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Abstract

Motivation: Longitudinal study designs are indispensable for studying disease progression. Inferring covariate
effects from longitudinal data, however, requires interpretable methods that can model complicated covariance
structures and detect non-linear effects of both categorical and continuous covariates, as well as their interactions.
Detecting disease effects is hindered by the fact that they often occur rapidly near the disease initiation time, and
this time point cannot be exactly observed. An additional challenge is that the effect magnitude can be heteroge-
neous over the subjects.

Results: We present lgpr, a widely applicable and interpretable method for non-parametric analysis of longitudinal
data using additive Gaussian processes. We demonstrate that it outperforms previous approaches in identifying the
relevant categorical and continuous covariates in various settings. Furthermore, it implements important novel fea-
tures, including the ability to account for the heterogeneity of covariate effects, their temporal uncertainty, and ap-
propriate observation models for different types of biomedical data. The lgpr tool is implemented as a comprehen-
sive and user-friendly R-package.

Availability and implementation: lgpr is available at jtimonen.github.io/lgpr-usage with documentation, tutorials,
test data and code for reproducing the experiments of this article.

Contact: juho.timonen@aalto.fi or harri.lahdesmaki@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomedical studies often collect observational longitudinal data,
where the same individuals are measured at several time points. This
is an important study design for examining disease development and
has been extensively leveraged in biomedical studies, including vari-
ous -omics studies, such as proteomics (Liu et al., 2018), metage-
nomics (Vatanen et al., 2016) and single-cell transcriptomics
(Sharma et al., 2018). The measured response variable of interest
can be continuous (such as the abundance of a protein), discrete
(such as the number of sequencing reads in a genomic region) or bin-
ary (such as patient condition). Often also several additional varia-
bles—i.e. covariates—are measured for each subject at each
measurement time point. These can be categorical variables (such
as sex, location or whether the subject is diagnosed with a disease
or not) or continuous (such as age, time from disease initiation or
blood pressure). Identifying the relevant covariates that affect the re-
sponse variable is important for assessing potential risk factors of
the disease and for understanding disease pathogenesis.

A large body of literature has focused on the statistical analysis
of longitudinal data (Diggle et al., 2002). Observations correspond-
ing to the same individual are intercorrelated, and specialized

statistical methods are therefore required. Methods must be able to
model both time-dependent and static covariate effects at the same
time and handle irregular measurement intervals, missing data and a
varying number of measurements for different individuals.
Generalized linear mixed models (GLMMs) (Stroup, 2012) have
been found to best conform to these challenges, and they have be-
come the standard workhorse for longitudinal data analysis. The R-
package lme4 (Bates et al., 2015) has gained high popularity and be-
come a default choice for fitting GLMMs. These models, however,
require specifying a parametric (linear) form for the covariate effects
and provide biased inferences when their true effects are non-linear
or non-stationary.

GLMMs are an example of additive models, where the modelled
function is decomposed as f ¼ f ð1Þ þ � � � þ f ðJÞ, and each f ðjÞ

depends only on a subset of the covariates. The term generalized
additive models (Hastie and Tibshirani, 1986) (GAMs) is often
used to refer to models where each f ðjÞ depends only on one covari-
ate. GAMs are especially interpretable since the effect of each
covariate can be studied independently (Plate, 1999). Examples of
non-parametric GAMs are penalized smoothing splines, and their
fitting involves penalizing the wiggliness of the functions (Wood,
2006).
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A Gaussian process (GP) is a popular Bayesian non-parametric
model that is commonly used for time series modelling (Rasmussen
and Williams, 2006; Roberts et al., 2013). GPs can model various
types of functions, and the prior knowledge about the modelled un-
known function is conveniently specified by a covariance (or kernel)
function. For example, the exponentiated quadratic (EQ) kernel
specifies that the function values are more similar for observations
that are closer in time, and the periodic (PER) kernel specifies a
repeating pattern.

In additive GPs (Duvenaud et al., 2011; Plate, 1999), the GP
prior is defined for several additive components f ðjÞ, and they can be
tailored also for longitudinal study designs (Cheng et al., 2019;
Quintana et al., 2016). LonGP (Cheng et al., 2019) is a recent addi-
tive GP modelling method that utilizes kernels that can depend not
only on time, but possibly categorical factors and other covariates as
well. It utilizes the binary mask (BIN) and categorical (CAT) kernel
as building blocks, as they can be multiplied with continuous kernels
such as EQ or PER to allow modelling effects that are present only
for a subgroup of individuals, or effects that are different across
individuals or groups. LonGP is specifically designed for detecting
relevant covariates, and it employs a two-stage forward search with
approximate leave-one-out and stratified cross-validation to add
new additive components to an initial model one by one until the
model does not improve significantly anymore. Due to computation-
al convenience, GP models such as LonGP are often restricted to
Gaussian observation model, which is not appropriate for count or
proportion data commonly observed in biomedicine. A common ap-
proach is to use the Gaussian observation model after first applying
a variance-stabilizing transform, such as log-transform, to the re-
sponse variable, but this is not statistically justified and can lead to
biased inferences (O’Hara and Kotze, 2010).

Longitudinal studies often comprise a case and control group,
and commonly a clinically determined time of disease initiation for
each case individual is marked in the data. To reveal phenomena
related to disease progression or to identify biomarkers, statistical
modelling can utilize the disease-related age, i.e. time from disease
initiation or onset, as one covariate that can explain changes in the
response variable. Disease effects can be rapid when compared to
other effects and expected to occur near the time of disease initi-
ation, which is another aspect that GLM models cannot capture. In
LonGP, these effects can be modelled using a non-stationary (NS)
kernel. A major challenge, however, is that many diseases, such as
Type 1 Diabetes (T1D), are heterogeneous (Pietropaolo et al.,
2007), and disease-specific biomarkers are likely detectable only in a
subset of the diagnosed individuals. Another problem that can con-
found the analysis of disease effects, is that the disease initiation (or
onset) time is difficult to determine exactly. For example in T1D,
the presence of islet cell autoantibodies in the blood is the earliest
known marker of disease initiation (Ziegler et al., 2013), but they
can only be measured when the subject visits a doctor. In general,
the detected disease initiation time can differ from the true initiation
time, and the extent of this difference can vary across individuals.
To our knowledge, there exist no methods that can model non-sta-
tionary disease effects while taking into account the disease hetero-
geneity and uncertainty of initiation time.

In this work, we propose a longitudinal data analysis method
called lgpr, designed for revealing general non-linear and non-sta-
tionary effects of individual covariates and their interactions (see
Fig. 1a). It is based on the additive GP approach similar to LonGP
but provides several significant improvements that tackle the chal-
lenges stated above. We use special interaction kernels that allow
separating category effects (e.g. different temporal profiles for male
and female subjects) from shared effects. This allows us to develop a
straightforward but useful covariate relevance assessment method,
which requires fitting only one model and gives estimates of the pro-
portion of variance explained by each signal component and noise.
Our package implements additive GP modelling and covariate rele-
vance assessment also in the case of a non-Gaussian observation
model and allows incorporating sample normalization factors that
account for technical effects commonly present for example in
RNA-sequencing data. Additionally, our tool can account for

uncertainty in the disease effect time and features a novel kernel that
allows identification of heterogeneous effects detectable only in a
subset of individuals. For increased interpretability of disease effects,
we propose a new variance masking (VM) kernel which separates
effects related to disease development from the baseline difference
between case and control individuals.

We have implemented lgpr as a user-friendly R-package (R Core
Team, 2018) that can be used as a plug-in replacement for lme4.
Under the hood, Bayesian model inference is carried out using the
dynamic Hamiltonian Monte Carlo sampler (Betancourt, 2017;
Hoffman and Gelman, 2014), as implemented in the high-
performance statistical computation framework Stan (Carpenter
et al., 2017). The new tool is summarized in Figure 1a, and its
improvements over LonGP are highlighted in Table 1. More back-
ground information and related research can be found in
Supplementary Material.

We use simulated data to prove the benefit of each new feature
of our method. Additionally, we use lgpr to analyse data from two
recent T1D studies. The first one is a longitudinal proteomics data-
set (Liu et al., 2018) and the second one is RNA-sequencing data
from peripheral blood cells (Kallionpää et al., 2019).

2 Materials and methods

2.1 The probabilistic model
We denote a longitudinal dataset with N data points and D covari-
ates by a tuple ðX ; yÞ, where X is an N �D covariate matrix and y is
a vector of N response variable measurements. We refer to the ith
row of X by xi 2 X , where X ¼ �D

d¼1Xd and Xd is the set of possible
values for covariate d. In general, Xd can be discrete, such as the set
of individual identifiers, or connected such as R for (normalized)
age.

Our model involves an unobserved signal f : X ! R, which is a
function of the covariates. The signal is linked to y through a likeli-
hood function, motivated by a statistical observation model for y,
and uses transformed signal values g�1

�
f ðxiÞ þ ci

�
, where g is a link

function and ci are possible additional scaling factors. We have
implemented inference under Gaussian, Poisson, binomial, beta bi-
nomial (BB) and negative binomial (NB) likelihoods, and they are
defined in detail in Supplementary Material.

The process f is assumed to consist of J low-dimensional additive

components, so that f ðxÞ ¼ f ð1ÞðxÞ þ � � � þ f ðJÞðxÞ (see Fig. 1b and c).
Each component j is modelled as a Gaussian process (GP) with zero

mean function and kernel function a2
j kjðx; x0Þ. This means that the

vector of function values f ðjÞ ¼ ½f ðjÞðx1Þ; . . . ; f ðjÞðxNÞ�> has a multi-

variate normal prior f ðjÞ � N
�

0;KðjÞ
�

with zero mean vector and

N�N covariance matrix with entries fKðjÞgik ¼ a2
j kjðxi; xkÞ.

Because the components are a priori independent, the sum f is also a

zero-mean Gaussian process with kernel kðx; x0Þ ¼
PJ
j¼1

a2
j kjðx; x0Þ.

See more info about GPs in Supplementary Material or (Rasmussen
and Williams, 2006).

The parameter a2
j is called the marginal variance of component

f ðjÞ and it determines how largely the component varies. The base
kernel function kjðx; x0Þ on the other hand determines the compo-
nent’s shape, as well as covariance structure over individuals or
groups (see Fig. 1b and c). The base kernels are constructed, as
explained in the next section, so that each f ðjÞ; j ¼ 1; . . . ; J is a func-
tion of only one or two covariates. This is a sensible assumption in
many real-world applications and apt to learn long-range structures
in the data (Duvenaud et al., 2011). Furthermore, this decompos-
ition into additive components allows us to obtain interpretable
covariate effects after fitting the model. Duvenaud et al. (2011) used
also higher-order interaction terms (which we could incorporate
into our model as well), but they did not study relevances of individ-
ual covariates, as high-order interactions inherently confound their
interpretation.
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2.2 Kernel functions for longitudinal data
2.2.1 Shared effects

Stationary shared effects of continuous covariates are modelled
using the exponentiated quadratic (EQ) kernel

keqðx;x0j‘Þ ¼ exp � ðx�x0Þ2

2‘2

� �
. Here, x refers to a generic continuous

covariate, and each shared effect component has its own lengthscale
parameter ‘, which determines how rapidly the component can
vary. For example, a shared age effect kernel is keqðxage; x

0
agej‘ageÞ.

2.2.2 Category effects

Effects of categorical covariates (such as sex or individual id) can be
modelled either as fluctuating category-specific deviations from a
shared effect (interaction of a categorical and continuous covariate)
or as static category-specific offsets. For a pair of categorical covari-
ate z (with M � 2 categories) and continuous covariate x, we use the
kernel function

kz�xððz;xÞ; ðz0;x0Þj‘Þ ¼ kzerosumðz; z0Þ � keqðx; x0j‘Þ; (1)

when modelling the effect of z as deviation from the shared effect of

x. The zero-sum kernel kzerosumðz; z0Þ, returns 1 if z ¼ z0 and 1
1�M

otherwise. This is similar to the GP ANOVA approach in (Kaufman
and Sain, 2010). If f : R� f1; . . . ;Mg ! R is modelled using the

kernel in Equation 1, the sum
PM
r¼1

f ðt; rÞ is always zero for any t (see

proof in Supplementary Material). The fact that the sum over

categories equals exactly zero for any t greatly helps model inter-
pretation as this property separates the effect of the categorical cova-

riate from the shared effect (see Supplementary Fig. S1 for
illustration). If the effect of z is modelled as a batch or group offset,

which does not depend on time or other continuous variables, the

corresponding kernel function is just kzerosumðz; z0Þ. Again, z refers to
a generic categorical covariate.

We note that the lgpr software implementation allows using also
the categorical (CAT) kernel in place of kzerosum, when modelling the

effects of categorical covariates. This kernel function returns 1 if its
arguments belong to the same category and 0 otherwise.

2.2.3 Non-stationary effects

We use the input warping approach (Snoek et al., 2014) to model
non-stationary functions f ðjÞðxÞ, where most variability occurs near

the event x¼0. The non-stationary kernel is

knsðx; x0ja; ‘Þ ¼ keqðxaðxÞ;xaðx0Þj‘Þ; (2)

where xa : R!� � 1; 1½ is a monotonic non-linear input warping
function

xaðxÞ ¼ 2 � 1

1þ e�ax
� 1

2

� �
; (3)

and the parameter a controls the width of the effect window around
x¼0.

Fig. 1. Overview of additive Gaussian process modelling of longitudinal data using lgpr. (a) A typical workflow with lgpr. 1. User gives the data and model formula as input,

along with possible additional modelling options such as non-default parameter priors or a discrete observation model. 2. The model is fitted by sampling the posterior distri-

bution of its parameters. 3. Relevances of different covariates and interaction terms are computed. The inferred signal components can be visualized to study the magnitude

and temporal aspects of different covariate effects. If a heterogeneous model component was specified, the results inform how strongly each individual experiences the effect.

(b) Examples of different types of covariate effects that can be modelled using lgpr. The components f ðjÞ; j ¼ 1; . . . ; 5 are draws from different Gaussian process priors. This

artificial data comprises 8 individuals (4 male, 4 female), and 2 individuals of each sex are cases. The shown age-dependent components are a shared age effect f ð1Þ, a sex-spe-

cific deviation f ð2Þ from the shared age effect, a disease-related age (diseaseAge) effect f ð3Þ and a subject-specific deviation f ð5Þ from the shared age effect. For each of the dis-

eased individuals, the disease initiation occurs at a slightly different age, between 20 and 40 months. Here, the magnitude of the disease effect is equal for each case individual,

but lgpr can model also heterogeneous effects. The component f ð4Þ is a function of blood pressure only, but is plotted against age for consistency as the simulated blood pres-

sure variable has a temporal trend. (c) The cumulative effect f ¼
P

j f ðjÞ is the sum of the low-dimensional components

Table 1. Key differences between lgpr and LonGP

lgpr LonGP (Cheng et al., 2019)

Available kernels BIN, CAT, ZS, EQ, NS (parameterized warping), VM BIN, CAT, EQ, PER, NS (fixed warping)

Available observation models Gaussian, Poisson, NB, binomial, BB Gaussian

Bayesian inference Dynamic HMC Slice sampling and CCD (Vanhatalo et al., 2013)

Heterogeneous effects Available Not available

Covariate uncertainty Available Not available

Covariate relevance assessment Decomposition of variance Stepwise model search with crossvalidation

Note: Kernel name abbreviations: BIN, binary mask; CAT, categorical; ZS, zero-sum; EQ, exponentiated quadratic; NS, non-stationary; VM, variance mask;

PER, periodic. The input warping steepness (a in Equation 3) is fixed in LonGP but sampled in lgpr.
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2.2.4 Disease effects

Cheng et al. (2019) modelled disease effects using the kernel in
Equation 2 for the disease-related age xdisAge, i.e. time from disease
initiation or onset of each individual. Note that for the control sub-
jects, xdisAge is not observed at all. In general, data for a continuous
covariate x can be missing in part of the observations. In such cases,
we adopt the approach of (Cheng et al., 2019) and multiply the ker-
nel of x with a binary mask (BIN) kernel which returns 0 if either of
its arguments is missing and 1 if they are available.

Whereas this approach can model a non-stationary trend that is
only present for the diseased individuals, its drawback is that it can
capture effects that are merely a different base level between the dis-
eased and healthy individuals. In order to find effects caused by the
disease progression, we design a new kernel

kvmðx;x0ja; ‘Þ ¼ f a
vmðxÞ � f a

vmðx0Þ � knsðx;x0ja; ‘Þ; (4)

where f a
vmðxÞ : R!�0; 1½ is a variance mask function that forces the

disease component to have zero variance, i.e. the same value for

both groups, when x! �1. We choose to use f a
vmðxÞ ¼ 1

1þe�aðx�rÞ,

which means that the allowed amount of variance between these
groups rises sigmoidally from 0 to the level determined by the mar-

ginal variance parameter, so that the midpoint is at r ¼ 1
a log h

1�h

� �
and xaðrÞ ¼ 2h� 1. The parameter h therefore determines a connec-
tion between the regions where the disease component is allowed to
vary between the two groups and where it is allowed to vary over
time. In our experiments, we use the value h¼0.025. This means,
that 95% of the variation in xa occurs on the interval ½�r; r�. The
kernels in Equations 2 and 4 combined with the missing value mask-
ing, as well as functions drawn from the corresponding GP priors,
are illustrated in Supplementary Figure S2.

2.2.5 Heterogeneous effects

To model effects that have the same effect shape but possibly differ-
ent magnitude for each individual, we define additional parameters
b ¼ ½b1; . . . ;bQ�, where Q is the number of individuals and each

bi 2 ½0; 1�. Denote X id ¼ f1; . . . ;Qg and assume two individuals
xid ¼ q 2 X id and x0id ¼ q0 2 X id. An effect is made heterogeneous in

magnitude by multiplying its kernel by kheterðxid;x
0
idjbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
bqbq0

p
.

For example, to specify a heterogeneous disease effect component,
we use the novel kernel

kheterðxid;x
0
idjbÞ � kvmðxdisAge; x

0
disAgeja; ‘disAgeÞ: (5)

For heterogeneous disease effects, the number of needed b
parameters equals the number of only the case individuals.

In our implementation, the prior for the unknown parameters b

is bi � Betaðb1;b2Þ, where the shape parameters b1 and b2 can be
defined by the user. By default, we set b1 ¼ b2 ¼ 0:2, in which case
most of the prior mass is near the extremes 0 and 1 (Supplementary
Fig. S3c). This choice is expected to induce sparsity, so that some
individuals have close to zero effect magnitude. The posterior distri-
butions of bi can then be used to make inferences about which case
individuals are affected by the disease (bi close to 1) and which are
not (bi close to 0). The kernel in Equation 5 is illustrated in
Supplementary Figure S2c.

We note that the lgpr software implementation allows defining
also different types of heterogeneous components, by replacing the
VM kernel with the EQ or NS kernel in Equation 5, and that mul-
tiple heterogeneous components can be included in a model.

2.2.6 Temporally uncertain effects

The presented disease effect modelling approach relies on being able
to measure the disease onset or effect time teff for each case individ-
ual, since the disease-related age is defined as xdisAge ¼ xage � teff. In
Cheng et al. (2019), teff was defined as age on the clinically deter-
mined disease initiation date, but in general the effect time can differ
from it. Our implementation allows Bayesian inference also for the
effect times, and can therefore capture effects that for some or all
case individuals occur at a different time point than the clinically
determined date. The user can set the prior either directly for the ef-
fect times teff , or for the difference between the effect time and
observed initiation time, Dt ¼ tobs � teff . The first option is suitable
if the disease is known to commence at certain age for all individu-
als. The latter option is useful in a more realistic setting where such
information is not available, and it is reasonable to think that the
clinically determined initiation time tobs is close to the true effect
time.

2.3 Model inference
We collect all marginal variances, lengthscales and other possible
kernel hyperparameters in a vector hkernel. Parameters of the obser-
vation model are denoted by hobs and other parameters such as those

Fig. 2. Covariate relevance assessment comparison with other methods and demon-

stration of our method’s scalability. (a) Comparison between lgpr and linear mixed

effect modelling using the lme4 and lmerTest packages. The panels show ROC

curves for the problem of classifying covariates as relevant or irrelevant, when the

total number of data points is N¼ 100, 300 and 600, respectively. (b) Comparison

against LonGP. The bar plots show the fraction of times each covariate was chosen

in the final model over 100 simulated datasets. The red underlined text indicates the

covariates that were relevant in generating the data. The left panel shows results for

100 datasets that includes the disease-related age (diseaseAge) as a relevant covari-

ate. The centre panel shows results for 100 simulations where the disease-related

age was not a relevant covariate. The right panel shows distribution of runtimes

over the total 200 datasets for both methods. The bar lengths are average runtimes,

and the turnstiles indicate runtime standard deviations

Fig. 3. Heterogeneous disease effect modelling with lgpr improves detection of

effects that are present only for a subset of case individuals. (a) ROC curves for

covariate relevance assessment using both a heterogeneous and a homogeneous dis-

ease model for simulated data with 2, 4, 6 and 8 out of the 8 case individuals

affected, respectively. (b) Heterogeneous modelling with lgpr can reveal the affected

individuals. The boxplots show the distributions of the posterior medians of the in-

dividual-specific disease effect magnitude parameters bid; id ¼ 1; . . . ; 8 over 100

simulated datasets. The box is the interquantile range (IQR) between the 25th and

75th percentiles, vertical line inside the box is the 50th percentile and the whiskers

extend a distance of at most 1:5 � IQR from the box boundary. Each panel corre-

sponds to the same experiment as the one above it
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related to input uncertainty by hother. The collection of all unknown
parameters is then h ¼ fhkernel; hobs; hotherg. Under the hood, lgpr
uses the dynamic Hamiltonian Monte Carlo sampler with multi-
nomial sampling of dynamic length trajectories (Betancourt, 2017;
Hoffman and Gelman, 2014), as implemented in Stan (Carpenter
et al., 2017), to obtain S draws from the posterior distribution of h.
The parameters are given robust priors that normalize model fitting
(specified in Supplementary Material), and our software includes
prior predictive checks that help in prior validation. Our default
prior for the steepness parameter a of the input warping function
(Equation 3) allows disease effects that occur approximately on a
36 month interval around the disease initiation time. Supplementary
Figures S3d and e illustrate the effect of the prior choice for this
parameter.

The remaining unknowns of the model are the values of the func-

tion components f ðjÞ, and their sum f ¼
PJ
j¼1

f ðjÞ. Under the Gaussian

observation model, the posterior distributions of f ð1Þ; . . . ; f ðJÞ and f
can be derived analytically (see Supplementary Material). With

other observation models, we sample the posterior of each f ðjÞ simul-
taneously with h.

2.4 Covariate relevance assessment
Our method only requires sampling the posterior of a full model
including all covariates. From now on we assume that each continu-
ous covariate can be present in at most one shared effect term and
arbitrarily many interactions terms. Its relevance is then interpreted
to be the relevance of the shared effect component. The first require-
ment is not a restriction, and we consider the case of multiple shared
effect components in Supplementary Section S2.2.5. We also assume
that each categorical covariate can appear only in one term, which
can be an interaction or a first-order term, and its relevance is then
interpreted to be the relevance of the component where it appears.
This way the covariate relevance assessment problem reduces to
determining the relevance of each component. In Supplementary
Section S2.2.6, we briefly consider also higher-order interaction
terms.

2.4.1 Determining the amount of noise

After posterior sampling, we have S parameter draws fhðsÞgS

s¼1 and if

using a non-Gaussian observation model, also draws ff ðj;sÞg
S

s¼1 of
each function component j ¼ 1; . . . ; J. For each draw s, our model

gives predictions y�s ¼ ½y�1;s; . . . ; y�N;s� ¼ g�1
�

hðsÞ
�

. With the Gaussian

observation model, hðsÞ ¼ ls, i.e. the analytically computed posterior
mean of f (see Supplementary Material for formula and derivation),
and the link function g is identity. With other observation models,

hðsÞ ¼ cþ
PJ
j¼1

f ðj;sÞ, where c ¼ ½c1; . . . ; cN � are the scaling factors.

Link functions for different observation models are defined in
Supplementary Material.

We determine how much of the data variation is explained by
noise, using an approach closely related to the Bayesian R2-statistic
(Gelman et al., 2019) (see Supplementary Section 1). The noise pro-
portion in draw s is

p
ðsÞ
noise ¼

RSSs

ESSs þRSSs
2 ½0; 1� (6)

where RSSs ¼
PN
i¼1

ðy�i;s � yiÞ2 and ESSs ¼
PN
i¼1

ðy�i;s � y�s Þ
2 are the re-

sidual and explained sum of squares, respectively, and y�s ¼ 1
N

PN
i¼1

y�i;s.

With this definition, p
ðsÞ
noise will be one if the model gives constant

predictions and zero if predictions match data exactly. Note that
with binomial and BB models, yi is replaced by yi=gi, where gi is the
total the number of trials, as yi is the number of successes.

2.4.2 Decomposing the explained variance

The proportion of variance that is associated with the actual signal,

p
ðsÞ
signal ¼ 1� p

ðsÞ
noise, can then be seen as explained variance and is fur-

ther divided between each model component. For cleaner notation,
we define the variation of a vector v ¼ ½v1; . . . ; vL� as a sum of

squared differences from the mean, i.e. SSðvÞ ¼
PL
l¼1

ðvl � vÞ2. The

relevance of component j is

rel
ðsÞ
j ¼ p

ðsÞ
signal

SS
ðsÞ
j

PJ
j0¼1

SS
ðsÞ
j0

(7)

where SS
ðsÞ
j ¼ SS

�
lðj;sÞ

�
with Gaussian observation model and

SS
ðsÞ
j ¼ SS

�
f ðj;sÞ

�
otherwise. Above we used lðj;sÞ to denote the pos-

terior mean vector of component j, corresponding to draw s (see
Supplementary Material). The final component and noise relevances
are then

relj ¼
1

S

XS

s¼1

rel
ðsÞ
j and pnoise ¼

1

S

XS

s¼1

p
ðsÞ
noise; (8)

i.e. averages over the S MCMC draws. Our definition has the prop-
erties that relj 2 ½0;1� for all j, and that we can compute the propor-

tion of variance explained by a subset of components J 	 f1; . . . ; Jg

simply as relJ ¼
P

j2J relj. Furthermore, pnoise þ
PJ
j¼1

relj ¼ 1 and for

two component subsets J 	 K, it holds that relJ 
 relK.

2.4.3 Covariate selection

We prefer reporting the numerical relevance values (relj) as a sum-

mary of how much effect each covariate has on the response vari-
able, instead of classifying each covariate as either relevant or
irrelevant. However, we also provide a method for performing cova-
riate selection. The approach is to select the minimal subset of com-
ponents J sel that together with noise explain at least T% of

variance. Formally, J sel ¼ argminJ jrelJ j, subject to relJ þ pnoise �
T

100 and T¼95 by default. In Supplementary Material, we describe

also a probabilistic extension of this method. We emphasize that
when selecting covariates, we are not testing whether or not a given
effect is exactly zero. Therefore we do not perform multiple testing
corrections, as in frequentist literature, when analysing multiple re-
sponse variables (several proteins or genes). See Gelman et al.
(2012) for discussion.

A related method, which also relies on selecting a minimal subset
of covariates based on inference of a full model with all covariates,
is the projection predictive model selection method (Goutis and
Robert, 1998). It has been shown to perform well in predictive cova-
riate selection for generalized linear models (Piironen and Vehtari,
2017). However, it still requires comparing lots of alternative sub-
models to the full model, whereas in our case finding the minimal
subset of predictors does not require additional sampling or param-
eter fitting. Moreover, sequential subset search methods, such as the
projection predictive method and LonGP (Cheng et al., 2019), are
prone to most often selecting the most expressive components. We
argue that our method is more suitable for longitudinal GP models
that contain components of different complexities. For example, an
individual-specific age component is more expressive than a shared
age effect component.

3 Results

3.1 Experiments with simulated data
First, we use simulated data to demonstrate the accuracy of covari-
ate relevance assessment and benefits of the novel features of our
method. In each experiment, we generate data with different types
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of continuous and categorical covariates (see Supplementary
Material for details of data simulation). In order to test the accuracy
of our covariate relevance assessment, we simulate noisy measure-
ments of a response variable so that only part of the covariates are
relevant. In each experiment we generate several random dataset
realizations and measure performance in classifying covariates as
relevant or irrelevant using the area under curve (AUC) measure for
receiver operating characteristic (ROC) curves. Higher AUC value
indicates better performance. The computed covariate relevances
(relj in Equation 8) are used as a score in the ROC analyses, which
are performed using the pROC package (Robin et al., 2011).

3.1.1 Comparison with linear mixed effect modelling and LonGP

We first confirm that linear mixed modelling cannot capture the
covariate relevances whereas our GP modelling approach can, when
the covariate effects are non-linear. We use the lme4 package (Bates
et al., 2015) for fitting linear mixed effect models, and the lmerTest
package (Kuznetsova et al., 2017) for computing p-values of the lin-
ear model components. The p-values are used as the score in ROC
analysis. The resulting ROC curves and AUC scores are shown in
Figure 2a. It is evident that the linear mixed model approach per-
forms poorly, whereas lgpr is consistently more accurate, reaching
near-perfect performance when N¼600. To test the effect of the
amount of noise, we repeat the experiment with N¼100, using dif-
ferent signal-to-noise ratios. Results are in Supplementary Figure
S6a, and they show that the accuracy of lgpr improves consistently
as the data is less noisy.

We also compare our method with the additive Gaussian process
model selection method LonGP (Cheng et al., 2019). Here, we set
up a more difficult covariate selection problem with more covariates
of different types, and also generate non-stationary disease effects
for half of the individuals. Since LonGP uses a sequential model
search, we cannot compute full ROC curves for it. Therefore we
compare performances by counting how often each covariate is
selected. LonGP tends to select very few covariates, and to have
comparable results for lgpr, we set a rather low threshold of T¼80.
Figure 2b shows the number of times each method selected different
covariates across the 100 simulated datasets for both the case where
the disease effect was and was not relevant. We see that lgpr can
more clearly distinguish the relevant covariates. Furthermore, the
average run time per dataset is approximately five times smaller for
lgpr (Fig. 2b).

In addition to T¼80, we include results with the default lgpr
threshold of T¼95. The total covariate selection accuracies for lgpr
using both thresholds as well as LonGP, are shown in
Supplementary Table S1. In additional experiments, we repeat the
experiment with a higher signal-to-noise ratio, and test the behav-
iour of the methods when some of the case individuals are mistaken-
ly modelled as controls. For these additional experiments, the
accuracies are reported in Supplementary Table S1 and proportion

of times each covariate is selected is reported in Supplementary
Figure S6b.

3.1.2 Heterogeneous and temporally uncertain disease effect

modelling

To test the heterogeneous disease effect modelling approach, we
generate data with 16 individuals out of which 8 are cases, but so
that the disease effect is generated for only Naffected ¼ 2, 4, 6 or 8 of
the case individuals. For each dataset replication, the inference is
done using both a heterogeneous and homogeneous model. The
results in Figure 3 show that heterogeneous modelling improves
covariate selection accuracy, and the improvement is clearest when
Naffected ¼ 2. Moreover, in heterogeneous modelling, the posterior
distribution of the individual-specific disease effect magnitude
parameters bid indicates the affected individuals. See Supplementary
Figure S4 for a detailed demonstration of heterogeneous model
inference.

To test the model where the disease effect time is considered un-
certain, we simulated data where the observed disease initiation
time is later than the true generated effect of the disease-related age
covariate. For each dataset we run the inference first by fixing the ef-
fect time to equal the clinically determined onset time (Model 1),
and then using two different priors for the effect time uncertainty.
The first prior is Dt � Expð0:05Þ, meaning that the observed onset
is most likely, and prior mass decays exponentially towards birth
(Model 2). An oracle prior, which is exactly the distribution that is
used to sample the real effect time, is used for reference (Model 3).
The results in Figure 4a show that the uncertainty modelling
improves the covariate selection accuracy, and the oracle prior per-
forms best as expected. Especially, we see that detection of the
disease-related age covariate is more accurate when the uncertainty
is being modelled. See Supplementary Figure S5 for a more specific
demonstration of effect time inference.

3.1.3 Non-Gaussian data

To demonstrate the benefit of using a proper observation model for
count data, we generate negative binomially distributed data and
run the inference using both a Gaussian and NB observation model.
For reference, we also run the inference using the Gaussian observa-
tion model after transforming the counts through mapping
y7! logð1þ yÞ. Results in Figure 4b confirm that using the correct
observation model in lgpr for this kind of count data improves cova-
riate selection accuracy compared to the Gaussian or log-Gaussian
models. We note, however, that covariate selection performance of
the log-Gaussian model improves (relative to that of the NB model)
when data has higher count values and dispersion is smaller, i.e.
when the NB model is better approximated by the log-Gaussian
model.

3.1.4 Experiments under model mismatch

In the previous experiments, the true covariate effects were drawn
from the additive GP priors. To validate the modelling approach fur-
ther, we perform an additional experiment where the true effects are
different types of parametric functions (Supplementary Section S3.6,
Supplementary Fig. S7a). The experiment setup is otherwise the
same as in the comparison against LonGP (Section 3.1.1). We
observed that the component relevances and amount of noise are
captured well also in this case (Supplementary Fig. S7b). We also
test the behaviour of the model and covariate relevance assessment
method when some of the true relevant covariates are not included
in the model. This is a likely scenario in reality, because some true
relevant predictor variables are not necessarily even measured, and
therefore cannot be included in the model. Results in Supplementary
Figure S7b suggest that failure to include relevant components in the
model has the effect that more variance is explained by noise and
individual-specific variation. This is expected behaviour, and we see
that the other true relevant covariates can still be distinguished from
the irrelevant ones, but modellers should be aware of this behaviour
and interpret results accordingly.

Fig. 4. (a) Modelling the uncertainty in the disease effect time enhances covariate

relevance assessment accuracy, when data is generated so that the disease effect can

occur earlier than the observed disease initiation. The left panel shows ROC curves

for covariate relevance assessment with and without modelling the effect time uncer-

tainty. In Model 1, the effect time is fixed to equal the observed initiation time,

whereas Models 2-3 account for its uncertainty. Model 2 has an exponential decay

prior for the difference between the effect time and observed onset. Model 3 has an

oracle prior for the effect time. The right panel shows ROC curves for the same

three models, in the task of classifying just the disease component as relevant or ir-

relevant. (b) Using a discrete observation model improves covariate selection accur-

acy for negative binomially distributed count data
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3.2 Longitudinal proteomics data analysis
We used lgpr to analyse a longitudinal dataset from a recent T1D
study (Liu et al., 2018), where the longitudinal profile of protein
intensities from plasma samples was measured for 11 cases and 10
controls at nine time points that span the initiation of the disease
pathogenesis, resulting in a total of 189 data points for most pro-
teins. We chose to analyse 1538 proteins which were chosen by
requiring that at least 50% of the measurements must have non-
missing values. The exact sample sizes after discarding missing data
for each protein are shown in Supplementary Table S2. Eleven chil-
dren developed T1D, and for those individuals we defined the dis-
ease effect time to be the seroconversion age, which was defined as
age at the first detection of one or multiple T1D autoantibodies (Liu
et al., 2018). We performed our modelling using five covariates: id,
age, diseaseAge, sex and group (case/control). We followed the pre-
processing described in (Liu et al., 2018) to get normalized protein
intensities. Of the categorical covariates, id and sex are modelled as

age-dependent category-specific deviations from the shared age ef-
fect, and group is a constant group offset variable.

Covariate relevances and selection results for all proteins are
included in Supplementary Tables S2 and S3. As an example, both
models confirm the sex association of the Mullerian inhibiting factor
(uniprot id P03971) (Liu et al., 2018), assigning a relevance score of
0.912 for the sex � age interaction term. The homogeneous model
finds 38 and the heterogeneous model finds 66 proteins associated
with the disease-related age covariate, with intersection of 20 pro-
teins. Figure 5a shows the normalized measurements for protein
Q8WA1 and Figures 5c and d show the inferred covariate effects
using the two different disease effect modelling approaches. The
new heterogeneous modelling approach is seen to detect a stronger
average disease effect, because it allows the effect sizes to vary be-
tween individuals. Moreover, the posterior distributions of
individual-specific disease effect magnitude parameters (Fig. 5e), re-
veal four individuals (id ¼ 15; 16; 17; 21) (Fig. 5b), that experience a
strong disease effect near the seroconversion time.

3.3 Longitudinal RNA-seq data analysis
We analysed also read count data from CD4þ T cells of 14 children
measured at 3, 6, 12, 18, 24 and 36 months age (Kallionpää et al.,
2019). The number of available data points was 6 (for 8 children), 5
(2 children), 4 (2 children) or 3 (2 children), resulting in a total of 72
data points. Seven children had become seropositive for T1D during
the measurement interval (cases), while the other seven children
were autoantibody negative (controls). We included 519 highly vari-
able genes in our lgpr analysis, based on preprocessing steps
explained in Supplementary Material. We included the same covari-
ates and components in our lgpr model as in the proteomics data
analysis, and age at the first detection of one or more T1D autoanti-
bodies was again used to compute the disease related age.

Covariate relevances and selection results for all genes are
included in Supplementary Table S4. Our analysis confirms the dif-
ferential expression profile of the IL32 gene between the case and
control individuals (Kallionpää et al., 2019), as the group covariate
is selected with relevance 0.196. The disease-related age was initially
selected as relevant for a total of 73 genes. As the data is sparse and
noisy, we defined a stricter rule and required that the relevance of
the disease-related age component alone is larger than 0.05. This
way we detected 12 interesting, potentially disease development-

Fig. 5. Results of analysing one example protein from a longitudinal proteomics dataset. (a) The normalized measurements for protein Q8WZA1, highlighted based on group

(case or control). The lines connect an individual. (b) Same data where four case individuals (id¼15; 16; 17; 21) are highlighted, based on being determined as affected by the

disease in heterogeneous modelling. (c) Inferred function components, as well as their sum f (using posterior mean parameters), for Q8WZA1 analysed using the homogeneous

and (d) heterogeneous model. The component relevances (relj in Equation 8) for each f ðjÞ; j ¼ 1; . . . ; 5 are 0:229; 0:157; 0:03; 0:031; 0:007 for the homogeneous model and

0:096; 0:116; 0:25; 0:037; 0:004 for the heterogeneous model, respectively. The heterogeneous model selects the disease component as relevant, whereas the homogeneous

model does not. The posterior distributions of the function components and their sum outside observed time points is computed as explained in Supplementary Material. For

clarity, standard deviations are not show for f ð1Þ and fsum. (e) Kernel density estimates for the posterior distributions of the individual-specific disease effect magnitude parame-

ters of the heterogeneous model

Fig. 6. Data and inferred covariate effects for the SIAH3 gene. (a) Raw count data

highlighted based on group (case/control) and (b) sex. (c) Inferred cumulative effect

f and (d) additive function components. Interpolation outside observed time points

is done as explained in Supplementary Material. For clarity, standard deviations are

not show for f ð1Þ and f. The seroconversion times of the seven case individuals, i.e.

used disease effect times, are 12, 12, 18, 24, 18, 12 and 18 months, indicated by the

dashed red vertical lines. Inferred component relevances for f ðjÞ; j ¼ 1; . . . ; 5 are

0:097; 0:098; 0:077; 0:043; 0:015, respectively. The selected covariates are id, age,

diseaseAge and sex
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related genes (highlighted in blue in Supplementary Table S4). As an
example, Figure 6 shows the inferred covariate effects for the SIAH3
(Seven in absentia homolog 3) gene.

4 Conclusions

The lgpr tool provides several important novel features for modelling
longitudinal data and offers a good balance between flexibility and
interpretability. We have shown that the interpretable kernels, hetero-
geneous disease modelling, uncertainty modelling of effect times and
covariate selection strategy of lgpr significantly improve previous lon-
gitudinal modelling methods. The tool has an intuitive syntax, and
thus provides an easy transition from the standard linear mixed mod-
elling tools to Bayesian non-parametric longitudinal regression. It is
widely applicable as the data can involve irregular sampling intervals,
different numbers of measurement points over individuals and
crossed categorical factors. Moreover, many types of response varia-
bles that are common in post-genomic studies (continuous, discrete,
binary, proportion) can be modelled with the proper observation
models. The comprehensive software implementation of lgpr enjoys
state-of-the-art sampling efficiency and diagnostics (Vehtari et al.,
2020) offered by Stan. The user can choose from the numerous pre-
sented modelling options and set various parameter priors (which
have widely applicable defaults). Overall, lgpr has the potential to be-
come a standard tool for statistical analysis of longitudinal data.
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