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Abstract:
Background: Reference genes are assumed to be stably expressed under most circumstances. Previous studies have
shown that identification of potential reference genes using common algorithms, such as NormFinder, geNorm, and
BestKeeper, are not suitable for microarray-sized datasets. The aim of this study was to evaluate existing methods
and develop methods for identifying reference genes from microarray datasets.
Methods: We evaluated the correlation between outputs from 7 published methods for identifying reference genes,
including NormFinder, geNorm, and BestKeeper, using subsets of published microarray data. From these results,
seven novel combinations of published methods for identifying reference genes were evaluated.
Results: Our results showed that NormFinder’s and geNorm’s indices had high correlations (R2 = 0.987, P <
0.0001), which is consistent with the findings of previous studies. However, NormFinder’s and BestKeeper’s indices
(R2 = 0.489, 0.01 < P < 0.05) and NormFinder’s coefficient of variance (CV) suggested a lower correlation (R2 =
0.483, 0.01 < P < 0.05). We developed two novel methods with high correlations with NormFinder (R2 values of
both methods were 0.796, P < 0.0001). In addition, computational times required by the two novel methods were
linear with the size of the dataset.
Conclusion: Our findings suggested that both of our novel methods can be used as alternatives to NormFinder,
geNorm, and BestKeeper for identifying reference genes from large datasets. These methods were implemented as a
tool, OLIgonucleotide Variable Expression Ranker (OLIVER), which can be downloaded from http://sourceforge.
net/projects/bactome/files/OLIVER/OLIVER_1.zip.
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1. Introduction
Gene expression analysis is examining the variations in gene expression by measuring DNA expression levels over
time. These variations may result from many factors, such as environmental, developmental, and metabolic changes
or treatments. A quantitative, real-time, polymerase chain reaction (qRT-PCR) is commonly used to quantify gene
expressions (1, 2). However, qRT-PCR requires a stably expressed gene under a wide variety of conditions (3). This
stably-expressed gene, also known as a reference gene, acts as a standard to estimate the relative expression of
various other genes of interest. Candidate reference genes, which are commonly assumed to be invariant, can be
identified using statistically-based algorithms, such as geNorm (4), NormFinder (5), and BestKeeper (6), or by using
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descriptive statistics, such as regression analyses (7). Microarrays, which usually contain thousands of probes,
present a good source of data for identifying reference genes (8). Several studies have successfully identified
reference genes from microarrays (9-12).

However, existing methods of identifying potential reference genes, including geNorm (4), NormFinder (5), and
BestKeeper (6), are only capable of analyzing a small sample. For example, geNorm can only identify reference
genes among 102 genes. Hence, for large datasets amounting to thousands of genes, such algorithms are unable to
rank all genes against each other. While it has been possible to split the dataset into smaller subsets and run these
algorithms on each subset before merging the results (13), comparison will be made against only a small portion of
the entire dataset. This potentially results in inaccuracies by preventing ranking of all genes in the dataset against
each other.

Presently, the coefficients of variance (CV) and regression parameters (14), such as gradient of gene expression,
have been proposed as computationally simple methods for initial screening for potential reference genes. This
reduces the potential pool of genes before using another more accurate algorithm to accurately and stringently rank
the invariance of the remaining genes. Furthermore, it has been shown that there is strong correlation between a
gene’s CV and its ranking by the algorithm (10) but the correlation is not perfect, which may lead to discrepancies in
identifying the most invariant gene. While this method is computationally feasible even for datasets containing
many genes, there is a possibility of excluding genes with worse CVs that may subsequently be ranked by the
second algorithm as highly invariant.

There are discrepancies in the ranking of potential reference genes by various existing methods based on the same
data (15-17), indicating that the results of a single method do not necessarily signify invariance. Many studies (10,
12) have used CV or regression parameters as a preliminary shortlist to select a certain subgroup of genes from a
large dataset, after which a more complex algorithm was used to identify the most invariant genes of this subgroup.
Although this reduces the number of genes to a number that is statistically manageable by stronger algorithms, such
as NormFinder and geNorm, it is possible that suitable reference genes may be eliminated by the initial shortlisting
(13). Even among commonly-used algorithms, such as geNorm (4), NormFinder (5) and BestKeeper (6), there are
discrepancies (16, 18, 19). Therefore, caution is advised when using of a single algorithm as a benchmark.

In this study, we evaluated methods used as preliminary filters in previously-published papers that used NormFinder
as a benchmark. Novel methods derived from these parameters, which were found to have high correlation with
NormFinder and were suitable for identifying reference genes from large datasets, are proposed. These methods are
implemented as a tool that we called OLIgonucleotide Variable Expression Ranker (OLIVER), which can be
downloaded from http://sourceforge.net/projects/bactome/files/OLIVER/OLIVER_1.zip.

2. Material and Methods
2.1. Research design
This study presents a computational analysis and comparison of existing methods for identifying reference genes
using publically-available, microarray datasets to derive novel methods for identifying reference genes from large
datasets.

2.2. Microarray data
Five publically-available, microarray datasets were used in this study. Four of the datasets were from E. coli K-12,
of which three were from substrain MG1655 and one was from substrain W3110. Briefly, the studies conducted with
the datasets are as follows: GSE680: MG1655 grown in either aerobic or anaerobic conditions, deleted for
transcriptional regulators in oxygen response, and used to validate a computational model of transcriptional and
metabolic networks (20); GSE1099: aerobically grown MG1655 cells in several media with varied carbon sources,
including glucose, glycerol, succinate, L-alanine, acetate, and L-proline (21); GSE1494: analysis of derivatives of
strain MG1655 of wild type, fur mutant, and wild type with added FeSO4, induced to overexpress RyhB, a
noncoding RNA regulated by the fur repressor protein (22); GSE1827: W3110 cells grown aerobically and exposed
to low, neutral, or high pH to study acid and base response (23). The remaining dataset (GSE 2021) was from the
liver of S. tridecemlineatus sampled during summer, interbout arousal, and late torpor (24).
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2.3. Dataset selection
The coefficient of variation (CV) of every gene was calculated as the quotient of standard deviation and arithmetic
mean of its microarray data within the dataset. For the E. coli datasets (GSE680, GSE1099, GSE1494, GSE1827),
the top 500 genes with the lowest CV from each dataset were identified. Similarly, the top 1000 genes as ranked by
CV in GSE2021 were identified. These formed the large-scale datasets used for further evaluation. From the large-
scale datasets of GSE1827, GSE680, and GSE2021, 10 sets of 10 randomly-selected genes were chosen from each
dataset for small-scale evaluation of the correlation of the invariant gene-finding algorithms because BestKeeper (6)
can only process 10 genes per evaluation. These formed 30 small-scale datasets for evaluation.

2.4. Methods to Identify Reference Genes
We compiled eight methods for identifying reference genes and developed a software tool called OLIgonucleotide
Variable Expression Ranker (OLIVER). The first method was coefficient of variation, which had been used in Chia
et al. (9). Methods 2 through 5 were from Lee et al. (14), consisting of linear regression gradient, regression ratio
(R2/slope), absolute regression ratio, and product of mean and standard deviation, respectively. Methods 6 through 8
were derived from Keng et al. (12); Method 6 deals with product correlation, which is the absolute pairwise
correlation between dataset X and the product of X and a few random samples of non-X data; Method 7 deals with
ratio correlation, which is the average the absolute pairwise correlation between dataset X and the quotient of X and
a few random samples of non-X data; Method 8 deals with self correlation, which is the average absolute pairwise
correlation between dataset X and a few random samples of non-X data. In Methods 1, 2, 5, 6, 7, and 8, smaller
values indicate greater gene stability, while, in Methods 3 and 4, larger value indicate greater gene stability.

2.5. Small-scale evaluation with BestKeeper, geNorm and NormFinder
BestKeeper version 1 (6), NormFinder version 0.953 (5), geNorm (4), and OLIVER Methods 1-5 were used to
analyze each of the 30 small datasets of 10 randomly-selected probes. Pearson’s correlation coefficient was
calculated between each of the various methods’ stability values to determine which methods were stably correlated
to the benchmarking algorithms, i.e., BestKeeper, NormFinder, and geNorm.

2.6. Large-scale evaluation against NormFinder
From the small-scale evaluation, NormFinder was chosen as the benchmark by which to evaluate the correlation of
other methods’ ranking of invariant genes. OLIVER and NormFinder were used to determine the stability of each
gene in the large-scale dataset. A ranking of the genes in each dataset was obtained for each method, with the lowest
ranking gene having the greatest invariance. Pearson’s correlations between the stability values of the respective
methods with NormFinder’s stability indices were calculated to determine the similarity of each method’s identified
potential reference genes and NormFinder’s ranking. The differences between the top-ranked genes and
NormFinder’s rankings compared to each method also were determined.

3. Results
3.1. Correlation between existing methods
An analysis of various methods for identifying reference genes (Figure 1) suggested that NormFinder and geNorm
were consistent with each other with the highest correlation (R2 = 0.987). The second highest correlation occurred
between BestKeeper and CV (R2 = 0.722).

While the correlations between BestKeeper and CV with NormFinder (0.489 and 0.483, respectively) have p-values
of less than 0.05, suggesting that the correlation was significant, the p-values were more than 0.01, indicating that
the methods were not strongly correlated. These results are similar to the correlations between BestKeeper and CV
with geNorm, having R2 values of 0.459 and 0.455, respectively. The products of the mean and the standard
deviation, and gradient of expression values have R2 values of 0.140 and 0.105, respectively.

3.2. Correlation between the proposed methods and NormFinder
Table 1 shows the correlations of our three proposed methods, i.e., product correlation, ratio correlation, and self
correlation, with NormFinder, for each of the five datasets. In three of the datasets, ratio correlation had a very
strong correlation with NormFinder, even higher than that of CV at 0.806. Furthermore, product correlation also had
a correlation with the mean value of 0.489 (P < 0.01). Therefore, ratio correlation and product correlation were used
in our composite methods. Since ratio correlation had a better logarithmic fit than linear fit with NormFinder, eratio

was used instead of the actual ratio correlation.
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3.3. Introduction of new methods
Seven new methods were formulated to analyze the data obtained from the large datasets. These methods were
derived, partially or in full, from the initial eight methods outlined in OLIVER. Ratio correlation, CV, and product
correlation were selected as the methods that had the highest likelihood of producing a better correlation. These
novel methods are as follows:
1. eratio, where ratio refers to the ratio correlation, which is OLIVER method 7
2. (eratio/ mean of eratio) + (CV / mean of CV)
3. eratio+ CV + product, where product refers to the product correlation and ratio refers to ratio correlation,

which are OLIVER methods 6 and 7, respectively
4. (eratio/ mean of eratio) + (CV / mean of CV) + (product / mean of product)
5. (eratio/ minimum of eratio) + (CV / minimum of CV) + (product / minimum of product)
6. Geometric mean of eratio and CV
7. Harmonic mean of eratio and CV

Figure 1. Correlations between methods for determining reference genes

Table 1. Correlation of our proposed methods with NormFinder

Dataset
Original methods
Product Correlation Ratio Correlation Self Correlation

GSE2021 -0.465 0.665 -0.708
GSE1827 0.705 0.935 -0.023
GSE680 0.542 0.964 -0.202
GSE1099 0.841 0.902 0.024
GSE1494 0.820 0.911 0.252
Mean value 0.489 0.875 -0.131
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3.4. Evaluation of all methods against NormFinder
Average correlation and standard deviation of correlation between each method and NormFinder was calculated
using five large datasets. Our results (Table 2) showed that Method 10 [(eratio / mean of eratio) + (CV / mean of CV)]
and Method 14 (Geometric mean of eratio and CV) had the strongest correlation with NormFinder (R = 0.892), which
consistently outperformed CV across the five datasets, indicating that it may perform better than CV as a
preliminary filter for reference genes before using NormFinder. In addition, both Methods 10 and 14 demonstrated a
higher correlation with NormFinder than the correlation between NormFinder and BestKeeper (R2 = 0.489, r =
0.700), geNorm and BestKeeper (R2 = 0.459, r = 0.677), and CV and BestKeeper (R2 = 0.722, r = 0.850) from the
evaluation of the 30 small datasets.

Table 2. Correlation of various methods with NormFinder
OLIVER
Methods Description

Average
correlation

Standard deviation
of correlation

1 CV 0.806 0.235
2 Gradient 0.146 0.211
3 R2/slope -0.003 0.063
4 abs R2/slope 0.061 0.125
5 AVG x SD -0.016 0.185
6 Product correlation 0.489 0.546
7 Ratio correlation 0.875 0.120
8 Self correlation -0.131 0.361
9 eratio 0.875 0.124
10 (eratio/ mean of eratio) + (CV / mean of CV) 0.892 0.145
11 eratio+ CV + product 0.873 0.178

12
(eratio/ mean of eratio) + (CV / mean of CV) + (product
/ mean of product) 0.827 0.213

13
(eratio/ minimum of eratio) + (CV / minimum of CV) +
(product / minimum of product) 0.883 0.145

14 Geometric mean of eratio and CV 0.892 0.144
15 Harmonic mean of eratio and CV 0.849 0.155

Table 3. Computation time of varying sample and gene sizes
Number of Genes Number of Samples Time Taken (s)
1000 26 1.98
1000 130 8.04
1000 260 15.2
5000 26 9.85
5000 130 40.1
5000 260 76.2
25000 26 48.8
25000 130 200
25000 260 382
100000 26 195
100000 130 786
100000 260 1496

Both Methods 10 and 14 use CV and ratio correlation as their fundamental methods. Ratio correlation is more
computationally intensive than the CV calculation because multiple correlation calculations are required to generate
a ratio correlation for each gene, whereas there is only one CV calculation for each gene. Hence, we evaluated the
time required to complete the ratio correlations, where 30 correlations were required for the calculation of each ratio
correlation, using various combinations of the number of genes and samples (Table 3). Our test computer’s
specifications were as follows: Intel Core i5-2401M 2.3GHz with 4GB DDR3 RAM.

By striating our results by the number of samples, our results showed that the time required increased linearly with
the number of genes. For example, using the computational time for 1000 genes for each striation of number of
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samples as the baseline for scaling, we expected 198 seconds for 26 samples of 100,000 genes; 804 seconds for 130
samples of 100,000 genes; and 1950 seconds for 260 samples of 100,000 genes. Our results are not significantly
different from what was expected (n = 9 since the three baselines of 1000 genes were not used for statistical
calculation; chi-squared P = 0.99). However, by striating our results by the number of genes, our results were
significantly different from what we expected (n = 8 because the four baselines of 26 samples were not used for
calculation; chi-squared P = 2x10-44), suggesting that the time required to complete the ratio correlations was less for
larger sample sizes than smaller sample sizes when the number of genes was kept constant. Nevertheless, the
computational time taken was highly correlated (R2 = 0.999) with the size of the dataset (product of the number of
genes and the number of samples).

4. Discussion
4.1. Discrepancies between methods for determining reference genes
Several studies have shown discrepancies between the results of NormFinder, geNorm, and BestKeeper. Kim et al.
(17) evaluated six commonly-used reference genes in rat carotid body and found that the gene rankings by these
methods were similar, but not identical. This was supported by Li et al. (25), who found that in the fungus Candida
glabrata, the ranking of reference genes was similar between geNorm and another algorithm, hkgFinder, but the
ranking was different between BestKeeper and NormFinder. Together, their findings demonstrated that the three
algorithms are well correlated but that they do not produce identical rankings. Ratert et al. (19) analyzed urothelial
carcinoma and found that geNorm, NormFinder, and BestKeeper analyses gave different combinations of
recommended reference genes for normalization. Taki and Zhang (16) found similar discrepancies in their analysis
of C. elegans with NormFinder, delta-Ct (26), and BestKeeper. Among the top five reference genes identified by
each method, only two genes, i.e., CDC-42 and TBA-1, were common between NormFinder and BestKeeper, and
these genes also were common with delta-Ct. More significantly, Klie and Debener (18) found that among
NormFinder, geNorm, and BestKeeper, there was no single gene that showed stable expression across all
environmental conditions, and the individual rankings of each gene differed between the algorithms. Nevertheless,
these three methods have all been accepted as algorithms that are able to accurately identify invariant genes.

4.2. Selecting NormFinder and CV as commonly-used benchmarks
In this study, we used NormFinder as our benchmark for evaluating the ‘correctness’ of simpler methods’
evaluations of potential reference genes’ stability. Our analysis of existing invariant gene-ranking methods (Figure
1.1) showed a high correlation between NormFinder and geNorm (R2 = 0.987, P < 0.0001), while BestKeeper’s
correlation with NormFinder was only significant at the 95% confidence level. This was in agreement with the
findings of previous studies, suggesting that NormFinder, geNorm, and BestKeeper may give similar, but not
identical, results (16).

To determine the relative usage of the algorithms NormFinder, geNorm, BestKeeper, and delta-Ct in studies
involving reference genes, a keyword search was conducted on PubMed (www.ncbi.nlm.nih.gov/pubmed). There
were 351, 483, 239, and 114 instances of NormFinder, geNorm, BestKeeper, and delta-Ct, respectively, in the titlse
or abstracts in manuscripts published before September 2013. This suggested that NormFinder and geNorm are the
most widely-used methods of determining gene invariance.

Because NormFinder and geNorm are strongly correlated (R2 = 0.987), we selected one as a benchmark against
which our proposed methods could be assessed. NormFinder was chosen due to its ability to rank a larger number of
genes. NormFinder has no fixed limits to the number of genes it can rank, and it may compute up to roughly 1000
genes in a reasonable time span. Conversely, geNorm and BestKeeper can analyze a maximum of 102 and 10 genes,
respectively, as well as a maximum of 102 and 50 samples, respectively. CV is commonly used as a benchmark
because it is easy to calculate and because its computational complexity scales linearly with the increasing size of
the dataset, which cannot be said for NormFinder (11).  Hence, we aimed to formulate methods that were better than
CV for shortlisting the most invariant genes or as alternatives to NormFinder, geNorm, and BestKeeper for large
datasets.

4.3. Analysis of novel methods
Our results (Table 4) from the small datasets and the large datasets suggested that Methods 2-5 (14) had low
correlations with NormFinder (correlation coefficients between -0.016 and 0.157). In addition, there were larger
differences in the rankings of their top-ranked genes than in NormFinder, which suggested that the method also was
not viable for identifying the best candidate reference genes.
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Table 4. Correlation of Methods 2-5 with NormFinder
OLIVER
Methods

Description Average Correlation Average Top Rank Differences

Small Datasets
Large
Datasets

NormFinder
Standard

Method Standard

2 Gradient 0.0635 0.146 301.0 209.8
3 R2/slope 0.157 -0.003 182.8 279.6
4 abs R2/slope - 0.061 283.6 334.0
5 AVG x SD -0.00487 -0.016 377.8 510.0

Our results suggest that the correlation between CV and NormFinder (P = 0.0118) was statistically significant at the
95% confidence level, but not at the 99% confidence level. Hence, we concluded that CV may be, in certain
instances, a poor filter when used prior to more computationally-intensive methods because it may exclude genes
with high invariance. Our best methods, i.e., (eratio/ mean of eratio) + (CV / mean of CV) (Method 10) and geometric
mean of eratio and CV (Method 14), showed strong correlations with NormFinder, indicating that they may be
suitable as preliminary filters before using NormFinder. In addition, both methods (Methods 10 and 14)
demonstrated higher correlations than NormFinder and BestKeeper or NormFinder and geNorm.

4.4. Time taken for computation
We evaluated the computation time required to complete the ratio correlation for different sizes of data because this
step is more computationally-intensive than the coefficient of variation calculations, and it is required by both
Methods 10 and 14. Our results suggested that the computational time required to complete the ratio correlation was
linearly related to the size of the data, which is the product of the number of genes and the number of samples. This
suggested that Methods 10 and 14 may be suitable alternatives for identifying reference genes from large
transcriptomic datasets.

4.5. Possible limitations
The numbers of samples were different in small-scale and large-scale comparisons. Since correlation is affected by
sample size, this may affect the comparability of the correlations. In addition, GSE 2021 showed results that were
significantly different from those of the other datasets. For example, the correlation between ratio and NormFinder
was 0.665 for GSE 2021, whereas it was consistently above 0.900 for the other datasets. We hypothesized that this
was because Spermophilus samples originating from different stages of torpor and awakening were not separated as
such. Previous studies suggested that organisms’ awake and torpor stages affected their gene expression levels (27).
Hence, the expression levels of various genes might drastically differ between the various stages (24), affecting the
probes’ stability values.

5. Conclusions
In this study, we evaluated 10 different published methods for identifying reference genes and found a strong
correlation between the results provided by NormFinder and geNorm. However, these two methods were not
suitable for analyzing large datasets. We identified two novel methods for identifying reference genes that were
capable of processing large transcriptomic datasets. In addition, the computational time required linearly
proportional to the size of the dataset, suggesting that these two novel methods might be suitable alternatives for
identifying reference genes in large, transcriptomic datasets. We used our methods for identifying reference genes as
a tool, referred to as OLIgonucleotide Variable Expression Ranker (OLIVER), which can be downloaded from the
following URL http://sourceforge.net/projects/bactome/files/OLIVER/OLIVER_1.zip.
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