8), tol=0.00001, max_iter=60”.

The LR is a linear model, and the probabilities for credible candidate genes and
non-credible candidate genes were calculated as follows:

PðY ¼ 1 xj Þ ¼ ew�xþb

1þ ew�xþb

PðY ¼ 0 xj Þ ¼ 1
1þ ew�xþb

where x is a vector of features, w is the vector of feature weights, b is the intercept
from the linear regression equation, Y = 1 represents credible candidate genes, and
Y = 0 represents non-credible candidate genes.

Similar to LR, the linearSVC is also a linear model, and a hyperplane was used
to classify the credible candidate genes and non-credible candidate genes by
signum, which is a classifier decision function:

f ðxÞ ¼ signðw* � x þ b*Þ

signðzÞ ¼
1 ; z>0

0 ; z ¼ 0

�1 ; z<0

8

><

>:

where x is a feature vector, w* is a normal vector to the hyperplane, b* is the
intercept, and z represents the w*·x + b*. If the training data were linearly
separable, a hyperplane, which is defined as w*·x+ b*= 0, was selected to separate
the data into two classes represented by f(x)= 1 and f(x)=−1.

The MLP is a class of feedforward artificial neural networks. A non-linear
hyperbolic tangent was selected as the activation function and could be written as:

yi ¼ tanh
X

wi:xi
� �

where yi represents the output of the ith node (neuron),xi represents the ith input
connection, and wi is the weight of xi.

The CNN model was trained based on Keras73 (V2.2.5) and TensorFlow74

(V1.14.0) frameworks. We designed 1D convnets and followed the suggestions of
François Chollet’s suggestion in Deep Learning with Python75 to regularize the
model and to optimize the hyperparameters: (1) Adding Dropout layer to drop out
a number of output features of the Dense layers in training process; (2) Try
different architectures: add or remove layers; (3) Try to add “L1” or “L2”
regularizer to make the distribution of weight values more regular; (4) Try different
hyperparameters, such as the number of units per layer or the learning rate of the
optimizer, to find out the optimal configuration.

Finally, the CNN model was composed of four convolutional layers, four
pooling layers, and three fully connected layers. For convolutional layers, the
“filters” parameters were 32, 64, 128, and 256, and the remaining parameters were
set as “kernel_size=3, strides=1, padding=‘same’, activation=‘relu’,
kernel_regularizer= l1(0.001)”; for pooling layers, the parameters were set as
“pool_size=2, strides=2, padding=‘same’”; for fully connected layers, after 1024-
way ReLU (Rectified Linear Unit) layers and 512-way ReLU layers, a two-way
softmax layer was designed to return an array of two probability scores. Combined
with the model, we constructed the gene prioritization function as follows:

Score gð Þ ¼ ez2
P2

j¼1 e
zj
´ 100

where zj is the jth input for softmax layer, z1 is the hidden layer value for negative
class that were labeled as 0, and z2 is the hidden layer value for positive class that
were labeled as 1. Score(g) is the gene score within the range of 0–100.

Blast and primer. The blast and primer functions were built from Sequence-
Server76 (V1.0.11) and Primer377 (V0.4.0), respectively, the core functions were
retained, and the interface was adjusted to adapt to ISwine.
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Database implementation. ISwine was built using tomcat (V8.0, web server) and
MySQL (V5.7)/MongoDB (V3.4, database server). The website was designed and
implemented using the Spring (V4.3.2) framework, which reduced the page refresh
time to enhance the user experience. ISwine adopted the MVC design pattern based
on SpringMVC (V4.3.2) and MyBatis (V3.2.8). Data visualization was imple-
mented by an open source echarts package (https://github.com/apache/incubator-
echarts). The website was tested in several popular web browsers, which included
Internet Explorer, Google Chrome, and Firefox.

Statistics and reproducibility. Mann-Whitney test and hyper geometric test were
implemented by using the wilcox.test() and phyper() function in R language. All
relevant data can be found in the supplementary data or tables, and the statistical
results can be reproduced based on this information.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets analysed in this study were collected from the SRA, ENA, GEO, and
PubMed repository. All the publicly available genome, transcriptome, and literature
information are listed in Supplementary Data 1, 2, and 5. The source data for Fig. 2 are
available at Supplementary Tables 6, 11, and 13, and Supplementary Data 13.

Code availability
The scripts for model training are available on GitHub at https://github.com/xiaolei-lab/
ISwine.
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