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Abstract: Respiratory tract infections are common, and when affecting the lower airways and lungs,
can result in significant morbidity and mortality. There is an unfilled need for simple, non-invasive
tools that can be used to screen for such infections at the clinical point of care. The electronic nose
(eNose) is a novel technology that detects volatile organic compounds (VOCs). Early studies have
shown that certain diseases and infections can result in characteristic changes in VOC profiles in the
exhaled breath. This review summarizes current knowledge on breath analysis by the electronic nose
and its potential for the detection of respiratory diseases with and without infection.
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1. Introduction

Human-exhaled breath contains over 3000 volatile organic compounds (VOCs) in gas phase,
which are detectable by different laboratory methods such as gas chromatography and mass
spectrometry. Exhaled VOCs include molecules such as alkanes, benzene derivatives, acetone,
dimethyl sulfide, phenol, and aromatic compounds [1]. The composition of these has been found to be
altered in an increasing number of medical conditions including cancers [2,3] and inflammatory bowel
disease (IBD), for example [4–6]. With respect to the analysis of VOCs, technological advancements
during recent years have resulted in the development of chemical sensing and identification devices
that can capture the signatures or patterns of VOC mixtures. These ‘electronic noses’ (eNoses),
mimic mammalian olfactory senses by being able to detect a ‘breathprint’ of VOC mixtures, as opposed
to identifying their individual molecular constituents [1]. An eNose, as previously defined by
others, is an instrument which comprises an array of electronic chemical sensors and an appropriate
pattern-recognition system, capable of recognizing simple or complex odors [7]. eNoses can identify
different complex odors by comparing the incoming odor with previously learnt patterns [8] by creating
so called breathprints. Readings occur when VOCs react at the surfaces of the eNose sensors, causing a
change in conductivity of the sensors [9]. These are then detected by transducers and converted into
electrical signals that create specific VOC signatures [7]. Several distinct eNose technologies have been
developed. These include the Aeonose, which uses micro hotplate metal-oxide sensors [9], the BIONOTE
eNose based on QCM sensors utilizing anthocyanin-coated gold electrodes [10,11], the Cyranose
320, using a carbon black-polymer sensor array [12], the Tor Vergata eNose, using quartz crystal
microbalances (QCM) covered with metalloporphyrins [13], the Common Invent eNose using metal
oxide semiconductor sensors [14], the Owlstone Lonestar eNose based on field asymmetric ion mobility
spectrometry [15], and the SpiroNose, using cross-reactive metal-oxide semiconductor sensors [16].
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eNoses detect mixtures of VOCs to create breathprints—they do not generally identify individual
molecular compounds. The use of other analytic methods, primarily gas chromatography-mass
spectrometry (GC-MS), being used in parallel or in addition to eNose measurement, are being explored
to help identify the specific biomarkers responsible for the changes in breathprints and to test the eNoses
for accuracy in detecting certain conditions. The use of eNose plus GC-MS will be contextualized in
more detail in subsequent chapters.

Detection of VOCs in exhaled air is showing immense promise for improving diagnostic and
screening standards of certain lung and airway diseases. Lung cancer is among the most commonly
diagnosed malignancies and also among the leading causes of death worldwide [17]. In lung cancer,
common methods of detection—imaging by chest radiography (X-ray), computerized tomography
(CT) or magnetic resonance imaging (MRI), and bronchoscopy—carry many limitations from a mass
screening perspective [3]. Interestingly, recent studies have shown that certain VOCs, including
isopropanol, acetone, pentane, and benzene can serve as biomarkers for lung cancer [18,19]. Various
eNose models have been used to date, to discriminate breathprints of lung cancer patients from those of
healthy subjects [18,20–23]. Positive findings were supported with robust, reproducible data consistent
across several groups, and have also shown differentiation of lung cancer from other respiratory
diseases [18,21,24–26], suggesting that eNoses could be used as clinical screening tools. In addition,
there is early evidence to show that VOC patterns detected by eNose can also predict response to
novel cancer treatments, as demonstrated in patients with advanced non-small cell lung cancer and
anti-programmed cell death 1 (anti-PD-1) immunotherapy [16]. The potential of eNose technology in
the detection of lung cancer will be addressed in more detail below.

Electronic noses were developed for olfactory analysis in commercial settings such as food quality
control, environmental monitoring, military purposes and, more relevant for this review, also in
areas of research with focus on diagnosis of disease [27]. With regards to potential relevance for
infectious diseases, biosensors have proven to be an effective method to sense foodborne pathogens,
such as Salmonella contaminating packaged meat [28]. As early as in 1997, Gibson et al., reported
detection of certain microorganisms from plate cultures [29] and in 2004, Pavlou et al., found that an
eNose could detect Mycobacterium tuberculosis (TB) in human sputum [30]. A 14-sensor conducting
polymer array eNose discriminated between M. tuberculosis, M. avium, M. scrofulaceum, P. aeruginosa
cultures, and non-infected control samples in vitro. Using principal component analysis (PCA),
100% of TB cultures were identified and discriminated from other bacterial cultures [30]. In a study
comparing healthy subjects and tuberculosis patients, an eNose discriminated the two groups with
high sensitivity and specificity of 95.9% and 98.5% respectively [31]. Furthermore in 2006, Thaler
and Hanson showed that patients with bacterial rhinosinusitis, caused by either Staphylococcus aureus
(SA) or Pseudomonas aeruginosa (PA), could be distinguished by eNose from patients without infection,
allowing for correct diagnosis in 72% of cases [32].

With advances in technology, there is now accumulating evidence that eNoses have the potential to
address significant unmet clinical needs in both discrimination of one disease from another, as well as in
the timely detection of airway infections in patients with underlying respiratory diseases at the point of
care (POC) [33–35]. In recent years, eNoses have advanced in their discriminative accuracy from being
able to detect differences between specific disease groups, to achieving similar results as diagnostic
tests such as exhaled nitric oxide (FENO) and pulmonary function testing for asthmatics [36]. As this
technology is being developed and investigated in comparison to established tests, it is important to
critically examine factors that may influence its diagnostic performance across disease groups. In this
review, we will summarize current knowledge relevant to the potential roles of eNose technologies
in respiratory diseases including lung cancer, asthma, COPD, cystic fibrosis (CF), primary ciliary
dyskinesia (PCD), and non-CF bronchiectasis.
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2. eNose Technology in Respiratory Disease and Infection

2.1. Lung Cancer

Late diagnosis of lung cancer contributes to its high lethality; only about 15% of patients are
diagnosed with early stage disease, five-year survival rate is low, and over half of all lung cancer
patients die within one year of diagnosis [37,38]. There is an unmet need for simple, affordable,
and accessible innovative tools for the (early) detection of lung cancer, and eNose technology has
emerged as such a tool. Tirzı̄te et al., utilized a Cyranose 320 eNose to compare breath profiles of 252
lung cancer patients to those of 223 patients without cancer [38]. Cancers included squamous cell cancer,
adenocarcinoma, undifferentiated non-small cell lung cancer, small cell lung cancer, and large cell lung
cancer [38]. Non-smokers and smokers with or without lung cancer were compared. 128/133 cancer
patients who were non-smokers and 114/119 of those who were smokers were diagnosed correctly
by eNose (sensitivities of 96.2% and 95.8%, respectively) [38]. In a similar study, van de Goor et al.,
using an Aeonose device in 60 lung cancer patients and 107 healthy controls, obtained a diagnostic
accuracy of 83% with a sensitivity of 83% and specificity of 84% [9]. The study included small
cell and non-small cell lung cancer patients. Here, the authors suggested to utilize the eNose in
combination with low-dose CT scans, with the aim of reducing false-positive results by CT imaging
alone [9]. McWilliams et al., in an earlier study, utilized a Cyranose 320 to discriminate lung cancer
patients from high-risk control subjects [26]. Exhaled breath from 191 subjects including 25 with
lung cancers and 166 high-risk smokers were analyzed by a Cyranose 320. Patients with squamous
cell carcinoma, adenocarcinoma, small cell lung cancer, and non-small cell lung carcinoma were
included [26]. VOC breathprints could discriminate lung cancer patients from high risk controls
with >80% accuracy [26]. Interestingly, a cheaper, alternative eNose technology called BIONOTE,
which differs from the Cyranose and Aeonose in its working principle, sensing material, sensor array
composition, and molecular selectivity, produced similar results [11]. In this study, 100 high-risk
individuals participating in a screening program for lung cancer were included. Cancers identified
included squamous cell carcinoma, adenocarcinoma, and undefined lung cancer [11]. Partial least
square discriminant analysis (PLS-DA) [39] was used for analysis of the eNose data. BIONOTE
sensitivity and specificity were reported at 86% and 95%, respectively, with an area under the receiver
operator characteristic curve (AUROC) of 0.87 [11].

Frequent screening tests are of great importance for individuals exposed to asbestos because
of the lifetime increased risk for malignant pleural mesothelioma (MPM). In a study on detection
of MPM, Lamote et al. utilized a combination of four different eNoses—Cyranose 320, Tor Vergata
eNose, Owlstone Lonestar eNose, and Common Invent eNose—and GC-MS [40]. The aim of this
cross-sectional, case-control study was to investigate the accuracy of eNose and GC-MS in discriminating
healthy controls (n = 16), asymptomatic asbestos-exposed subjects (AEx, n = 19), patients with benign
asbestos-related disease (ARD, n = 15), and MPM patients (n = 14). Data were analyzed using AUROC
graphs, and the final eNose breathprints were established by merging the sensor data of all four
eNoses [40]. GC-MS and eNose differentiated MPM from healthy controls with 71.4% and 65.2%
accuracy, MPM vs. AEx with 97.0% and 73.1% accuracy, and MPM vs. AEx + ARD with 93.8%
and 73.7% accuracy, respectively [40]. Thus, in this study GC-MS outperformed eNose by >20%
accuracy in discriminating between MPM vs. HC and MPM vs. AEx + ARD. Nevertheless, these
findings are still promising as the main advantages of eNoses are ease of use and accessibility, as well
as lower costs. Further developments and improvements of eNose devices and a combination of
eNose and GC-MS technologies should be explored to further improve detection accuracy of various
malignancies. As illustrated by Lamote et al., implementing these or similar modalities could make
screening of asymptomatic, high-risk individuals faster and more cost-effective, which may allow for
earlier interventions leading to improved management and clinical outcomes.
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2.2. Asthma

Diagnosing asthma, as well as differentiating between eosinophilic, neutrophilic or other asthma
endotypes, can be challenging. Dragonieri et al. investigated whether people with an established
diagnosis of asthma could be discriminated from controls by eNose, and whether different degrees
of asthma severity could also be identified. Subjects inspired VOC-filtered air by tidal breathing for
5 min, and a single expiratory vital capacity was collected into a Tedlar bag, which was subsequently
sampled by a Cyranose 320 [41]. Based on individual’s breathprints, the Cyranose was able to
separate mild asthma from controls. Patients with mild asthma could also be distinguished from those
with severe asthma, though less distinctly (cross-validation value (CVV) of 65%) [41]. Plaza et al.,
performed a cross-sectional proof-of-concept study comparing VOC breathprints in different asthma
subtypes [42]. Exhaled air from 52 patients with persistent asthma was analyzed by a Cyranose 320.
Eosinophilic, neutrophilic, and paucigranulocytic inflammatory asthma phenotypes were characterized
by inflammatory cell counts in induced sputum. Breathprints were significantly different in eosinophilic
compared to both neutrophilic (accuracy 73%, p-value = 0.008, AUROC 0.92), and paucigranulocytic
asthma (accuracy 74%, p-value = 0.004, AUROC, 0.79), and neutrophilic was different from the
paucigranulocytic phenotype (accuracy 90%, p-value = 0.001, AUROC 0.88), supporting the concept
of using an eNose as an alternative to sputum cytology. Plaza et al.’s observations were consistent
with similar studies. Ibrahim et al., reported an 83% accuracy discriminating eosinophilic from
non-eosinophilic asthma, and 72% for distinguishing neutrophilic from non-neutrophilic phenotypes,
using GC-MS to detect exhaled VOCs [43]. Wagener et al., also used an eNose to differentiate
eosinophilic from non-eosinophilic asthma breathprints in 27 patients with an accuracy of 85% and
AUROC of 99% [44]. Interestingly, a similarly high accuracy was found by van der Schee et al.,
in predicting the response to corticosteroid therapy in 25 asthma patients. eNose was more accurate
than sputum eosinophil counts (AUROC 0.883, p-value = 0.008 vs. AUROC 0.610, p-value = 0.441
respectively) or FENO (0.545, p-value = 0.751) [45]. In further support of the above findings, exhaled
breath samples from adults with severe asthma of the “U-BIOPRED” (Unbiased Biomarkers for the
Prediction of Respiratory Disease Outcomes) cohort were used in a longitudinal multicenter study
by Brinkman and colleagues [46]. Here, severe asthma phenotypes were assessed over time using
both clinical characteristics and exhaled metabolomic breathprints, revealing three eNose-derived
disease clusters (n = 26/33/19). A four-eNose panel was used, including the Tor Vergata, Cyranose
320, Owlstone Lonestar, and Common Invent eNose. At baseline and at 12–18 month follow-up visits,
FENO, spirometry, and induced sputum marker values were obtained. Asthma patients falling into
each of these clusters showed differing clinical characteristics, such as systemic inflammatory markers,
circulating eosinophil and neutrophil counts, and oral corticosteroid use. These data supported
the notion that exhaled VOCs in asthma may be associated with systemic and local eosinophilic
inflammation and may help to close the gap between clinical and laboratory tests in phenotyping
severe asthma [46]. There is also evidence that the eNose can distinguish patients based on their
current level of asthma control. In a recent cross-sectional study by Tenero et al., 28 children with
asthma were categorized into controlled (n = 9), partially controlled (n = 7), or uncontrolled (n = 12)
groups [47]. A Cyranose 320 discriminated between healthy controls (n = 10) plus controlled asthma
(non-symptomatic) and partially-controlled plus uncontrolled asthma (symptomatic) with an AUROC
of 0.85, and a sensitivity and specificity of 0.79 and 0.84, respectively [47].

eNose technology for asthma diagnosis and phenotyping also showed promising results when
compared to conventional testing methods. Montuschi et al., compared the diagnostic accuracy of a
Tor Vergata eNose, FENO, and pulmonary function testing. Twenty-seven patients with intermittent
or mild persistent asthma and 24 healthy subjects were studied. Exhaled breath was collected in
Tedlar bags following a 2 h period of fasting. GC-MS was performed to confirm differences in VOC
patterns between groups, and to confirm that exhaled breath samples remained stable within 48 h
from collection [36]. eNose alone was able to discriminate between asthma and healthy controls in
87.5% of cases, outperforming FENO (79.2%), spirometry (70.8%), and the combination of FENO and



Int. J. Mol. Sci. 2020, 21, 9416 5 of 16

spirometry (83.3%). The combination of eNose analysis of exhaled alveolar air with FENO had the
highest diagnostic accuracy for asthma (95.8%) [36]. No correlation was found between the eNose
results, FENO, and lung function in asthma or healthy controls [36].

Bannier et al. investigated the potential of an eNose for accurate diagnosis of lung disease by
comparing patients with asthma, CF, and healthy controls [48]. This cross-sectional study in children
6 years of age or older included 20 with moderate to severe asthma, 13 with an established diagnosis of
CF, and 22 healthy controls [48]. Asthma was defined as presenting with typical respiratory symptoms
in combination with reversible airways obstruction on pulmonary function testing [49]. Almost all
children enrolled (54/55) were able to perform the measurements. An Aeonose eNose showed high
accuracy in differentiating asthma from CF (AUROC 0.90, sensitivity 89%, specificity 91%) and CF
from controls (AUROC 0.87, sensitivity 85%, specificity 77%), while the accuracy was lower when
discriminating asthma from healthy controls (AUROC 0.79, sensitivity 74%, specificity 91%) [48].
Discrimination between different diseases, i.e., asthma and CF, showed similar results to a report
by Fens et al. for adults with asthma or COPD (88%) [50]. This study did not account for different
subtypes of asthma and was limited by a relatively small sample size.

Finally, Brinkman et al., utilized eNose in combination with GC-MS to differentiate between
stable and unstable episodes of asthma [51]. A panel of four eNoses was again used, for which
the data were merged to produce a final, combined breathprint. 23 patients with mild to moderate
asthma were included and exhaled breath profiles measured at baseline, loss of control, and recovery.
PCA of eNose data showed 95% distinction between asthma at baseline and at loss of control, and 86%
between loss of control and recovery. In comparison, GC-MS data showed much lower classification
accuracies of only 68% for baseline vs. loss of control, and 77% for loss of control vs. recovery [51].
GC-MS detected exhaled metabolites that were significantly associated with sputum eosinophils.
This study is one of the first to compare these two VOC-detecting technologies to longitudinally monitor
exhaled breath profiles during worsening and subsequent recovery of asthma control. Three specific
compounds of interest, methanol, acetonitrile, and bicyclo [2.2.2]octan-1-ol, 4-methyl were identified
by GC-MS [51]. Interestingly, the composite eNose technologies were superior in their discrimination
between controlled and uncontrolled asthma, when compared to GC-MS, but eNose findings did not
correlate with sputum eosinophil and neutrophil percentages, which was different from the GC-MS
results [51]. This may indicate a potential advantage of using both detection strategies together.
The advantage of the eNose lies in detecting smaller changes in exhaled VOC profiles that may not be
detected by GC-MS (i.e., broader sensitivity), whereas GC-MS has the ability to pick up more specific
biomarker signals associated with changes in local inflammation during asthma flare-ups [51].

2.3. Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) and asthma are both common and despite
the fact that they are different disease entities, there can be significant clinical overlap between the
two. The potential for accurate diagnosis of COPD and discrimination from asthma by exhaled
breath profiles was first studied by Fens et al. [50]. This cross-sectional study included 21 asthmatics
with fixed and 39 with reversible airways obstruction, as well as 40 patients with a diagnosis of
COPD. While asthma with reversible or fixed airway obstruction could not be distinguished based
on breathprints, both asthma with fixed obstruction and asthma with reversible airway obstruction
were significantly different from COPD (accuracy of 88% and 83%, respectively) [50]. These findings
suggested that eNose may represent a diagnostic option for patients having overlapping symptoms
between fixed-obstruction asthma and COPD. In addition to discriminating from asthma, recent data
suggested that eNose technology may be able to detect flare-ups or exacerbations of COPD (ECOPD).
An ECOPD is characterized by a burst of pulmonary and systemic inflammation, and is usually
the result of bacterial or viral infection [52,53]. These events can significantly influence disease
progression as well as morbidity [54] and mortality [55]. Potential pathogenic micro-organisms
(PPMs) in sputum or bronchoalveolar lavage (BAL) are only identifiable in up to 50% of patients
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experiencing an ECOPD [56,57]. Shafiek et al. utilized a Cyranose 320 to discriminate between
infectious vs. non-infectious ECOPD or pneumonia, and showed differences in VOC breathprints [33].
Among ECOPD patients, the eNose could discriminate infected vs. non-infected COPD patients with
a 75% success ratio, 88% sensitivity, and 60% specificity [33]. These findings may allow for a novel
strategy in diagnosing ECOPD associated with bacterial infections in routine clinical practice, rather
than depending solely on clinical diagnosis.

There are several indexes of COPD severity and disease progression, including the six-minute
walk test distance (6MWD), body mass index (BMI), airflow obstruction, dyspnea, and exercise (BODE),
that can be used to assess the functional status of COPD patients. Since many of these tests are
limited by patient compliance, space and time (e.g., availability of a 30 m hallway to perform 6MWD),
Finamore et al. investigated whether VOC analysis by eNose could predict the functional status and
its variation over time in COPD patients [58]. In this monocentric prospective study with one-year
follow-up, patients performed pulmonary function testing, arterial blood gas analysis, bioimpedance,
6MWD, and VOC analysis by eNose in 63 patients. A BIONOTE eNose was used, and partial
least square discriminant analysis (PLS-DA) to calculate outcomes-predictive accuracy, sensitivity,
and specificity [58]. The eNose predicted BODE scores with 86% accuracy, and quartiles of normalized
6MWD (n6MWD) with 79% accuracy. Reference quartiles of n6MWD to the Global Initiative for
Chronic Obstructive Lung Disease (GOLD) classification were as follows: 22–111 m/m2 corresponds to
GOLD class A, 112–145 m/m2 to B, 146–165 m/m2 to C, and 166–215 m/m2 to D (quartiles 1–4) [58].
A change in n6MWD after one year by more than the median value of decline was predicted with an
accuracy of 86% by eNose vs. 52% by GOLD classification alone, and 78% by both measures combined.
These data supported that eNose technology could be further developed as a simple, and inexpensive
tool to assess COPD functional status. To tangibly illustrate costs, in this study for example, an eNose
analysis vs. a 6MWD represented a difference of €10 vs. €50, respectively [58].

Finally, van Velzen et al. performed a randomized controlled trial measuring exhaled breath
profiles in COPD patients with and without exacerbations over a period of three years, comparing
eNose and GC-MS [59]. This study included 31 patients with COPD exacerbations and 37 with stable
COPD, and found significant differences between breath profiles of these patients. eNose discriminated
patients with stable disease from ECOPD with an accuracy of 75%, which was very similar to GC-MS
(71%) [59]. GC-MS analysis yielded ten compounds of significance in discriminating between the two
groups. Similar to Brinkman et al. [46], this study utilized a panel of four eNoses, for which the data
were merged. The Common Invent eNose drove the discriminative signal in detecting exacerbations
most definitively [59]. The similar accuracies in detecting stable and exacerbated COPD states by these
technologies is encouraging. In their work, Van Velzen et al. highlighted their approach of GC-MS and
eNose technologies complementing one another: GC-MS can identify specific compounds needed to
inform the fine-tuning of metabolite-specific sensor arrays on an eNose, for more precise recognition
of disease-specific VOC profiles [59]. This or similar types of combined approaches will hopefully
accelerate the improvement of eNose technologies to the point where they can be used as diagnostic
point-of-care tools in clinical practice.

2.4. Cystic Fibrosis, Bronchiectasis and Primary Ciliary Dyskinesia

Lung disease in cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) share similarities as
both are genetic diseases associated with neutrophil-dominated airway inflammation, recurrent and
chronic bacterial infections, retention of suppurative airway secretion, development of bronchiectasis,
and chronic loss of lung function [60–62]. In CF, airway secretions are dehydrated due to
water/electrolyte imbalance; secretions become difficult to clear and provide optimal conditions
for bacterial infections. In PCD, defective ciliary motion leads to disturbed mucociliary clearance,
which also results in recurrent and persistent sinorespiratory infections [62]. Although similar in their
clinical presentation, CF and PCD are different entities, and several studies have shown differences
in VOC breath profiles between CF and PCD [35,63]. eNose technology has also been able to detect
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differences based on bacterial colonization and disease exacerbation in these diseases. In a study
of 50 children, 25 with CF and 25 with PCD, Paff et al. could show that breathprints from healthy
controls differed from both CF and PCD (AUROC of 0.76 and 0.80 respectively), and PCD differed
from CF as well (AUROC of 0.77) [64]. The authors speculated that distinct inflammatory and
metabolic processes in CF or PCD airways would generate different volatile metabolites, and thus
explain the differences seen by eNose. In PCD, these metabolites may be comprised of inflammatory
cytokines such as interleukin (IL)-8 in combination with lower DNA content in airway secretions
compared to CF, as well as lower proteolytic enzyme levels [65,66]. The investigators also observed that
pulmonary exacerbations altered exhaled breath profiles [64]. Both PCD and CF are diseases in which
early diagnosis, frequent monitoring, and aggressive treatment of airway infections help preserve
lung function over time [64,67]. Therefore, non-invasive techniques to detect or monitor respiratory
infections are becoming increasingly important not only for patients unable to expectorate sputum
due to younger age, but also for those on effective therapies such as cystic fibrosis transmembrane
conductance regulator (CFTR) targeting drugs [68].

A few studies have explored the potential role of eNose in detecting airway colonization with
pathogens. Fungal infections with Aspergillus fumigatus were identified by way of an eNose in studies
by de Heer et al. [69]. In the setting of invasive pulmonary aspergillosis (IA) in patients with prolonged
chemotherapy-induced neutropenia (PCIN), they initially showed that patients with PCIN and IA
presented with characteristic exhaled breath profiles [69]. In a more recent study by the same group,
using a Cyranose 320 they showed that A. fumigatus airway colonization in patients with CF also
led to a distinct breathprint [70]. 27 CF patients, of whom nine were colonized with A. fumigatus,
were correctly classified by eNose with a cross-validated accuracy of 89%. eNose data were analyzed
using PCA, the factors of which were then used for linear canonical discriminant analysis (LCDA).
Overall, eNose-generated breathprints of CF patients with and without A. fumigatus colonization were
significantly different [70]. They highlighted the previously-identified in vitro biomarker specific for
A. fumigatus-induced invasive disease and colonization, 2-pentylfuran by GC-MS analysis [70,71].

One of the most common opportunistic pathogens leading to chronic bacterial lung infections in
CF is Pseudomonas aeruginosa (PA). Persistent PA infection is known to be associated with increased
morbidity and mortality in patients with CF [72]. Distinct eNose breath profiles of chronic PA
infection were reported in CF patients by Joensen et al. (sensitivity and specificity of 71.4% and
63.3%, respectively, and AUROC of 0.69) [73]. In this cross-sectional case-control study 64 patients
with CF, 21 with PCD, and 21 healthy controls were included [73]. Breathprints of CF patients
with and without chronic infections by other pathogens, including Achromobacter xylosoxidans or
Stenotrophomonas maltophilia, were not different (AUROC of 0.59). Significant differences were also not
found between breath profiles of PCD patients with or without chronic PA infection [73]. Findings by
Robroeks et al. support these observations; here, CF patients with PA colonization were discriminated
via GC-MS from non-colonized patients on the basis of 14 exhaled VOCs [35]. Based on these VOCs,
100% discrimination was achieved between the two groups [35]. This work validates the concept of
PA-specific VOCs that can be screened for by VOC-sensing instruments such as eNoses or GC-MS.
Of relevance to studies suggesting that eNoses might be able to detect PA or other infections in exhaled
breath by pattern analysis, recent studies have shown that specific VOCs can also be identified in
fluid samples obtained from airways of CF patients. Nasir et al. analyzed volatile molecules from
CF bronchoalveolar lavage (BAL) fluid using two-dimensional GC-time-of-flight-MS [74]. Utilizing
nine specific volatile molecules, PA-positive (n = 7) were distinguished from PA-negative (n = 53)
BAL samples with an AUROC of 0.86. Similar results were seen for Staph. aureus (SA)-positive and
-negative samples [74]. Finally, eNoses have also shown potential in detecting infection in people with
non-CF bronchiectasis. This chronic respiratory disease that is increasingly recognized in Europe and
the United States [75,76], is characterized by irreversible dilation of the bronchi and by chronic airway
inflammation [77], and similar to CF, PA airway infection contributes to morbidity as well [78]. In a
study of 73 clinically stable patients with bronchiectasis by Suarez-Cuartin et al., using a Cyranose 320,
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airway infection produced different breath profiles compared to uninfected, with an accuracy of 72.1%
and AUROC of 0.75 [34]. Further, breath profiles from subjects infected with PA were different from
other pathogens (accuracy of 89.2%, AUROC of 0.96), or no infection patients (72.7%, AUROC of 0.82).
Thus, these findings suggest the potential of an eNose to identify specific bacterial airway infections
such as PA, regardless of underlying disease.

To summarize, the currently published data suggest that eNoses may be able to distinguish
between exhaled breath profiles of patients with CF, PCD, and bronchiectasis, and to detect certain
infections with pathogens such as A. fumigatus and P. aeruginosa (PA) [34,64,69,70,73]. This has potential
implications for transforming patient care in the near future by implementing eNoses at the clinical
point-of-care for early and accurate detection of infections. Further studies using eNose in combination
with technologies able to identify specific molecular markers, such as GC-MS, are needed to help
improve current eNose technologies. This could be done by adding sensors for specific VOC compounds
identified by GC-MS to the sensor arrays on an eNose, for more precise recognition of disease-specific
VOC profiles, as discussed above [59]. Utilizing more sensor data-points (e.g., 158 sensors in the
4-eNose-platform vs. 32 in the Cyranose 320) is an alternative strategy [46].

3. Future Directions and Need for Future VOC-based Studies

Current results of detecting both respiratory and non-respiratory diseases by eNose, as well as
specific infections in some conditions, are promising. Rapid improvements in eNose technologies
may overcome their current limitations, as newer generations of eNoses are being upgraded with
more advanced sensor technologies and data analysis systems [28]. With this, new areas of
research may evolve. As an example, recent work has demonstrated the ability of the eNose to
diagnose different types of interstitial lung diseases (including cryptogenic organizing pneumonia,
idiopathic pulmonary fibrosis, and connective tissue disease-associated ILD) [79,80]. eNoses are also
becoming increasingly utilized to detect biomarkers of various types of malignancies outside of the
respiratory system, including colorectal cancer, and Barrett’s esophagus, the precursor to esophageal
adenocarcinoma [81,82].

Further, studies investigating VOC metabolomics have also yielded promising results in respiratory
and non-respiratory conditions. By combining the eNose with GC-MS, detecting individual VOCs
may not only improve sensitivity and specificity, but also allow for the detection of novel, previously
unrecognized biomarkers and biological pathways (Figure 1). Several studies have already taken this
approach. For example, Rodriguez-Aguilar et al. used an eNose coupled with GC-MS to identify and
match specific VOCs to breathprints obtained by eNose from patients with COPD [83], identifying
biomarkers of COPD in real time. VOC biomarkers of pulmonary oxygen toxicity have also become
identifiable when combining eNose and GC-MS in a study of scuba divers by Wingelaar et al. [84].
Research in CF suggests that VOC breath profiles identify SA infection; by using GC-MS, breath
VOC profiles were classified, and distinguished SA-infected and non-infected CF patients with 100%
sensitivity and 80% specificity [85]. Potential biomarkers specific for SA detection are isovaleric acid
and methylbutanal [86,87]. In the aforementioned study of A. fumigatus colonization of patients with
CF by de Heer et al., GC-MS analysis was suggested to complement eNose testing [70]. Definitive
exhaled biomarkers of A. fumigatus infection, including 2-pentylfuran as well as monoterpenes
and sesquiterpenes have been identified [88]. It is possible that factors other than A. fumigatus
metabolites such as host inflammatory responses to A. fumigatus, exposure to antimicrobial therapy or
corticosteroids, or more-severe CF lung disease, also contribute to the VOC patterns detectable by eNose
in these patients [70]. However, VOC breathprints detectable by eNose seem to be disease-specific as
inflammatory airway diseases such as asthma, COPD, CF, and PCD can all be discriminated by this
technology [41,50,64,73].
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4. Conclusions

Taking advantage of detecting VOCs exhaled in human breath, eNose technology has enormous
potential to improve or offer alternative solutions to current diagnostic tests for respiratory diseases.
eNoses provide increasingly accurate and sensitive discriminative power to help differentiate between
health and disease, sub-types of diseases and also disease activity and control (Table 1). In addition,
eNose technology may represent a non-invasive tool to detect infections as they occur in patients with
respiratory diseases including lung malignancies, asthma, COPD, CF, and PCD. While the eNose has
the potential to be used as a screening tool at the clinical point-of-care, its integration with specific
analytic methods such as GC-MS will help identify new biomarkers of disease and disease control.

Table 1. Summary of key studies presented in this review.

Publication [Ref.] Disease
Number of

Patients/Total
Study Participants

Type of VOC
Detection

Device
Main Findings

Tirzı̄te et al. [38] Lung cancer 252/475 Cyranose 320

High-risk controls vs. cancer
Sensitivity: 96%, specificity: 92%

Non-smokers vs. cancer
Sensitivity: 96%, specificity: 91%

Van de Goor et al. [9] Lung cancer 52/144 Aeonose High-risk controls vs. cancer
Sensitivity: 83%, specificity: 84%

McWilliams et al. [26] Lung cancer 25/191 Cyranose 320 High-risk controls vs. cancer
Sensitivity: 81.3%, specificity: 88%

Rocco et al. [11] Lung cancer 23/100 BIONOTE eNose High-risk controls vs. cancer
Sensitivity: 86%, specificity: 95%

Lamote et al. [40]

Lung cancer
(malignant

pleural
mesothelioma,

[MPM])

35/64
(19 asymptomatic
asbestos-exposed

subjects [AEx] + 16
control, 14 MPM,
15 benign disease

[ARD])

Common Invent,
Owlstone
Lonestar,

Cyranose 320, Tor
Vergata eNoses +

GC-MS

AEx subjects vs. MPM
eNose: 97% accuracy
GC-MS: 97% accuracy
MPM vs. AEx + ARD
eNose: 74% accuracy

GC-MS: 94%
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Table 1. Cont.

Publication [Ref.] Disease
Number of

Patients/Total
Study Participants

Type of VOC
Detection

Device
Main Findings

De Vries et al. [16] Lung cancer 143/143 SpiroNose
Responders vs. Non-responders

to anti-PD-1 therapy
Sensitivity: 81%, specificity: 50%

Dragonieri et al. [41] Asthma 20/40 Cyranose 320

Mild asthma vs. young controls
Cross-validation: 100%

Severe asthma vs. old controls
Cross-validation: 90%

Plaza et al. [42] Asthma 52/52 Cyranose 320

Eosinophilic vs. neutrophilic
Accuracy: 73%, AUROC: 0.92

Eosinophilic vs.
paucigranulocytic

Accuracy: 74%, AUROC: 0.79
Neutrophilic vs.

paucigranulocytic
Accuracy: 89%, AUROC: 0.88

Brinkman et al. [46] Asthma 78/78

Common Invent,
Owlstone
Lonestar,

Cyranose 320, Tor
Vergata eNoses

Inflammatory phenotypes in
severe asthma

Three distinct clusters (n = 26,
n = 33, n = 19)

Van der Schee et al. [45] Asthma 25/45 Cyranose 320 Asthma vs. controls
Sensitivity: 80%, specificity: 65%

Tenero et al. [47] Asthma 28/38 Cyranose 320

Non-symptomatic asthma (control
+ controlled asthma) vs.

symptomatic asthma (partially
controlled + uncontrolled asthma)
Sensitivity: 0.79, specificity: 0.84

Montuschi et al. [36] Asthma 27/51
Tor Vergata

eNose +
GC-MS

Asthma vs. controls
eNose: 87.5% accuracy

GC-MS: “significantly different”

Brinkman et al. [51] Asthma 23/23

Common Invent,
Owlstone
Lonestar,

Cyranose 320, Tor
Vergata eNoses +

GC-MS

eNose:
baseline vs. loss of control: 95%

accuracy
loss of control vs. recovery: 86%

GC-MS:
baseline vs. loss of control: 68%

accuracy
loss of control vs. recovery: 77%

Bannier et al. [48] Asthma & CF 33/55 (20 asthma,
13 CF) Aeonose

Asthma vs. CF
Sensitivity: 0.89, specificity: 0.77

CF vs. controls
Sensitivity: 0.85, specificity: 0.77

Asthma vs. controls
Sensitivity: 0.84, specificity: 0.91

Fens et al. [50] Asthma & COPD 60 asthma, 40
COPD Cyranose 320

COPD vs. fixed asthma
Sensitivity: 85%, specificity: 90%

COPD vs. classical asthma
Sensitivity: 91%, specificity: 90%

Shafiek et al. [33] COPD

143/173 (90
Exacerbated COPD
[ECOPD], 50 stable
COPD [SCOPD])

Cyranose 320

SCOPD vs. controls
Sensitivity: 72%, specificity: 70%

ECOPD vs. controls
Sensitivity: 66%, specificity: 80%

ECOPD vs. SCOPD
Sensitivity: 89%, specificity: 48%

Finnamore et al. [58] COPD 63/63 BIONOTE eNose
BODE functional status predicted

via eNose
Sensitivity: 0.71, specificity: 0.93
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Table 1. Cont.

Publication [Ref.] Disease
Number of

Patients/Total
Study Participants

Type of VOC
Detection

Device
Main Findings

Van Velzen et al. [59] COPD 31/68 (31 ECOPD,
37 COPD)

Common Invent,
Owlstone
Lonestar,

Cyranose 320, Tor
Vergata eNoses +

GC-MS

ECOPD vs. COPD
eNose:

Accuracy: 75%
GC-MS:

Accuracy: 71%

Paff et al. [64] CF & PCD 50/73 (25 CF, 25
PCD) Cyranose 320

CF vs. controls
Sensitivity: 84%, specificity: 65%

PCD vs. controls
Sensitivity: 88%, specificity: 52%

CF vs. PCD
Sensitivity: 84%, specificity: 60%

Joensen et al. [73] CF & PCD 85/106 (64 CF, 21
PCD) Cyranose 320

CF with P. aeruginosa (PA) vs. CF
without PA

Sensitivity: 71.4%,
specificity: 63.3%

No sig. difference between:
CF with non-PA infection vs. CF

without infection &
PCD with PA/other infection vs.

PCD without infection

De Heer et al. [70] CF 27/27 Cyranose 320
CF with (n = 9) and without

(n = 18) A. Fumigatus
Sensitivity: 78%, specificity: 94%

Suarez-Cuartin et al. [34] Bronchiecta-sis 73/73 Cyranose 320
Bronchiectasis with PA vs.
Bronchiectasis without PA

Sensitivity: 92%, specificity: 85%

A. fumigatus: Aspergillus fumigatus, AEx: asymptomatic former asbestos-exposed, ARD: benign asbestos-related
diseases, AUROC: area under the receiver operating characteristic curve, BODE: body mass index, airflow obstruction,
dyspnea, and exercise, CF: cystic fibrosis, COPD: chronic obstructive pulmonary disease, ECOPD: exacerbated COPD,
eNose: electronic nose, GC-MS: gas chromatography-mass spectrometry, MPM: malignant pleural mesothelioma, PA:
Pseudomonas aeruginosa, PCD: primary ciliary dyskinesia, PCIN: prolonged chemotherapy-induced neutropenia,
SCOPD: stable COPD, U-BIOPRED: Unbiased biomarkers for the prediction of respiratory disease outcomes, VOCs:
volatile organic compounds.
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Abbreviations

AEx Asymptomatic former asbestos-exposed subjects
ARD Benign asbestos-related diseases
AUROC Area under the receiver operator characteristic
BAL Broncho-alveolar lavage
BODE Body mass index, obstruction, dyspnea, and exercise
CD Crohn’s disease
CF Cystic fibrosis
CFTR Cystic fibrosis transmembrane conductance regulator
COPD Chronic obstructive pulmonary disorder
CVV Cross-validation value
ECOPD Exacerbations of COPD
eNose Electronic nose
GC-MS Gas chromatography-mass spectrometry
IA Invasive pulmonary aspergillosis
IBD Inflammatory bowel disease
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LCDA Linear canonical discriminant analysis
LRA Logistic regression analysis
MPM Malignant pleural mesothelioma
PA Pseudomonas aeruginosa
PCA Principal component analysis
PCD Primary ciliary dyskinesia
PCIN Prolonged chemotherapy-induced neutropenia
PLS-DA Partial least square discriminant analysis
POC Point of care
PPMs Potential pathogenic micro-organisms
SA Staphylococcus aureus
TB Mycobacterium tuberculosis
UC Ulcerative colitis
VOCs Volatile organic compounds
6MWD Six-minute walk test distance
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