Molecular Cancer

Research

@,

BiolVled Central

STATS regulation of BCLI10 parallels constitutive NF«B activation

in lymphoid tumor cells

Zsuzsanna S Nagy*!, Matthew ] LeBaron?3, Jeremy A Ross!, Abhisek Mitral,

Hallgeir Rui? and Robert A Kirken!

Address: 'Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA, 2Department of Cancer Biology, Thomas
Jefferson University, Philadelphia, PA 19107, USA and 3The Dow Chemical Company, Midland, MI 48674, USA

Email: Zsuzsanna S Nagy* - znagy@utep.edu; Matthew J LeBaron - mjlebaron@dow.com; Jeremy A Ross - jross@utep.edu;
Abhisek Mitra - amitra@miners.utep.edu; Hallgeir Rui - hallgeir.rui@jefferson.edu; Robert A Kirken - rkirken@utep.edu

* Corresponding author

Published: 26 August 2009
Molecular Cancer 2009, 8:67 doi:10.1186/1476-4598-8-67

Received: 15 July 2009
Accepted: 26 August 2009

This article is available from: http://www.molecular-cancer.com/content/8/1/67

© 2009 Nagy et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Signal Transducer and Activator of Transcription 5 A and B (STATS5) are key survival
factors in cells of the lymphoid lineage. Identification of novel, tissue-specific STATS regulated
genes would advance the ability to combat diseases due to aberrant STATS5 signaling. In the present
work a library of human STAT5 bound genomic elements was created and validated.

Results: Of several STATS responsive genomic regulatory elements identified, one was located
within the first intron of the human BCL/0 gene. Chromatin immuno-precipitation reactions
confirmed constitutive in vivo STAT5 binding to this intronic fragment in various human lymphoid
tumor cell lines. Interestingly, non-phosphorylated STATS was found in the nuclei of Kit225 and
YT cells in the absence of cytokine stimulation that paralleled constitutive NFkB activation.
Inhibition of the hyperactive JAK3/STATS pathway in MT-2 cells via the Mannich-base, NCI 153,
diminished the constitutive in vivo occupancy of BCL10-SBR by STATS, reduced NF«B activity and
BCLI0 protein expression in a dose dependent manner. Moreover, depletion of STAT5 via
selective antisense oligonucleotide treatment similarly resulted in decreased BCL10 mRNA and
protein expression, cellular viability and impaired NFkB activity independent of IL-2.

Conclusion: These results suggest that the NFkB regulator BCLI0 is an IL-2-independent STATS5
target gene. These findings proffer a model in which un-activated STATS5 can regulate pathways
critical for lymphoid cell survival and inhibitors that disrupt STAT5 function independent of
tyrosine phosphorylation may be therapeutically effective in treating certain leukemias/lymphomas.

Background

The family of mammalian Signal Transducer and Activa-
tor of Transcription (STAT) molecules is composed of 7
members (STAT1-4, 5A, 5B and 6) which mediates a vari-
ety of cellular processes including proliferation, differen-
tiation and survival (reviewed in [1]). Current dogma

suggests that STATs are latent factors residing in the
cytosol that only become activated following ligand bind-
ing to receptors that initially results in the recruitment and
activation of Janus tyrosine kinases (JAKs). JAKs then
phosphorylate tyrosine residues on the receptor that serve
as docking sites for SH2 domain-containing STATs and
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other signaling molecules. STATs subsequently become
tyrosine phosphorylated by JAKs or other tyrosine kinases,
disengage from the receptor, form dimers via phosphoty-
rosine-SH2 domain interactions, and translocate to the
nucleus to initiate gene transcription [2,3].

Mammalian STATs can be classified based in parts on
their function in promoting various cellular processes. For
example, STATs 2, 4 and 6 are critical for the immune sys-
tem to promote viral defense and Th1 versus Th2 differen-
tiation, respectively. Conversely, STATs 1, 3, 5A and 5B are
generally utilized by cytokines and growth factors that
promote cellular growth, proliferation or death (reviewed
in [1]). The members of this second group are associated
with cancer formation, including STAT1 [4]. Intriguingly,
STAT3 and STAT5 promote cell survival through shared
target genes, including Bcl-x and Pim-1 [5-7]. Mice devoid
of Stat5a and Stat5b genes have further established these
proteins as important regulators of T-cell function [8,9].
Interestingly, 1L-2 induced T cell proliferation was mark-
edly affected only when both Stat5a and Stat5b genes were
inactivated suggesting that they play redundant roles [9].
In addition to lymphocytes, STAT5A and STAT5B act as
major survival factors for several cell types including
mammary epithelium [10,11] and human prostate can-
cers [12]. Cancer cells from certain lymphomas and leuke-
mias also display hyper tyrosine-phosphorylated STAT5
as a result of chromosomal translocations, deregulated
tyrosine kinases or viral transformation as reviewed in [1].

Chromatin immuno-precipitation has been a widely uti-
lized method to study direct transcription factor-DNA
interactions [13] and for identifying transcription factor
binding sites in unknown target genes by cloning cap-
tured DNA material [14] generated from a genome-wide
library that ultimately can be sequenced and located.
Alternatively, captured DNA material can be hybridized to
microarrays representing (i) CpG rich regions of a genome
that are contained in a significant portion of promoter ele-
ments [15] or (ii) non-coding regions within whole chro-
mosomes [16]. Both of these aforementioned methods
have shed new light onto the biological function, location
and kinetics of transcription factor/DNA binding depend-
ent gene expression.

The present study was designed to identify genome-wide
immune specific STAT5 regulated genes. This approach
has shown promise in identifying STATS5 target genes in
mouse pro-B cells [17] and human prolactin treated T47-
D breast cancer cells [18]. A library of STAT5-bound
genomic fragments was created by cloning and sequenc-
ing chromatin immuno-precipitated DNA fragments from
the human lymphoma cell line, YI. One of these
sequences was identified within an intronic element of
the BCL10 gene. We showed that STAT5 constitutively
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occupied this region in vivo in multiple human lymphoid
cell lines. Intriguingly, non-phosphorylated STAT5 was
present in the nuclei of lymphoid cells that paralleled con-
stitutively active NFxB. Disrupting JAK3 activity dimin-
ished the in vivo binding of STAT5 to BCL10-SBR in MT-2
cells, reduced NFxB activity and BCL10 protein expres-
sion. Furthermore, specific STAT5 depletion correlated
with decreased NFkB DNA-binding, cell viability and
BCL10 protein expression in both the presence and
absence of IL-2. Taken together, these findings indicate a
novel cross-talk mechanism between the STAT5 and NFxB
pathways.

Results and Discussion

Generation of a library encoding STATS Binding Regions
Since STATS5 is critical for maintaining lymphoid cell sur-
vival [1], we sought to identify putative target genes that
could be responsible for this phenotype. In the present
work a lymphoma-specific library of IL-2-induced STAT5
bound genomic elements was generated by cloning chro-
matin immuno-precipitated genomic sites directly occu-
pied by STAT5 as described in Figure 1A and in the
Methods.

Validation of STAT5 chromatin immuno-precipitation in
YT cells

In order to confirm that STAT5 was successfully immuno-
precipitated from formaldehyde-treated chromatin, YT
cells were stimulated with medium (-) or IL-2 (+) for 30
min at 37°C then fixed with formaldehyde. Next, STAT5
was immuno-precipitated with antibodies raised against
the N-terminus (recognizes both STAT5A and STAT5B,
lanes c-d) or the C-terminus of either STAT5A (lane e) or
STAT5B (lane f), or normal rabbit serum as control IgG
(lane g), separated by SDS-PAGE, and subsequently West-
ern blotted with monoclonal anti-STAT5 antibody. Whole
cell lysate (1% of IP) was also loaded to demonstrate
equal input material for immuno-precipitation (lanes a-
b). As shown in Figure 1B, all three antibodies were com-
petent to bind STAT5 (indicated by arrow to the right)
from fixed cells as compared to the control (lane g). To
confirm successful capture of genomic elements known to
be occupied by STAT5, qPCR reactions were performed
with primers designed to the region harboring a known
STAT5 binding site within the human IL2RA enhancer
(Positive Regulatory Region PRR III; Figure 1C) [19]. Data
presented in Figure 1C indicated that STAT5 antibody suc-
cessfully enriched PRR III as compared to control IgG
(nrs).

Next, a library containing STAT5 bound genomic frag-
ments was created by amplification and cloning ChIP-ed
DNA material as described in the Methods. The colonies
were tested for the presence of inserts by direct PCR ampli-
fication using vector specific M13 primers (representative
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(A) Generation of a library encoding STAT5-responsive genomic elements by ChIP-cloning. IL-2 stimulated, for-
maldehyde cross-linked YT cells were lysed, sonicated and immuno-precipitated with antibodies to STAT5A or STAT5B.
Eluted DNA was ligated to a unidirectional linker (black blocks), amplified and then cloned into pCR |I-TOPO vector. Clones
containing inserts were identified by sequencing. (B) Successful immuno-precipitation of STATS5 from formaldehyde
fixed YT cell lysates. YT cells were stimulated with medium (-) or IL-2 (+) then fixed with formaldehyde. Fixed lysates were
immuno-precipitated with antibodies to STATS as indicated or normal rabbit serum (IgG CTRL) then Western blotted for
STATS. Molecular weight markers are indicated to the left side of the panel. Input material corresponds to 1% of cell lysate
used in the immuno-precipitations. (C) Validation of STAT5 ChIP in YT cells. ChIP assay with C-terminal antibodies to
STAT5A and B in combination (aSTATS5 C-term) or IgG control was carried out as described above. The eluted DNA was
then used as template in qPCR reactions with primers designed to PRR Ill. (D) STATS5 bound genomic library captured
by ChlIP-cloning. Inserts were amplified via PCR using M3 primers prior to sequencing and visualized by agarose gel electro-
phoresis (1%). Stars (*) indicate clones without an insert. (E) Nearby gene mapping of the ChlP-clone identified
genomic sequences. One hundred and nineteen clones were sequenced, 3 fragments were duplicates and 9 were greater
than 300 kb away from any coding region. The remaining sequences that fell within 300 kb from coding regions were analyzed
with Cis-Regulatory Element Annotation System (CEAS). The pie chart represents "%" distribution.
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colonies shown in Figure 1D) prior to sequencing. One
hundred and nineteen clones were sequenced and the
genomic locations analyzed with nearby gene mapping
(CEAS) as described in the Methods. Genomic allocation
of the clones is depicted in Figure 1E demonstrating the
majority of the identified sequences were found in
intronic (38%) and enhancer (51%) regions. These data
are in agreement with earlier findings that binding sites of
transcription factors are not restricted to promoter
regions, rather, a significant portion of these sites are
present in introns [16].

Validation of putative STATS5 binding genomic regions by
EMSA-cold competition assays

To confirm that clones encoding the sequenced genomic
elements (Figure 1D) can be bound by STATS5, inserts
from randomly selected colonies were amplified (from 52
clones, 10 representatives shown in Figure 2A, upper
panel) and used in 30-50-fold molar excess as cold com-
petitors in EMSA assays employing [32P]-labeled probe
corresponding to the STATS5 binding site in the f-casein
gene promoter and nuclear extracts from IL-2 stimulated
YT cells (Figure 2B, lower panel) [14]. The results were
quantitated by comparing the band intensities of the cold
competition EMSA reactions to the control reaction (as
shown in Figure 2A graph). Of 52 validated clones, 24
fragments caused greater than 50% decrease in STAT5
DNA-binding intensity to the radioactively labeled probe.
Table 1 summarizes the genomic location of the 20 vali-
dated clones located within 300 kb of coding sequences as
performed by CEAS (four genomic segments were further
than 300 kb from any coding regions).

STATS binds an intronic element within the human BCL10
gene in vitro

One putative STAT5 responsive region was identified
within the first intron of the BCL10 gene, a known regula-
tor of NF«B activity and an essential positive regulator of
T and B cell development and activation [20]. The BCL10
gene is located on chromosome 1 and is composed of four
exons and three introns. The STAT5 binding region was
confined to the second intron, proximal to the 5' end of
the third exon which we designated as the BCL10-STAT5
Binding Region (BCL10-SBR). To confirm this finding,
PCR amplified BCL10-SBR was used as a cold competitor
in EMSA assays as described above. Data from two inde-
pendent experiments (Figure 2B) showed that BCL10-SBR
reduced STAT5 binding to the radioactively labeled probe
greater than 80% suggesting that this element was bound
by STATS5 in vitro. The genomic region surrounding the
STATS5 binding site in the human CISH promoter was also
amplified and used as a positive control. BCL10 is an
adapter molecule implicated in antigen receptor-medi-
ated NF«xB signaling by linking to the IxB kinase complex.
The relevance of BCL10 mediated NF«xB signaling for lym-
phoid cells has been described in Bcl10 deficient mice as
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(A) Validation of the STATS5 genomic library by cold
competition EMSA analysis. Ten randomly selected
STATS bound genomic fragments were amplified with M13
primers (upper panel) and used as cold competitors at 30—
50-fold molar excess in EMSA assays using IL-2 stimulated YT
nuclear extracts and [32P]-labeled STAT5-probe (lower
panel). DNA-binding was expressed as % of control (a reac-
tion without cold competitor (-)) as shown in the graph. The
PCR amplicon surrounding the STATS binding site in the
enhancer of the human CISH gene was used as a positive con-
trol. (B) Validation of STATS5 binding to BCL10-SBR.
PCR amplified BCL10-SBR was used as a cold competitor in
EMSA assays employing IL-2 stimulated YT nuclear extracts
and [32P]-labeled STAT5-probe (a representative of a BCLI0-
SBR cold competition EMSA analysis is shown). Band intensi-
ties were determined by densitometric analysis. The results
presented are an average of two independent experiments
for BCL10-SBR and three for CISH.

T and B cells derived from these animals are nonfunc-
tional and exhibit impaired B/T cell receptor signaling, as
a consequence of impaired NF«xB signaling [20,21]. These
results suggest an intriguing cross-talk between the STAT5
and NFkB pathways, which are both implicated in malig-
nant transformation. [1,22]

STATS constitutively occupies BCL10-SBR in vivo

Cold competition EMSA assays indicated that BCL10-SBR
can bind STATS5 in vitro. Next, we sought to test whether
STATS5 can also bind this genomic element in vivo. For this
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Table I: Nearby gene mapping of validated ChlP-cloned sequences.
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Chr Start End % DNA-b. Strand Dir. Gene Name Loc.
| 212539607 212540208 40.79 + U SMYD2 |
- U PTPNI4 E
184551050 184551638 46.99 + U PRG4 IDS
+ D Clorf27 E
- U TPR |
148762360 148762960 17.71 + U ECMI E
+ D ADAMTSL4 E
- U Clorfl38 E
- D APHIA E
85509312 85509912 18.52 + U WDR63 E
- U BCLIO |
- D Clorf52
172086277 172086887 3.81 + U DARS2 |
+ D ZBTB37 E
- U SERPINCI E
- D CENPL E
210194877 210195427 35.81 + D DTL
- U INTS7 |
- D LPGATI
2 38751513 38752103 47.52 + U GALM |
+ D GEMIN6 E
- U SFRS7 E
- D HNRPLL E
3 140069314 140069963 5.83 + U FAIM E
- U FOXL2 E
- D PIK3CB E
4 77775984 77776232 18.02 + U SHRM |
- U LOC345079 E
- D E
12 12538539 12539089 13.72 + U LOHI2CRI E
+ D CREBL2 E
- U DUSPI16 |
- D MANSCI E
12 22082357 22083007 41.9 + D CMAS E
- U ST8SIAI E
- D ABCC9 E
12 88442012 8844266 26.03 - U WDR5IB |
- D DUSPé6 E
13 102554697 102555277 9.23 + U ERCC5 E
- D SLCI10A2 E
13 73026115 73026665 34.44 - U KLFI12 E
14 68177078 68177617 35.78 + U RADSILI E
- U ZFP36LI E
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Table I: Nearby gene mapping of validated ChlP-cloned sequences. (Continued)

15 24494535 24495711 32.64 + D GABRA5 E
- U GABRB3 |

16 73675183 73675822 40.32 + U ZNRFI |
+ D ZFPI E
- U LDHD E
- D WDR59 E

16 16389501 16389952 43.06 + U NOMO3
- D ABCCé6

19 19238022 19238623 13.61 + U CSPG3 E
+ D KIAA0892 E
- U TM6SF2 E
- D HAPLN4 E

X 149544804 149545374 27.66 + U MTMI |
+ D MTMRI E
- U CD99L2 E

Randomly selected sequences (52) were validated by cold competition EMSAs as described in the Methods. Clones (24) with greater than 50%
decrease in STAT5 DNA-binding to the [32P]-labeled probe were analyzed using CEAS. Fragments within 300 kb from coding sequences (20) are
summarized above. (IDS: Immediate Downstream; U: Upstream; D: Downstream; I: Intron; E: Enhancer; chr: chromosome; dir: direction; % DNA-

b.: % DNA-binding)

analysis, ChIP assays were performed with antibodies to
STAT5 (C-terminal), acetylated-Histone 4 antibody (o
H4-Ac, to confirm active transcription at these sites [23])
or control IgG (normal rabbit serum) in un-stimulated (-
) or IL-2-stimulated (+) Kit225 (Figure 3A), MT2 (Figure
3B) and Hut102 (Figure 3C) cells. Bound DNA was eluted
and amplified with primers specific to PRR III or BCL10-
SBR via qPCR. Indeed, IL-2-inducible enrichment of PRR
III occurred with the STAT5 C-terminal antibody (lower
panels). Intriguingly, in vivo binding of STAT5 to BCL10-
SBR was demonstrated in an IL-2-independent manner in
all three cell lines examined (upper panels). These results
demonstrate that STAT5 constitutively occupies BCL10-
SBR in vivo. However, IL-2-induced enrichment of the
STAT5-responsive PRR III showed that STAT5 was able to
bind DNA in a tyrosine-phosphorylation dependent man-
ner as well in these cell lines. Earlier studies with STAT1
indicated that non-phosphorylated STAT1 had unique
genomic binding sites [24]. Based on these results it may
be logical to assume that non-phosphorylated and phos-
phorylated (cytokine independent and dependent,
respectively) STAT5 might have unique target sites, differ-
ent binding characteristics, and perhaps binding partners.

STATS is localized to the nucleus of YT and Kit225 cells in
the absence of cytokine stimulation

Current models hold that tyrosine phosphorylated STAT
dimers are required for gene regulation. However, new
evidence suggests that STAT proteins traffic to the nucleus
and regulate gene expression independent of tyrosine
phosphorylation [24-26]. Indeed, data presented in Fig-

ure 3 indicated that STAT5 can bind to BCL10-SBR in a
constitutive manner in three cell types tested in the
absence of IL-2. To confirm this hypothesis, nuclear and
cytosolic proteins were isolated from Kit225 (lanes a-j)
and YT cells (lanes k-t) stimulated with IL-2 for the times
indicated, equal amounts (10 pg) of proteins were sepa-
rated on 10% SDS-PAGE and Western blotted with PY-
STAT5 antibody (specifically recognizes phosphorylated
Y694 and 699 for STAT5A and B, respectively) followed by
re-probing the membrane for total STAT5. Antibodies to
Lamin A/C (nuclear marker) and JAK3 (cytosolic marker)
were employed to confirm the purity of the extraction. As
shown in Figure 4, non-phosphorylated STAT5 was
present in the cell nuclei in the absence of IL-2 stimula-
tion. However, IL-2 was able to induce accumulation of
tyrosine-phosphorylated STAT5 in the nuclear fraction.
These data suggest that the presence of STAT5 in the nuclei
is not dependent on its tyrosine phosphorylation status.
To further demonstrate that non-tyrosine-phosphorylated
STAT5 can localize to the nuclear compartment in lym-
phoid cells, wild type (wt) or Y694F mutant of mSTAT5A
(unable to undergo tyrosine phosphorylation [27]) were
N-terminally FLAG-tagged and over-expressed in YT cells
as described in the Methods. Next, nuclear extracts were
prepared from cells over-expressing vector alone (Figure
5A, lane a), wt (lanes b-c) or Y694F mSTATS5A (lanes d-e)
stimulated with medium (-) or IL-2 (+) for 30 min at
37°C as indicated. Nuclear extracts were immuno-precip-
itated with anti-FLAG antibodies then Western blotted
with antibodies to PY (Fig. 5A, upper lane), STAT5 (mid-
dle lane) or FLAG (lower lane). While wt mSTAT5A was
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Figure 3

STATS constitutively occupies BCL10-SBR in vivo in Kit225, MT2 and Hutl02 cells. Kit225 cells (A) were made
quiescent in medium without IL-2 for 24 h, MT2 (B) and Hutl02 (C) cells were grown until exhaustion. Cells were then stimu-
lated with medium (-) or IL-2 (+) for 30 min at 37°C, then fixed with 1% formaldehyde for 10 min at room temperature and
then chromatin immuno-precipitated with antibodies to Acetyl-Histone 4, C-terminal STAT5 or control IgG. The eluted DNA
was amplified with primers corresponding to PRR Il (black bars) or BCLI0-SBR (grey bars). Representative data for MT2,
Hut102 (n = 2), and Kit225 cells (n = 3) are shown. Input material represents 5% of immuno-precipitated chromatin.
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YT

Nuclear localized STATS is present in YT and Kit225 cells in the absence of IL-2 stimulation. Equal amounts (10
pg) of nuclear and cytosolic proteins (Kit225: lanes a-j, YT: lanes k-t) were resolved on a 10% SDS-PAGE and Western blots
performed with PY-STATS5, STATS, Lamin A/C (nuclear marker) or Jak3 (cytosolic marker) antibodies (indicated to the right).
Representative data from three independent experiments are presented.

tyrosine-phosphorylated upon IL-2 stimulation, the
Y694F mutant was not. However, both wt and Y694F
mSTAT5A were constitutively present in the cell nuclei
suggesting that STAT5 nuclear localization can occur in
the absence of tyrosine phosphorylation. To confirm that
YT cells over-expressing Y694F mSTAT5A retained the
ability to respond to IL-2, as well as to demonstrate that
STAT5 nuclear presence was not due to contamination
with cytosolic proteins, whole nuclear extracts isolated
above were Western blotted with PY-STATS5 then re-blot-
ted with antibodies to STAT5, Lamin A/C (a nuclear
marker) followed by B-actin (cytosolic marker) as shown
in Figure 5B. Similar results were obtained with Y699F
mSTAT5B (data not shown).

Traditionally, STAT transcription factors were thought to
reside in the cytoplasm in the absence of cytokine stimu-
lation, and only enter the nucleus to bind DNA and initi-
ate gene expression following cytokine engagement
[2,28]. However, interesting new evidence suggests that
nuclear-localized non-tyrosine-phosphorylated STATs can
regulate gene expression. Indeed, interferon-mediated
gene expression changes in a STAT1-deficient cell line
transfected with a Y699A mutant of STAT1 unable to
become tyrosine-phosphorylated proved it can initiate
constitutive gene expression [24]. Other recent publica-
tions have reported that STAT3 can also induce gene tran-
scription in the absence of tyrosine phosphorylation [26].
Moreover, non-phosphorylated, nuclear localized STAT6
in a non-small cell lung cancer model was shown to drive
cyclooxygenase-2 expression independent of its tyrosine
phosphorylation status [25]. Our results provide the first
evidence that non-tyrosine-phosphorylated, nuclear-
localized STAT5 may also play a similar and critical role in
gene regulation in lymphoid cells in the absence of stim-
ulation/activation.

NF«B is constitutively active in YT, Kit225 cells and
activated human PBMCs

Since BCL10 is a positive regulator of NF«B [20], next we
sought to test the activation status of NF«B in lymphoid
cells. EMSA analysis was performed with either a [32P]-
labeled NFkB (lower panel) or STAT5 (upper panel) probe
and 5 pg nuclear extracts from YT (Figure 6A, lanes b-d),
Kit225 (lanes e-g) cells or naive (lanes h-j) and activated
(lanes k-m) human PBMCs stimulated with medium (-)
or IL-2 (+) for 30 min. Figure 6A demonstrated that while
IL-2 was able to induce DNA-binding of STAT5 in YT (lane
), Kit225 (lane f) and PBMCs (lane 1), NFkB DNA-bind-
ing was constitutive in these cells. Naive PBMCs, which
did not respond to IL-2, did not display binding to either
probe, thus verifying that constitutive NFkB binding was
not an artifact resulting from nuclear extraction. To con-
firm the specificity of the observed bands, a reaction with-
out nuclear extract (Free probe) and cold competition
assays with the corresponding unlabeled probes (c.p.)
were also performed (lanes d, g, j and m). To further verify
the specificity of the NF«B bands, antibodies to p50 (Fig-
ure 6B, lane c), p65 (lane d) or both (lane e) were used in
supershift analyses. Indeed, both p50 and p65 antibodies
resulted in partial supershifts of the NFkB band, while
using these antibodies in combination resulted in a com-
plete supershift. On the contrary, normal goat serum (IgG
ctrl, lane f) did not result in a supershift of the NF«xB
bands.

Blockade of the JAK3/STATS5 pathway diminishes in vivo
STATS binding to BCL10-SBR, impairs NFxB function and
reduces BCLI0 expression

In order to confirm that the in vivo binding of STAT5 to
BCL10-SBR is responsive to the inhibition of the JAK3/
STATS5 pathway, we employed the selective JAK3 inhibitor
NC1153 [29]. Although the precise regulation of STAT5

Page 8 of 16

(page number not for citation purposes)



Molecular Cancer 2009, 8:67

A. a b C d e WB:

-— PY
IP:
FLAG RS - s

--.- FLAG

IL2: - - + - +
L1 1 | 1 I

TFX: Vector  STAT5A STAT5A6%4F

a b C d e WB:

B. _
PY-STAT5
- W STATS
NE
— | —
Lamin A/C
T a— s —m
B-actin
- . -
L1 I |
TFX: Vector  STAT5A STAT5A6%4F
Figure 5

Y694F-mSTATS5A can localize to the nuclei of YT
cells. (A) YT cells over-expressing vector alone (Vector), wt
or Y694F mSTAT5A were stimulated with medium (-) or IL-
2 (+) for 30 min at 37°C. Nuclear extracts were prepared
and immuno-precipitated with anti-FLAG antibodies,
resolved on 7.5% SDS-PAGE then Western blotted with PY
antibodies followed by re-blotting with antibodies to STAT5
and FLAG as indicated to the right. (B) Nuclear extracts iso-
lated as described above were resolved on a 7.5% SDS-
PAGE, Western blotted with PY-STATS antibody then re-
blotted with antibodies to STATS, Lamin A/C and B-actin as
indicated to the right.

by JAK3 is not yet fully understood, it has been shown that
phosphorylated STAT1 and STAT3 can increase the expres-
sion of non-phosphorylated STAT1 and STAT3, respec-
tively [30]. Therefore, it was hypothesized that non-
phosphorylated STAT5 function could partially be
affected by the inhibition of phosphorylated STATS5. First,
the activation status of the JAK3/STAT5 pathway was
tested in MT-2 cells treated with ascending amounts of
NC1153 for 24 h as indicated (Figure 7A, lanes c-e) by
Western blotting. Constitutive tyrosine phosphorylation
of STAT5 was diminished by NC1153 in a dose dependent
manner as compared to non-treated (NT, lane a) or vehi-
cle treated (DMSO, lane b) samples. Equal loading was
confirmed by re-probing the membrane with antibodies

http://www.molecular-cancer.com/content/8/1/67

to STAT5 and GAPDH. Moreover, tyrosine phosphoryla-
tion of JAK3 was similarly decreased upon NC1153 treat-
ment (data not shown). Next, in vivo binding of STATS5 to
PRR III and BCL10-SBR were assessed by ChIP assays and
qPCR. As presented in Figure 7B, the occupancy of these
regions by STAT5 was reduced in a dose dependent man-
ner upon NC1153 (expressed as fold change of STAT5
binding over background (IgG control)). Lastly, the func-
tional effect of JAK3 blockade on the expression of BCL10
protein and the activation status of NFkB was assessed.
Since BCL10 is a known regulator of NF«B signaling in
lymphoid cells [20] that is a critical pathway for mediat-
ing survival of activated B- and T-cells, it was reasonable
to assume that STAT5 depletion mediated decrease of
BCL10 expression might lead to diminished constitutive
NFkB activation. For this assay, MT-2 cells were treated
with DMSO (Figure 7C, lane a) or ascending concentra-
tions of NC1153 for 48 h as indicated (lanes b-d), then
harvested and Western blotted with antibodies to phos-
pho-p65/NFkB, p65/NFxB and BCL10. Indeed, data pre-
sented in Figure 7C demonstrated that phosphorylation
of p65 NF«B on Ser536, an indicator of its enhanced tran-
scriptional activity [31], was decreased in parallel to
BCL10 protein expression upon NC1153 treatment. Equal
loading was confirmed by re-probing the membrane with
GAPDH (lower panel). It should be noted that some
reduction in the level of total p65 resulted from the treat-
ments with higher concentrations of NC1153 that could
be due to decreased cellular viability at this time point.
However, the lowest dose of NC1153 (10 uM) did not
affect total p65 but reduced its Ser536 phosphorylation as
well as BCL10 levels confirming that these reductions
were not due to non-specific treatment effects.

STATS depletion reduces BCLI0 mRNA and protein
expression, decreases the viability of Kit225 leukemia cells
and diminishes NFkB DNA binding independently of IL-2
stimulation

In order to test whether STAT5 has a direct role in regulat-
ing BCL10 expression and that this effect is independent
of cytokines, antisense STAT5 ODN targeting both
STAT5A and B were utilized. Earlier results demonstrated
that STATS is a critical survival factor for activated T-cells
and some lymphoid cell lines. [32] First, Kit225 cells were
left untreated (Figure 8A and 8B, NT), electroporated
without ODN (EP), with 2.5 or 5 pM antisense STAT5
ODN (AS STAT5) or 2.5 or 5 uM control ODN (CTRL),
cultured in medium without (not shown) or with IL-2 for
24 h, and then harvested. Messenger RNA levels of BCL10
was measured via qRT PCR with primers specific to
human BCL10 (Figure 8A) as described in the Methods.
STAT5 depleted, but not control treated samples, dis-
played reduced BCL10 transcript levels. Next, parallel
samples were lysed, equal amounts of lysates resolved on
12% SDS-PAGE and Western blotted with antibodies to
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NF«B is constitutively active in multiple lymphoid cells (A) YT (lanes b-d), quiescent Kit225 (lanes e-g), naive (lanes h-
j) and quiescent activated human PBMCs (lanes k-m) were stimulated with IL-2 for 30 min before nuclear extracts were pre-
pared. Equivalent amounts (5 pig) were used in EMSA reactions employing a STATS (upper panel) or NFkB radio-labeled probe
(lower panel). A reaction without nuclear extract (free probe, lane a) or with unlabeled probes (lanes d, g, j, m) were used to
confirm the specificity of the bands. (B) Constitutive NF«kB is composed of p50 and p65 subunits in lymphoid cells.
Antibodies to p50 (lane c) and p65 (lane d) subunits of NFkB were used either alone or in combination (lane e) for supershift
assays in Kit225 nuclear extracts. Control IgG (normal goat serum, lane f) and a reaction without nuclear extract (free probe,
lane a) were used to confirm the specificity of the bands. Star (*) indicates a non-specific band.

BCL10 (Figure 8B). The blot was then re-probed with anti-
bodies to STAT5 and GAPDH (as a loading control).
Decreased STAT5 expression (Figure 8B, upper panel,
lanes c-d) correlated with reduced BCL10 protein levels
(middle panel) in a dose dependent manner, while
GAPDH levels were not affected (lower panel). Kit225
cells depleted of STATS5 and cultured in the absence of IL-

2 also displayed reduced BCL10 protein levels compared
to controls (data not shown). Taken together, these data
further support the notion that STAT5 regulates BCL10
expression.

Since STAT5 promotes lymphoid cell survival [32,33], cell
viability following STAT5 depletion was also assessed by

Page 10 of 16

(page number not for citation purposes)



Molecular Cancer 2009, 8:67 http://www.molecular-cancer.com/content/8/1/67

A. kDa: a b C d e WB:
100 — == PY-STAT5

- ————
100 —

_— — —— w— GAPDH

NT DMSO 7.5 15 25
| I

NC1153 (uM)

BCL10-SBR
1 I Il IL2Ro PRRII

12 A

10 1

8

6

| I

2 4

§ l

DMSO 10 17.5
NC1153 (uM)

»
~ n
L L

| ot
n
L

.a
L
—

Fold change of Stat5
DNA-binding
- ml

e
n
L

Fold change of Stat5
DNA-binding

C.
kDa: a b C d WB:
50 — - phospho-p65/NFkB
g~ —— p65/NFiB
55 — [— BCL10
| — — — - —
35 — GAPDH
Tmt: DMSO 10 17.5 25

NC1153 (uM)

Figure 7

JAK3/STATS blockade inhibits constitutive STATS5 tyrosine phosphorylation and BCL10/NF«B activity in MT-2
cells. (A) MT-2 cells were treated with medium, DMSO (0.1%, vehicle control) ascending amounts of NC1 53 as indicated for
24 h. Total cell lysates were Western blotted with antibodies as indicated to the right. Molecular weight markers are indicated
to the left. (B) JAK3 blockade diminishes BCL10-SBR occupancy by STATS in vivo. MT-2 cells were treated with
NCI 153 as indicated for 10 h. ChIP assays were performed with anti-STAT5 antibody and IgG control from each treatment.
STATS5 DNA binding is expressed as fold change over background (IgG control). (C) NC1153 reduces NFxB activity and
BCL 10 protein expression. MT-2 cells were treated as described above for 48 h. Total cell lysates were Western blotted
with antibodies indicated to the right. Molecular weight markers are shown to the left.
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(A) STATS depletion decreases BCL10 mRNA expression in a dose dependent manner. Kit225 cells were treated
with antisense STAT5 (AS STATS5) or control (CTRL) ODN as indicated and cultured for 24 h. Cells were harvested in dupli-
cates. One pellet was used for total RNA isolation and cDNA preparation as described in the Methods. QRT-PCR was per-
formed with primers specific to human BCLI0. (B) STATS5 depletion decreases BCL10 protein expression. Parallel cell
pellets were lysed and equal amounts (10 pg) of lysates resolved on 10% SDS-PAGE, then Western blotted with antibodies to
BCLI0, STATS5, followed by re-probing with antibodies to GAPDH (as a loading control). Representative data from two inde-
pendent experiments are shown. (C) STATS depletion decreases Kit225 cell viability. Cell viability following electropo-
ration (24 h) was assessed using MTS assay as described in the Methods. Cells were cultured either in the absence (white bars)
or presence (black bars) of IL-2. Representative data from three independent experiments are shown. (* p < 0.001) (D) Anti-
sense STATS treatment decreases NF«kB DNA binding. Kit225 cells were electroporated with either AS STATS (AS
STATS5) or control ODN (CTRL) and cultured in medium without (-) or with (+) IL-2 for 24 h. Nuclear proteins were isolated
and incubated with [32P]-labeled NF«B probe (indicated to the right). Corresponding un-labeled NF«B probe in |00-fold molar
excess (lane e) or free probe (lane f) was used to confirm the binding specificity. % DNA-binding was calculated by normalizing
band intensities of STAT5 ODN treated samples to the corresponding CTRL ODN treated samples (100%). Representative
data from two independent experiments are shown.

MTS assays. As shown in Figure 8C, reduced STAT5 and
BCL10 expression decreased Kit225 cell viability in a dose
dependent manner, regardless of the absence (white bars)
or presence (black bars) of IL-2 in the culture medium.
These data further suggest that non-cytokine activated
STAT5 dependent gene regulation may be functionally

important in tumor cell lines such as Kit225. Indeed, IL-2
starved Kit225 cells were greater than 90% viable
(assessed by trypan blue exclusion) after 72 h, although
tyrosine phosphorylated STAT5 was abolished within 24
h (data not shown). Interestingly, antisense oligonucle-
otide depletion of STAT5 resulted in greater than 50%
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reduction in cell viability within 24 h regardless of 1L-2
(Figure 8C).

These results support the hypothesis that the cell survival
promoting activities of STAT5 are, at least partially,
cytokine independent and targets such as BCL10 may be
responsible for this phenotype. To support this notice, the
effect of STAT5 depletion on NFkB function was assessed.
(It should be noted that a lower dose of antisense STAT5
ODN (2.5 uM) was employed within the present studies
in order to avoid massive cellular death that follows
STAT5 depletion.) Nuclear proteins were isolated from
STAT5S antisense or CTRL (2.5 uM) ODN treated Kit225
cells at 24 h as described in the Methods and incubated
with [32P]-labeled NF«B probe. The results presented in
Figure 8D showed reduced constitutive DNA binding of
NFkB following STAT5 depletion (lanes a, ¢) as compared
to control ODN treated samples (lanes b, d). These data
suggest that STAT5 regulates constitutive NFkB signaling
in an IL-2-independent manner in Kit225 cells.

In summary, our results demonstrate that STAT5 medi-
ated BCL10 expression occurs in the absence or presence
of cytokine stimulation and STATS5 tyrosine phosphoryla-
tion. Moreover, these data indicate that STAT5 and NFkB
pathways are interconnected and critical for regulating
lymphoid/leukemic cancer cell proliferation/survival
genes. The functional relevance of these findings is that
therapeutic strategies that seek to disrupt cancer disease
progression by blocking STAT tyrosine phosphorylation
status alone may not prove effective and may be tumor or
cell type dependent. Indeed, targeted disruption of tyro-
sine and non-tyrosine phosphorylated forms of STAT5
may both be required.

Methods

Cell culture and treatment

The human lymphoma cell lines YT [34] and Hut102
[35], the human T-cell line MT-2 [36], and leukemia cell
line Kit225 [37] were maintained in RPMI-1640 medium
containing 10% fetal calf serum, 2 mM L-glutamine and
penicillin-streptomycin (50 IU/ml and 50 pg/ml, respec-
tively). Kit225 media was supplemented with 20 U/ml
human recombinant IL-2 (NCI Preclinical Repository).
Prior to IL-2 stimulation, Kit225 cells were made quies-
cent for 24 h in their regular medium without IL-2. Cell
stimulations were carried out with 10 nM IL-2. Antisense
oligodeoxynucleotides (ODN) were synthesized by ISIS
Pharmaceuticals, Inc. and used as previously described
[38].

Chromatin Immuno-precipitation

Chromatin immuno-precipitation was performed as pre-
viously described. [18] Chromatin was immuno-precipi-
tated with either anti-STAT5A/B antibody (N-terminal, N-
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20, Santa Cruz Biotechnology Inc.); extreme C-terminal
STAT5A and STAT5B mixture [39] or normal rabbit serum
(IgG control) (Santa Cruz Biotechnology Inc.,) for 3 h at
4°C. DNA was recovered using Qiagen PCR Purification
Kit and ultimately eluted with 100 pul 10 mM Tris pH 8.0.
To confirm successful chromatin immuno-precipitation
in Kit225 cells, PCR amplification of a known STAT5
binding element localized 5' to the human IL2RA gene
within the Positive Regulatory Region III [19] (Forward:
5'-ACG TCT AGA AAG AAA GTG GTC-3' Reverse: 5'-CTG
TCC CTG GAT GAA CCT AGT-3') was performed by quan-
titative real time PCR (40 cycles of 30 s at 94°C, 30 s at
50°C 30 s at 72°C) and 2x SYBR Green Master Mix from
BioRad on a BioRad iQ5 qPCR machine. BCL10-SBR was
amplified via qPCR with Forward: 5'-CCT GCC ATT ACC
TIT GTC ATT AT-3' and Reverse: 5'-GGG AGT GTIT CGA
AAA ATG-3' primers. Values of transcripts in unknown
samples were obtained by interpolating C, (PCR cycles to
threshold) values on a standard curve. Standard curves
were prepared from known amounts of purified, PCR-
amplified DNA.

Cloning of STAT5 DNA binding regions

The chromatin immuno-precipitated DNA was blunt
ended by T4 DNA Polymerase (NEB, according to the
manufacturer's recommendations) for 5 min at 37°C and
recovered by purification with Qiagen's PCR Purification
Kit. A unidirectional linker was annealed and ligated to
the blunted DNA pool with T4 DNA ligase (Promega) as
described earlier [40]. DNA was amplified using the linker
as a primer to generate a sufficient amount to clone into
the pCR II-TOPO vector using TOPO TA Cloning Kit with
One Shot Max Efficiency DH5a.-T1 E. coli according to the
manufacturer's suggested protocol (Invitrogen). Compe-
tent E. coli cells were transformed by heat shock and
plated on agarose plates containing ampicillin and S-gal
(Sigma). White colonies were checked for DNA inserts by
PCR with vector specific M13 primers performed directly
on the colonies according to the manufacturer's protocol
(Invitrogen) and visualized on ethidium-bromide stained
1% agarose gels. Positive colonies were amplified and
plasmids purified with Qiagen's Miniprep Kit. The target
DNA inserts were identified by DNA sequencing using
vector specific M13 primers.

Separation of cytosolic and nuclear proteins

Nuclear and cytoplasmic proteins were isolated by a pro-
tocol adapted from Panomics, Inc. for their Nuclear
Extrcation Kit. Nuclear protein concentration was deter-
mined by BCA assay (Pierce), aliquoted and either used
immediately to prepare samples for SDS-PAGE or stored
at -70°C. Oligonucleotides corresponding to the S-casein
gene promoter for STAT5 (5'-AGA TTT CTA GGA ATT CAA
TCC-3') and NFkB consensus binding site (5'-AGT TGA
GGG GACTIT CCC AGG C-3') were obtained from Santa
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Cruz Biotechnology, Inc. and labeled with T4 Polynucle-
otide Kinase and [y-32P]-ATP followed by ethanol precipi-
tation. The nuclear extract/ DNA binding mixtures were
resolved on 5% native PAGE, dried and exposed to X-ray
film.

Electromobility Shift Assay and cold competition assay
EMSA was performed as described previously [41,42]. To
validate the results of ChIP-cloning, randomly selected
clones were amplified by PCR using vector specific M13
primers and the products isolated by the Qiagen PCR
Purification Kit. DNA integrity was assessed using 1% aga-
rose gel. The amplified inserts were used as cold competi-
tors at 30-50-fold molar access in EMSA reactions using 5
pg IL-2-stimulated YT nuclear extracts and a [32P]-radiola-
beled STAT5 DNA binding probe. As a positive control,
cold competition was also performed with an amplified
known STATS5 binding site located 5' to the human CISH
gene (Forward: 5'-CTA TTG GCC CTC CCC GAC CG-3'
Reverse: 5'-GGC GAG CTG CTG CCT AAT CC-3') [18] or
IL2RA gene (primer sequences indicated above). The
results were quantitated by Scion Image (Scion Corpora-
tion) or Un-Scan-It gel Version 6.1 (Silk Scientific Corpo-
ration) densitometry analysis software. Supershift
analysis was performed with polyclonal anti-p65 and
anti-p50 NF«kB antibodies from Santa Cruz Biotechnol-
ogy, Inc. by incubating the nuclear extract for 1 h at 4°C
prior to the binding reactions.

In silico Analyses

To determine the localization of the ChIP-cloned frag-
ments, plasmids from the positive colonies were isolated
and the inserts sequenced and located within the human
genome by using the UCSC web-tool BLAT at http://
genome.ucsc.edu/cgi-bin/hgBlat and Sanger Institute's
Ensemble genome browser at http://www.ensembl.org/
index.html. Proximal gene mapping of the genomic
sequences up to 300 kb was performed using the Cis-Reg-
ulatory Element Annotation System (CEAS) at http://
ceas.cbi.pku.edu.cn/index.html.

Viability (MTS) assay

Cell viability was assessed with MTS reagent (Promega) in
triplicates according to the manufacturer's instructions.
Three independent experiments were performed. The
error bars represent the standard deviation.

Cell lysis and Western blotting

Cell lysis and Western blots with antibodies to JAK3,
STATS5A or STAT5B were performed as previously
described [42]. Monoclonal anti-phosphotyrosine STAT5
and anti-BCL10 antibodies were obtained from Millipore,
monoclonal anti-STAT5 antibody from BD Biosciences,
monoclonal anti-GAPDH antibody from RDI, mono-
clonal anti-Lamin A/C and polyclonal anti-p65 and anti-
p50 NFkB antibodies from Santa Cruz Biotechnology,

http://www.molecular-cancer.com/content/8/1/67

Inc., polyclonal anti-Ser536-p65 antibody from Cell Sign-
aling, Inc. and all antibodies used at a dilution recom-
mended by the manufacturer. Western blots were detected
by enhanced chemiluminescence (ECL). For all samples,
total protein was determined by the BCA method (Pierce).

RNA isolation, cDNA synthesis and qRT-PCR

Total RNA was isolated from approximately 4-5 x 10°¢
cells using the RNeasy kit (Qiagen), then DNase treated
and quantitated by measuring OD at 260 nm; cDNA was
synthesized with BioRad's iScript cDNA Synthesis Kit as
recommended by the manufacturer (0.5 pg total RNA/
each sample). Quantification based on real-time monitor-
ing of amplification was determined using a BioRad iQ5
machine and 2x SYBR Green Mastermix (Biorad) with
primers for human BCL10 (NM_003921) as follows: For-
ward: 5'-CCCGCTCCGCCTCCTCTCCIT-3', Reverse: 5'-
GGCGCITCITCCGGGTCCG-3'. Relative numbers of
mRNA molecules were normalized to 18S rRNA to correct
for RNA concentration differences. Samples (cDNA corre-
sponding to 5 ng total RNA/well) were run in triplicates in
25 ul reaction volumes with one control reaction contain-
ing no RT enzyme to test for potential DNA contamina-
tion. Values of transcripts in unknown samples were
obtained by interpolating Ct (PCR cycles to threshold)
values on a standard curve. Standard curves were prepared
from serial dilution of non-treated Kit225 cDNA, with 10-
fold differences, starting with cDNA corresponding to
62.5 ng total RNA/well to 6.25 pg total RNA/well. To
ensure that fluorescent signals were specifically generated,
a melting curve was obtained as recommended by BioRad.

Plasmids and mutants

Expression plasmids for wild type and Y694F mutant
mouse STAT5A were kindly provided by Dr. Hallgeir Rui
and described in [27]. FLAG tagged versions of the cDNAs
were subsequently created using pCMV-Tag2B vector
(Stratagene), Hind III and Xho I cloning enzymes (NEB),
Pfu Ultra High Fidelity DNA Polymerase (Stratagene) and
T4 DNA Ligase (NEB). DNA amplification and purifica-
tion steps were performed with Qiagen's Plasmid isola-
tion and Purification Kits. All steps were carried out
according to the manufacturers' recommendations. YT
cells (2.5 million) were electroporated with an AMAXA
Nucleofector® and Cell Line Nucleofector®Kit T, using 2 pg
plasmid (1 pg pCMV-Tag2B and 1 pug pmaxGFP®) and pro-
gram O-017, selected with 0.3 mg/ml G418 (Invitrogen)
and sorted with a Beckman Coulter Epics Altra Cell Sorter.

Statistical analyses
Normalized t-tests were performed using SigmaStat 3.1.
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AS: antisense; BCL10: B-cell leukemia/lymphoma 10;
CEAS: Cis-Regulatory Elememnt Annotation System;
ChIP: chromatin immuno-precipitation; CISH: cytokine
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inducible SH2-containing protein [Homo sapiens]; ECL:
enhanced chemiluminescence; EMSA: Electromobility
Shift Assay; GAPDH: Glyceraldehyde 3-Phosphate Dehy-
drogenase; NFxB: Nuclear Factor kappa B; IL-2R: IL-2
Receptor; JAK: Janus Kinase; ODN: Oligodeoxynucle-
otide; PRR III: Positive Regulatory Region III; PY: phos-
photyrosine; qRT-PCR: quantitative reverse transcriptase
polymerase chain reaction; SIE: sis-inducible element;
STAT: Signal Transducer and Activator of Transcription.
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