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Abstract
Artificial	 intelligence	 (AI)	 is	 transforming	 many	 domains,	 including	 finance,	
agriculture,	defense,	and	biomedicine.	In	this	paper,	we	focus	on	the	role	of	AI	
in	clinical	and	translational	research	(CTR),	including	preclinical	research	(T1),	
clinical	research	(T2),	clinical	implementation	(T3),	and	public	(or	population)	
health	(T4).	Given	the	rapid	evolution	of	AI	in	CTR,	we	present	three	comple-
mentary	perspectives:	(1)	scoping	literature	review,	(2)	survey,	and	(3)	analysis	
of	federally	funded	projects.	For	each	CTR	phase,	we	addressed	challenges,	suc-
cesses,	failures,	and	opportunities	for	AI.	We	surveyed	Clinical	and	Translational	
Science	Award	(CTSA)	hubs	regarding	AI	projects	at	their	institutions.	Nineteen	
of	 63	 CTSA	 hubs	 (30%)	 responded	 to	 the	 survey.	 The	 most	 common	 funding	
source	 (48.5%)	 was	 the	 federal	 government.	 The	 most	 common	 translational	
phase	 was	 T2	 (clinical	 research,	 40.2%).	 Clinicians	 were	 the	 intended	 users	 in	
44.6%	of	projects	and	researchers	in	32.3%	of	projects.	The	most	common	compu-
tational	approaches	were	supervised	machine	learning	(38.6%)	and	deep	learning	
(34.2%).	The	number	of	projects	steadily	increased	from	2012	to	2020.	Finally,	we	
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INTRODUCTION AND 
BACKGROUND

Artificial	 intelligence	 (AI)	 has	 experienced	 multiple	
“boom	 and	 bust”	 cycles	 since	 the	 term	 was	 first	 coined	
by	 computer	 and	 cognitive	 scientist	 John	 McCarthy	 in	
1955.	 Historically	 biomedical	 AI	 applications	 (Figure  1)	
included	symbolic	systems	(e.g.,	HELP	system1	and	sub-
sequent	Arden	Syntax,2	MYCIN,3	and	INTERNIST-	I4)	and	
statistical	 or	 “subsymbolic”	 (e.g.,	 Leeds	 abdominal	 pain	
system5).

Perhaps	 the	 most	 popular	 symbolic	 approaches	 were	
rule-	based	 systems	 (including	 the	 Arden	 syntax	 and	
MYCIN)	 that	 implemented	“if-	then”	rules.	For	example,	
consider	the	following	MYCIN	rule3:

IF:	1)	The	gram	stain	of	the	organism	is	gram	neg,	and
2)	The	morphology	of	the	organism	is	rod,	and
3)	The	aerobicity	of	the	organism	is	anaerobic

THEN:	There	is	suggestive	evidence	(0.6)	that	the	iden-
tity	of	the	organism	is	bacteroides.

Rule-	based	 approaches	 are	 intuitively	 easy	 to	 under-
stand,	 but	 may	 not	 work	 well	 for	 complex	 applications	
typical	 in	 biomedicine.	 Large	 collections	 of	 rules	 (“rule	
bases”)	can	be	difficult	to	maintain	and	explicitly	encod-
ing	the	many	exceptions	that	are	common	in	biomedicine	
(e.g.,	oral	 temperature	may	not	be	 reliable	 if	 the	patient	
just	drank	a	hot	beverage)	is	impractical.6

Most	 recent	 approaches	 are	 statistical	 and	 are	 often	
referred	 to	as	“machine	 learning”	 (ML).	Many	statistical	
systems	implement	some	version	of	supervised	ML	where	
the	 algorithm	 requires	 a	 “training	 set”	 of	 labeled	 exam-
ples	 (e.g.,	patients	with	vs.	without	a	particular	disease).	
The	algorithm	learns	to	differentiate	between	positive	and	
negative	examples	based	on	“features”	(e.g.,	laboratory	test	
results	and	clinical	findings)	that	are	associated	with	the	
outcome	of	interest	(e.g.,	presence	of	the	disease).	In	con-
trast,	 unsupervised	 ML	 algorithms	 cluster	 similar	 cases	
together	without	the	need	for	a	labeled	training	set.	Thus,	
an	unsupervised	algorithm	can	report	that	“these	cases	are	
similar	to	each	other,”	but	not	what	the	similarity	means.

More	recently,	a	particular	class	of	ML	models	called	
“deep	 learning”	has	become	popular	due	 to	 the	models’	
ability	to	solve	problems	that	cannot	be	defined	precisely,	
such	as	differentiating	malignant	from	benign	skin	lesions	
based	on	images	of	the	lesions.7	Deep	learning	models	rely	
on	 multilayer	 (thus	 “deep”)	 neural	 networks.	 Although	
neural	networks	were	described	over	60 years	ago,8	they	
became	 much	 more	 useful	 with	 modern	 computers	 ap-
plied	to	very	large	data	sets	that	were	not	previously	avail-
able.	We	are	currently	in	an	“AI	boom”	phase,	fueled	by	
increased	 availability	 of	 large	 clinical	 and	 research	 data	
sets	(“big	data”),	rapid	development	of	novel	statistical	al-
gorithms	that	leverage	big	data,	and	the	ubiquitous	access	
to	faster,	cheaper,	and	ever	more	powerful	computers.

At	least	two	communities	are	involved	in	biomedical	
AI.	 The	 first	 group	 is	 comprised	 of	 “methodologists,”	
including	 statisticians,	 machine	 learning	 experts,	 and	
computer	and	“data”	scientists.	The	second	community	
is	 comprised	 of	 “domain	 experts,”	 including	 biomedi-
cal	 scientists,	 clinicians,	 and	 healthcare	 administrators	
who	understand	the	problems	and	the	data	but	too	often	
are	working	separately	 from	the	methodologists.	These	
communities	have	very	different	perspectives,	including	
largely	 separate	 literatures,	 conferences,	 academic	pro-
motion	 criteria,	 and	 cultures.	 A	 particular	 challenge	 is	
to	 identify	 specific	 important	problems	 that	can	be	ad-
dressed	by	AI	given	available	data	and	algorithms	where	
the	results	can	meaningfully	impact	clinical	care.9	This	
may	 be	 one	 reason	 why	 multiple	 research	 and	 clinical	
applications	 have	 been	 developed,	 but	 relatively	 few	
applications	 have	 successfully	 transitioned	 from	 algo-
rithms	 that	 perform	 well	 on	 standardized	 data	 sets	 to	
operational	 systems	 demonstrated	 to	 improve	 clinical	
outcomes.

Since	 2006,	 the	 CTSA	 program	 has	 included	 efforts	
to	 bring	 methodologists	 and	 domain	 experts	 together	 in	
service	 of	 translational	 science	 and	 clinical	 application.	
CTSA	institutions	or	“hubs”	have	explicitly	been	commit-
ted	 to	 clinical	 and	 translational	 science	 and	 each	 CTSA	
hub	 includes	 defined	 efforts	 in	 biomedical	 informatics	
as	well	as	biostatistics.	These	efforts	ideally	include	both	
methodologists	and	domain	experts.	Thus,	the	CTSA	hubs	

1306-	04608,	the	Reynolds	and	Reynolds	
Professorship	in	Clinical	Informatics,	
and	the	Cancer	Prevention	Research	
Institute	of	Texas	(CPRIT)	Data	Science	
and	Informatics	Core	for	Cancer	
Research	(RP170668).

analyzed	2604	AI	projects	at	CTSA	hubs	using	the	National	Institutes	of	Health	
Research	Portfolio	Online	Reporting	Tools	(RePORTER)	database	for	2011–	2019.	
We	mapped	available	abstracts	to	medical	subject	headings	and	found	that	nerv-
ous	 system	(16.3%)	and	mental	disorders	 (16.2)	were	 the	most	 common	 topics	
addressed.	From	a	computational	perspective,	big	data	(32.3%)	and	deep	learning	
(30.0%)	were	most	common.	This	work	represents	a	snapshot	in	time	of	the	role	
of	AI	in	the	CTSA	program.
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are	likely	to	be	leaders	in	the	application	of	AI	to	clinical	
and	translational	science.

Motivated	 by	 the	 desire	 to	 facilitate	 clinically	 rele-
vant	applications	of	AI,	we	present	three	complementary	
“views”	 onto	 this	 rapidly	 evolving	 field.	 First,	 we	 con-
ducted	a	scoping	review10	of	biomedical	AI	efforts	in	the	
published	literature.	We	adopted	the	National	Center	for	
Advancing	Translational	Science	(NCATS)	vision	of	trans-
lational	science,11	to	identify	challenges	and	opportunities	
for	AI	across	the	translational	science	spectrum.	However,	
the	published	literature	provides	an	incomplete	view.	For	
example,	 applications	 implemented	 and	 maintained	 by	
the	 clinical	 enterprise	 may	 not	 be	 described	 in	 publica-
tions.	Thus,	we	surveyed	CTSA	hubs	to	self-	identify	exist-
ing,	funded	AI	projects	at	CTSA	hubs.	Finally,	to	identify	
additional	 projects	 and	 ongoing	 work,	 we	 analyzed	 bio-
medical	 AI	 projects	 at	 CTSA	 hubs	 funded	 by	 the	 US	
National	Institutes	of	Health	(NIH)	and	the	US	National	
Science	Foundation	(NSF).

SCOPING REVIEW METHODS

The	search	strategy	was	created	by	the	reference	team	at	
the	Houston	Academy	of	Medicine–	Texas	Medical	Center	
(HAM-	TMC)	library.	Customized	search	queries	were	cre-
ated	 for	 each	 phase	 of	 clinical	 and	 translational	 science	
(T1–	4).	Searches	were	executed	during	the	week	of	August	
10,	2020,	using	Ovid	(https://www.ovid.com)	that	includes	
MEDLINE-	indexed	literature	as	well	as	additional	PubMed	
articles.	 Ovid	 was	 available	 via	 the	 HAM-	TMC	 library.	
Supplementary	Material	SA	describes	the	precise	queries.

Inclusion	 criteria	 were	 difficult	 to	 define	 precisely.	
For	 example,	 how	 to	 determine	 whether	 a	 publication	
described	 a	 quality	 improvement	 project	 that	 was	 later	
published	or	a	clinical	application	(i.e.,	T2	or	T3	research).	
Thus,	the	first	author	reviewed	all	titles/abstracts	to	cate-
gorize	references	as	“not	relevant,”	“possibly	relevant,”	or	
“relevant”	 (see	 table	 in	 Supplementary	 Material	 SA).	 In	
addition,	the	results	for	each	section	were	independently	
reviewed	by	a	second	author	for	inclusion.	Section	authors	

were	also	free	to	add	references	outside	of	the	systematic	
search	strategy.	The	section	authors	made	the	final	deci-
sion	to	include	or	exclude	a	particular	reference.

PRECLINICAL RESEARCH (T1)

Challenges

Early	drug	development	is	a	prototypical	and	challenging	
preclinical	research	area.	Important	areas	in	early	drug	de-
velopment	include	methods	to	interpret	high	throughput	
data	for	target	discovery	or	target	selection,	in	silico	mod-
eling	for	drug	discovery,	prioritizing	potential	compounds	
for	 synthesis,	 and	 experimental	 validation.	 Some	 of	 the	
methods	and	databases	in	this	space	have	recently	been	re-
viewed	by	Rifaioglu	et	al.12	Once	potential	drug	candidates	
are	synthesized,	 there	 is	a	pressing	need	to	 increase	effi-
ciency	and	speed	of	drug	screening	as	well	as	to	optimize	
the	most	promising	compound	(the	lead	compound)	that	
has	activity	against	the	target,	to	increase	efficacy,	decrease	
toxicity,	and	achieve	optimum	pharmacokinetics	(i.e.,	lead	
optimization).	Specific	challenges	include:	(1)	rapidly	test-
ing	combination	therapies	with	the	lead	compounds	early	
in	 drug	 development,	 (2)	 identifying	 new	 targets	 for	 ex-
isting	compounds	 for	drug	 repurposing,	 (3)	model	phar-
macokinetics	 and	 pharmacodynamics	 to	 predict	 optimal	
dose,	(4)	identify	and	validate	relevant	biomarkers,	and	(5)	
assess	safety	and	efficacy	during	early	in	vivo	studies.

There	are	several	reports	of	predicting	drug	response	
using	ML	or	deep	neural	networks,	often	integrating	mo-
lecular	features.13–	15	Chen	and	Zhang	did	a	recent	survey	
and	systematic	assessment	of	four	classical	methods	and	
13	computational	methods	 for	drug	 response	prediction	
using	four	public	drug/response	datasets.	They	hypothe-
sized	that	drug	response	prediction	can	be	framed	as	a	su-
pervised	learning	problem,	and	that	given	a	training	drug/
response	dataset	with	cell	lines	and	drugs,	a	response	can	
be	learned	and	subsequently	used	to	predict	the	response	
to:	(1)	a	known	drug	(in	the	training	dataset)	in	a	new	cell	
line,	(2)	a	new	drug	in	a	known	cell	line,	or	(3)	a	new	drug	

F I G U R E  1  A	Artificial	intelligence	
(AI)	concepts

Ar�ficial Intelligence (AI)

Symbolic AI Sta�s�cal (or Subsymbolic) 
AI or Machine Learning

Rule-based systems

Supervised learning Unsupervised learning 
(clustering)

https://www.ovid.com
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in	a	new	cell	line.	The	performance	of	different	classes	of	
computational	models	varied,	but	the	overall	performance	
suggested	that	there	is	still	much	room	for	improvement.	
They	 also	 found	 with	 existing	 methods,	 mutation,	 copy	
number	 variants,	 and	 methylation	 profiles	 of	 cell	 lines	
and	drug	grouping	contributed	little	to	drug	response	pre-
diction	when	added	to	the	gene	expression	profile.	How	
to	best	integrate	omics	data	remains	an	open	question.	In	
addition,	we	know	that	each	cell	line	is	unique	and	AI	ap-
proaches	that	can	“personalize”	treatments	to	individual	
molecular	profiles	may	be	useful.

Successes

Processing	 and	 interpreting	 data	 from	 high-	throughput	
studies	 is	 an	 important	 area.	 For	 example,	 proteomics	
based	on	liquid	chromatography	with	tandem	mass	spec-
trometry	 (LC-	MS/MS)	 is	 a	 well-	established	 approach	 for	
biomarker	discovery	and	target	validation.	This	technology	
generates	massive	data	sets	that	are	almost	impossible	to	
interpret	manually.	Zohora	et	al.	proposed	a	deep	learning-	
based	 model,	 Deepiso,	 that	 combines	 convolutional	 and	
recurrent	neural	networks	to	detect	peptide	features	of	dif-
ferent	charge	states,	as	well	as	to	estimate	their	intensity.16	
They	 demonstrated	 that	 the	 peptide	 feature	 list	 reported	
by	Deepiso	matched	with	97.43%	of	high-	quality	MS/MS	
identifications	in	a	benchmark	dataset,	which	was	higher	
than	 several	 widely	 used	 tools.	 The	 model	 also	 could	 be	
“retrained”	with	missed	features	to	evolve	and	improve.

Failures

There	is	a	growing	body	of	literature	describing	AI	appli-
cations	for	target	or	drug	discovery,	to	identify	biomarkers	
of	response	or	to	select	therapy.	Unfortunately,	many	pre-
clinical	papers	have	predictions	with	no	or	limited	valida-
tion.	 Recent	 applications	 of	 deep	 learning	 and	 AI	 for	 in	
silico	drug	discovery	are	promising.	However,	due	in	part	
to	the	long	time	required	to	develop	a	new	drug,	few	such	
findings	have	entered	clinical	trials.	Some	targets	identi-
fied	using	virtual	screening	have	already	failed	to	achieve	
clinical	 success.17	Thus	overall,	AI	has	not	yet	delivered	
on	 its	 promise	 as	 many	 AI	 studies	 have	 not	 been	 trans-
lated	into	approved	drugs,	biomarkers,	or	clinical	therapy	
selection	algorithms.

Opportunities

Although	drug	discovery	using	AI	is	still	in	its	infancy,	this	
area	 still	 has	 much	 potential,	 and	 many	 pharmaceutical	

companies	have	started	to	invest	in	AI	strategies	for	discov-
ery.	Gene	function	and	gene	variant	annotation,	biomarker	
discovery,	and	literature	mining,	are	all	examples	of	areas	
where	data	are	being	generated	too	rapidly	for	manual	ap-
proaches	and	AI-	based	tools	will	be	essential	for	progress.	
With	 evolution	 of	 new	 fields,	 there	 may	 be	 new	 needs	
emerging	that	can	leverage	AI,	such	as	immuno-	oncology	
and	 the	 need	 to	 predict	 tumor	 neoantigens.18	 In	 transla-
tional	research,	there	is	growing	interest	in	simultaneously	
assessing	multiple	markers,	 such	as	use	of	multiplex	 im-
munohistochemistry	 in	 oncology,19,20	 assessing	 features	
of	 the	 tumor	 as	 well	 as	 the	 microenvironment.21	 Deep	
learning-	based	image	analysis	is	also	being	explored.22

Application	 of	 AI	 to	 basic	 and	 translational	 research	
is	a	clear	opportunity	for	team	science.	It	is	essential	that	
basic	and	translational	researchers	learn	more	about	the	
capabilities	of	AI.	There	are	many	AI-	derived	predictions	
of	new	drugs,	new	indications	for	existing	drugs,	or	new	
biomarkers.	Commercial	(start-	up)	companies	that	lever-
age	AI	to	improve	drug	discovery	have	an	important	role	
to	 play	 in	 realizing	 the	 potential	 of	 AI	 in	 preclinical	 re-
search,	sometimes	cooperating	with	academic	institutions	
resulting	 in	 research	 alliances.	 Multidisciplinary	 teams	
consisting	of	computer	scientists,	bioinformaticians,	clin-
ical	 informaticians,	 basic	 and	 translational	 researchers,	
and	clinical	domain	experts	can	ensure	the	clinical	poten-
tial	of	these	findings	can	be	assessed,	with	promising	find-
ings	moving	through	preclinical	and	into	clinical	testing.

CLINICAL RESEARCH (T2)

Challenges

Perhaps	 the	 most	 important	 challenge	 to	 application	 of	
AI	 in	 clinical	 research	 may	 be	 the	 clinical	 environment	
itself.	The	rising	complexity	and	cost	of	development,	par-
ticularly	developing	and	testing	new	therapies,	is	a	major	
challenge	 for	 clinical	 research.23	 Specifically,	 challenges	
related	 to	 eligibility	 screening,	 data	 collection,	 and	 data	
verification	 have	 consistently	 been	 reported23–	27	 as	 has	
failure	 of	 well-	controlled	 clinical	 trials	 to	 generalize	 to	
real-	world	 practice.28	 These	 challenges	 continue	 to	 urge	
consideration	of	observational	study	designs	that	leverage	
real-	world	 evidence.29	 Over	 the	 last	 decade,	 informatics	
approaches,	such	as	AI,	have	been	called	to	help	address	
these	challenges.23,24

Another	 challenge	 is	 the	 significant	 human	 effort	 re-
quired	 to	 construct	 large	 training	 data	 sets	 required	 for	
accurate	 supervised	 ML.	 As	 an	 example,	 a	 system	 that	
achieved	dermatologist-	level	classification	of	skin	lesions	
was	trained	on	129,450	labeled	images.7	Further,	even	when	
training	data	are	available,	human	expertise	is	required	to	
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implement	the	model	in	a	particular	environment.	Thus,	
significant	effort	has	been	devoted	to	decrease	the	human	
effort	and	expertise	required	for	ML,	including	algorithms	
to	automate	feature	selection	and	optimize	hyperparame-
ters	(i.e.,	parameters	required	by	the	ML	model).	A	recent	
review	identified	limitations	of	existing	ML	approaches	in	
healthcare,	such	as	inability	to	consistently	perform	across	
the	size	and	variety	of	data	within	biomedicine,	and	lim-
ited	demonstration	in	health	care.30

Successes

Of	 the	 100	 distinct	 articles	 identified	 in	 our	 search,	 39	
described	development	or	application	of	AI	in	clinical	re-
search.	An	additional	23	described	clinical	uses	of	AI,	such	
as	outcome	prediction	or	classification	that	could	also	be	
applied	in	clinical	studies.	Promising	approaches	leverag-
ing	the	complementary	strengths	of	humans	and	comput-
ers	 have	 been	 developed.31	 These	 approaches	 recognize	
that	computers	can	support,	 rather	 than	replace,	human	
decision	 making.	 For	 example,	 relevant	 data	 can	 be	 se-
lected	using	AI	and	presented	to	a	human	who	can	use	a	
resulting	visualization	to	make	better	decisions.	Signal	pro-
cessing	(e.g.,	electroencephalography32),	electronic	health	
record	(EHR)	phenotyping	(i.e.,	identifying	patients	with	
specific	conditions	or	characteristics,	such	as	smoking	sta-
tus33),	various	predictive	models	(e.g.,	sepsis34	and	breast	
cancer	progression35)	have	been	developed,	validated,	and	
found	to	perform	well	on	the	validation	data	set.

Failures

Clinical	 research	 poses	 multiple	 challenges	 to	 ML.	 For	
example,	 computer	 programs	 used	 to	 process	 data	 sub-
mitted	for	regulatory	decision	making	require	validation,	
as	 described	 in	 the	 code	 of	 federal	 regulations.36	 If	 the	
requirements	 in	 the	 US	 Food	 and	 Drug	 Administration	
(FDA)	guidance	on	patient-	reported	outcomes37	were	ap-
plied	to	AI,	developers	would	be	required	to	demonstrate	
validity	 or	 comparable	 performance	 in	 the	 data	 set	 and	
the	patient	population	under	study.	The	potential	for	bias	
due	 to	under-	representation	of	groups	during	model	de-
velopment	is	well-	known.	In	other	words,	ML	models	are	
limited	by	the	data	used	for	development.	These	data	may	
differ	in	unexpected	ways	from	additional	data	in	which	
they	will	be	applied.	Over-		or	under-	fitting	has	the	poten-
tial	to	cause	inaccuracy	or	bias	in	study	data.	Operation	at	
scale	 is	 also	 particularly	 challenging	 in	 clinical	 research	
settings.	For	example,	the	variety	of	data	sources	used	in	
clinical	studies	has	significantly	increased	the	challenge	of	
achieving	and	verifying	performance	in	new	data	sources	

and	new	data	sets.38,39	Further,	the	data	used	in	a	clinical	
study	 are	 specific	 to	 the	 research	 question.	 As	 such,	 in-
formation	systems	used	for	clinical	studies	require	some	
level	of	customization	to	support	the	study,	including	spe-
cific	data	elements,	data	flow,	or	workflow.	Study-	to-	study	
variation	poses	challenges	to	the	use	of	general	AI	pipe-
lines.	Simultaneously,	time	pressures	require	application	
of	existing	or	at	least	easily	configurable	solutions.

Opportunities

Resource	 constrained	 academic	 settings	 favor	 grant-	
funded	 AI	 development	 and	 demonstration	 rather	 than	
AI	 infrastructure	 implemented	 at	 scale.	 Further,	 dem-
onstration	of	new	technology	in	industry	funded	clinical	
studies	have	historically	been	less	rigorous	and	published	
in	the	trade	literature,	or	viewed	as	trade	secrets	and	in-
frequently	published.40	A	recent	 industry	meeting	on	AI	
in	 clinical	 research	 hosted	 by	 the	 European	 Medicines	
Agency	 featured	 presentation	 of	 multiple	 opportunities	
for	application	of	AI	in	clinical	research,	including	clini-
cal	 data	 management—	such	 as	 data	 cleaning,	 fraud	 de-
tection,	 protocol	 violation	 trend	 detection,	 building	 and	
validation	 of	 synthetic	 control	 arms,	 and	 classification	
of	clinical	events,	conditions,	or	findings.	Demonstration	
projects	for	each	were	presented,	only	one	of	which	was	
published	in	the	peer-	reviewed	literature.41,42

There	is	an	opportunity	to	identify	“digital	biomarkers”	
based	on	algorithms	processing	various	data	sets,	perhaps	
derived	from	wearable	technology,	such	as	smart	watches,	
smart	 phones,	 or	 pedometers.43	 For	 example,	 output	 of	
wearables,	such	as	pedometers	that	count	steps,	could	be	
useful	 to	 monitor	 vulnerable	 elderly	 patients	 at	 risk	 for	
rapid	deterioration.	However,	AI	may	be	useful	to	distin-
guish	variation	due	to	new	or	worsening	illness	from	other	
causes	(e.g.,	fewer	steps	while	travelling).

There	 are	 multiple	 opportunities	 for	 AI	 to	 facilitate	
clinical	 research	 processes.	 For	 example,	 AI	 has	 the	 po-
tential	 to	 make	 previously	 subjective	 assessment	 more	
objective	 (e.g.,	 assessment	 of	 conjunctival	 hyperemia44)	
and	automatically	identify	potentially	eligible	patients	for	
clinical	trials.45

CLINICAL IMPLEMENTATION (T3)

Challenges

A	fundamental	challenge	is	to	translate	the	many	promis-
ing	AI	advances	that	could	potentially	transform	health-
care	 into	 clinical	 practice.	 Clinical	 implementation	
requires	 validation	 to	 assess	 algorithm	 performance	 in	
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“real-	world”	 clinical	 settings.	 However,	 these	 are	 often	
lacking.46	 These	 studies	 are	 important	 to	 ensure	 patient	
safety	 and	 reliability	 by	 building	 trust	 and	 accountabil-
ity.47,48	Ultimately,	healthcare	providers	and	patients	must	
both	accept	and	trust	 the	recommendations	provided	by	
the	system.48

Another	 challenge	 is	 the	 human-	computer	 interac-
tions,	 which	 ensure	 that	 the	 technology	 is	 user-	friendly	
with	 interpretable	 and	 actionable	 output.31	 Additional	
challenges	 include	 the	 inability	 of	 existing	 EHR	 work-
flows	 to	 integrate	 the	 technology	 as	 well	 as	 legal	 and	
ethical	 issues,	 especially	 those	 relating	 to	 accountability	
and	privacy.47,48	These	challenges	must	be	overcome	and	
often	 require	 an	 interdisciplinary	 team	 in	 all	 phases	 of	
implementation.49

Successes

Successful	clinical	implementation	of	AI	technology	into	
existing	workflows	include	the	machine	learning	model,	
Sepsis	 Watch,	 occurring	 in	 three	 phases	 over	 2  years	 at	
Duke	 Health.47	 Another	 example	 is	 the	 IDx-	DR	 device	
used	in	patients	with	diabetes	to	detect	greater	than	mild	
diabetic	retinopathy	and	macular	edema.	After	complet-
ing	a	successful	clinical	trial	with	900	patients,	 the	FDA	
approved	IDx-	DR	in	2018	making	it	the	first	commercially	
available,	 autonomous	 AI	 diagnostic	 medical	 device.50	
FDA	approval	of	AI-	based	medical	devices	and	algorithms	
since	2010	 includes	64	devices	and	algorithms	approved	
with	a	510K	clearance	(85.9%),	de	novo	clearance	(12.5%)	
and	premarket	approval	(1.6%),	mostly	in	radiology,	cardi-
ology,	and	internal	medicine.51

Failures

Failures	 of	 clinical	 implementation	 are	 largely	 attrib-
uted	 to	 the	 lack	of	meaningful	validations,47	as	well	as	
legal,	 regulatory,	 and	 ethical	 issues,	 including	 patient	
privacy.	Patients	must	be	aware	 that	 their	data	may	be	
used	for	algorithm	development	and/or	stored	in	alter-
nate	locations.48,52	These	technologies	must	also	address	
adaptation	 strategies	 to	 the	 healthcare	 landscape,	 in-
cluding	 changes	 to	 the	 EHR,	 payments,	 diagnosis,	 and	
treatment.48	Another	important	consideration	is	the	po-
tential	“learning”	bias	that	could	impact	many	patients	
within	 diverse	 and	 under-	represented	 populations.53	
FDA	approval	of	AI	 technologies	 is	 challenging	due	 to	
the	opacity	of	black-	box	algorithms	that	(1)	 lack	expla-
nations	 for	 their	 predictions	 or	 recommendations	 and	
(2)	permit	continued	learning	of	algorithms	adapting	to	
new	information.54,55

Opportunities

Opportunities	 include	 improving	 methods	 to	 validate	
AI	 technologies	 with	 implementation	 into	 healthcare	
workflows.	Peer-	reviewed	journals	can	assist	 in	facilitat-
ing	clinical	validations	by	emphasizing	important	factors	
focusing	on	diagnostic	accuracy	and	efficacy.46	AI	appli-
cations	should	be	evaluated	for	usability	by	tracking	key-
strokes,	mouse	clicks,	eye	tracking,	etc.31	Multidisciplinary	
teams	of	researchers,	providers,	and	regulators	should	be	
engaged	 to	 address	 regulatory	 hurdles	 of	 validation	 and	
continued	 algorithm	 learning	 while	 providing	 transpar-
ency.54	Regulatory	requirements	should	include	algorith-
mic	stewardship	to	provide	ongoing	oversight	that	ensures	
safety,	effectiveness,	and	fairness	in	diverse	populations.53	
In	fact,	clinical	validations	and	successful	implementation	
of	AI	into	clinical	workflows	will	enhance	development	of	
best	practices.47	AI	has	great	potential	to	provide	low-	cost,	
superior	predictive	models	decreasing	clinician	cognitive	
load	 once	 issues	 of	 acceptability,	 fairness,	 and	 transpar-
ency	have	been	addressed.56

PUBLIC (POPULATION) HEALTH 
(T4)

Challenges

Challenges	to	the	use	of	AI	for	population	health	include	
data	 quality	 and	 quantity,	 technology	 performance,	 as	
well	 as	 implementation	 and	 process	 change.	 Population	
health	 usually	 involves	 data	 from	 multiple	 resources	 at	
different	levels	of	granularity.	For	example,	to	characterize	
and	forecast	an	infectious	disease	outbreak	in	a	region,	we	
may	get	weekly,	state-	level	counts	of	laboratory	confirmed	
cases	 from	the	National	Notifiable	Diseases	Surveillance	
System57;	a	daily	number	of	cases	from	healthcare	systems	
that	may	serve	populations	across	state	boundaries;	pop-
ulation	 information	 in	 census	 tracts;	 internet	 search	 ac-
tivities	(zip	code	level);	and	interaction	information	from	
social	media,	like	Facebook	and	Twitter	(random	samples	
from	a	region).	Linking	these	data	and	handling	the	hier-
archical	relationships	is	still	challenging.

Many	other	challenges	arise	in	deploying	AI	for	popu-
lation	health.	For	example,	natural	language	processing	
(NLP),	 can	 automatically	 retrieve	 clinical	 and	 behav-
ioral	 findings	 from	 free-	text	 medical	 reports,	 which	
greatly	enriches	the	clinical	features	in	epidemiology	re-
search	(e.g.,	lifestyle	exposure	for	Alzheimer’s	disease58).	
However,	 some	 misclassification	 is	 inevitable	 and	 may	
increase	 when	 applying	 NLP	 to	 new	 medical	 docu-
ments	 different	 from	 those	 that	 were	 used	 to	 train	 the	
tool.	Furthermore,	generalizability	is	still	a	challenge	for	
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machine	learned	models:	a	predictive	model	that	is	well-	
developed	using	data	from	one	region	may	not	perform	
well	 in	 another	 region	 that	 has	 a	 different	 population	
served	 by	 a	 different	 healthcare	 system.59–	61	 Regarding	
its	application,	the	success	of	AI	depends	not	just	on	sci-
ence,	but	also	on	real-	world	implementation	and	process	
change	(e.g.,	public	health	decision	making).62

Successes

AI	 has	 been	 successfully	 applied	 to	 population	 surveil-
lance.	Examples	include	novel	syndromic	surveillance	sys-
tems	that	use	medical	NLP	and	Bayesian	network	models	
to	process	 free-	text	medical	reports,	 infer	 infectious	res-
piratory	disease	outbreaks,	and	detect	emerging	diseases	
in	 populations.63,64	 The	 openly	 available	 public	 health	
intelligence	system	Health-	Map	integrates	data	from	dis-
parate	sources	to	produce	a	global	view	of	infectious	dis-
ease	threats.65	NLP	tools	can	automatically	analyze	public	
tweets,	monitor	population	medication	abuse,66	and	ad-
verse	 drug	 reactions.67	 Integrative	 spatiotemporal-	based	
analytical	methods	 for	population	cohort	studies	of	opi-
oid	poisoning	in	New	York	State	reveal	trends	that	reflect	
gender,	age,	economics,	and	location.68

AI	 for	 epidemiology	 studies	 is	 also	 promising.	 Text	
knowledge	 engineering	 tools	 facilitate	 automatic	 cohort	
identification	 for	 research.69	 NLP	 tools	 successfully	 ex-
tract	stage,	histology,	tumor	grade,	and	therapies	from	the	
EHRs	of	patients	with	lung	cancer70	and	unsupervised	ML	
can	facilitate	discovery	of	 latent	disease	clusters	and	pa-
tient	subgroups	from	EHRs.71	These	discoveries	may	help	
researchers	detect	underlying	patterns	of	diseases,	which	
is	a	growing	trend	in	epidemiology	research.

Other	successes	involve	environmental	health,	popula-
tion	genomics,	death	registration,	etc.	A	recent	study	has	
determined	with	high	accuracy	the	effects	of	severe	aerial	
urban	 pollution	 on	 facial	 images.72	 ML-	based	 curation	
systems	 have	 classified	 genomic	 translational	 research	
through	 a	 Public	 Health	 Genomics	 Knowledge	 Base.73	
Finally,	a	deep	neural	network-	based	model	successfully	
coded	causes	of	death	in	French	death	certificates.74

Failures

No	existing	AI	system	is	error-	free.	For	example,	Google	
Flu	Trends	was	wrong	for	100	out	of	108 weeks	between	
2011	and	2013,75	and	it	missed	the	2009	swine	flu	(H1N1)	
pandemic.	System	errors	can	lead	to	severe	consequences	
for	populations.	Therefore,	policy	makers	should	still	view	
AI	technology	as	a	complementary	to	human	experts,	not	
as	replacements.

Opportunities

AI	methods	enable	retrieval	of	health	and	non-	health	data	
about	 populations	 and	 communities	 at	 different	 levels	 of	
granularity.	 For	 population-	level	 epidemiology	 studies,	
collaborative	 efforts	 demonstrate	 the	 value	 of	 AI,	 such	 as	
the	 Observational	 Health	 Data	 Sciences	 and	 Informatics	
Program	(over	half	a	billion	patient	records)76;	the	Accrual	
to	Clinical	Trials	Network	(over	16	states)77;	 the	All	of	Us	
Program	 (over	 one	 million	 or	 more	 people	 from	 across	
the	 United	 States)78;	 the	 PaTH	 Network79	 of	 the	 National	
Patient-	Centered	 Clinical	 Research	 Network	 (348	 health	
systems	 and	 over	 857K	 care	 providers);	 and	 the	 National	
Mesothelioma	Virtual	Bank	includes	over	10 years	of	speci-
mens	 to	 support	 the	 nationwide	 research	 of	 this	 rare	 and	
lethal	 disease.80	 For	 healthcare	 policy	 and	 management,	
probabilistic	record	 linkage	of	de-	identified	administrative	
claims	 and	 electronic	 health	 records	 at	 the	 patient	 level81	
will	facilitate	cost-	effectiveness	analysis.	For	population	sur-
veillance,	social	media,	such	as	Twitter,	is	becoming	a	useful	
tool	for	population	health	surveillance	and	research	involv-
ing	the	Affordable	Care	Act,	health	organizations,	obesity,	
pet	exposure,	sexual	health,	transgender	health,	and	vacci-
nation.82	For	community	intervention,	AI	technology	is	en-
abling	smart	interventions—	using	wearable	devices,	smart	
phones	to	monitor	patients’	health	status,83	diet,84	and	medi-
cation	adherence.85	Moreover,	ML	may	improve	both	pre-
dictive	models	and	causal	 inference	 that	can	 identify	new	
and	 more	 effective	 approaches	 to	 reduce	 inequalities	 and	
improve	population	health.86	Translational	health	dispari-
ties	research	is	being	enhanced	by	big	data	approaches,	in-
cluding	linking	structured	data,	harmonizing	data	elements,	
fostering	citizen	science,	developing	 large	 longitudinal	co-
horts,	and	mining	internet	and	social	media	data.87

AI AND ML APPLICATIONS 
ACROSS THE CTSA CONSORTIUM

Not	all	AI/ML	projects	are	reflected	in	the	published	liter-
ature.	For	example,	operational	projects	within	a	health	
system	may	not	reliably	yield	MEDLINE-	indexed	publi-
cations.	 In	addition,	 the	 field	 is	moving	so	quickly	 that	
ongoing	projects	may	be	different	from	published	work.	
To	 provide	 an	 additional	 perspective,	 we	 conducted	
a	 survey	 of	 63	 CTSA	 hubs	 about	 their	 AI/ML	 projects,	
including	 translational	 phase,	 funding,	 intended	 users,	
and	AI	approach	(see	Supplementary	Material	SB).	The	
survey	was	administered	using	REDCap88	hosted	at	The	
University	 of	 Texas	 Health	 Science	 Center	 at	 Houston.	
Informatics	component	directors	at	each	CTSA	site	were	
the	 points	 of	 contact	 (POCs).	 POCs	 were	 contacted	 via	
email	 and	 asked	 to	 coordinate	 the	 survey	 response	 on	
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behalf	of	their	institution.	After	2 weeks,	POCs	for	hubs	
without	 responses	 were	 contacted	 again	 and	 asked	 to	
complete	the	survey.

As	a	complement	to	the	survey,	we	retrieved	all	funded	
federal	 grants	 to	 the	 63	 CTSA	 hubs	 for	 the	 years	 2011–	
2019	 using	 NIH	 Research	 Portfolio	 Online	 Reporting	
Tools	 (RePORTER,	 https://repor	ter.nih.gov/,	 March	 17,	
2021).	Years	 2020–	2021	 were	 excluded	 because	 abstracts	
were	not	available	via	the	RePORTER	API.	We	then	used	
the	Medical	Text	Indexing	software89,90	to	tag	each	result	
with	MeSH	terms	that	allowed	us	to	categorize	the	proj-
ects	 according	 to	 the	 disease	 or	 syndrome	 addressed	 (if	
any)	and	the	computational	approach.

Results

Survey

Nineteen	of	63	hubs	responded	to	the	survey	(30%	response	
rate)	 describing	 63	 distinct	 AI/ML	 projects.	 Multiple	 re-
sponses	 were	 allowed	 for	 each	 project.	 For	 example,	 a	
project	could	be	funded	by	a	combination	of	federal	and	
institutional	funds.

Responding	hubs	varied	in	the	number	of	reported	proj-
ects	from	one	to	11	with	a	mean	of	four	projects	per	hub.	
Federal	funding	was	most	common	at	48.5%	(Figure 2a).	
The	most	common	translational	phase	was	T2	(clinical	re-
search)	at	40.2%,	followed	by	T3	(clinical	implementation)	
at	 27.2%	 (Figure  2b).	 The	 most	 common	 AI	 approaches	
were	supervised	ML	at	38.6%	and	deep	learning	at	34.2%	
(Figure  2c).	 The	 intended	 users	 were	 usually	 either	 cli-
nicians	at	44.6%	or	researchers	at	32.3%	(Figure 2d).	The	
number	 of	 projects	 has	 been	 increasing	 over	 the	 past	
8 years	(Figure 2e).

Some	 projects	 (24	 of	 63)	 could	 be	 mapped	 to	 disease	
categories	(Figure 3).	Infections	and	neoplasms	were	the	
most	commonly	addressed.

Federally	funded	projects	(NIH	RePORTER)

A	 total	 of	 2604	 funded	 projects	 were	 retrieved	 that	 con-
tained	 either	 “machine	 learning”	 or	 “artificial	 intelli-
gence”	 as	 keywords.	 Manual	 review	 of	 200	 results;	 100	
that	were	most	likely	to	be	related	to	AI	and	100	that	were	
least	likely	to	be	related	showed	that	these	keywords	were	
accurate	indicators	of	the	project	being	related	to	AI.

F I G U R E  2  Artificial	intelligence	
(AI)	and	machine	learning	(ML)	project	
characteristics	from	Clinical	and	
Translational	Science	Award	(CTSA)	
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Of	these,	1379	could	be	mapped	to	disease	categories.	
Again,	a	single	project	could	address	zero,	one,	or	multiple	
disease	categories.	Nervous	system	diseases	at	16.3%	and	
mental	disorders	at	16.2%	were	most	commonly	addressed	
(Figure  4).	 Based	 on	 manual	 review,	 many	 projects	 that	
could	not	be	mapped	to	a	disease	category	were	conduct-
ing	basic	science,	such	as	“-	omics”	work.

With	 respect	 to	 categories	 of	 computational	 ap-
proach,	697	of	2604	projects	(26.8%)	could	be	mapped	to	
one	or	more	computational	category.	The	most	common	

computational	 issues	 addressed	 were	 big	 data	 at	 32.3%	
and	deep	learning	at	30.0%	(Figure 5).

SUMMARY AND PATH FORWARD

In	 general,	 AI	 applications	 face	 the	 same	 challenges	
as	 other	 biomedical	 innovations,	 including	 validation	
using	 important	 outcomes	 (e.g.,	 improved	 survival),	
rather	than	process	measures	or	intermediate	end	points.	

F I G U R E  3  Disease	categories	of	AI/
ML	Projects	(Survey)
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Generalizability,	 or	 lack	 thereof,	 is	 a	 recurrent	 theme.	
Medical	 AI	 algorithms	 may	 work	 well	 under	 ideal	 con-
ditions,	but	perform	poorly	in	the	real	world,	at	another	
institution	 or	 with	 a	 different	 population.	 For	 example,	
surgical	skin	markings	confused	a	deep	learning	algorithm	
for	melanoma	detection	in	which	it	classified	benign	nevi	
as	 malignant.91	 As	 another	 example,	 an	 AI	 system	 rec-
ommended	 “unsafe	 and	 incorrect”	 cancer	 treatments.92	
Similarly,	 a	 sepsis	 prediction	 algorithm	 implemented	 in	
a	widely	used	EHR	system	performed	poorly	in	practice.34	
Most	 algorithms	 were	 tested	 at	 a	 single	 institution,	 but	
validation	studies	at	other	institutions	are	rare.

The	 black	 box	 nature	 of	 algorithms,	 especially	 deep	
learning	algorithms,	makes	it	difficult	to	understand	the	
reasoning	 of	 the	 AI	 algorithm.93	 With	 a	 weak	 explain-
able	model,	it	is	difficult	to	create	actionable	intervention	
plans.	 Moreover,	 weak	 explanation	 can	 complicate	 legal	
liability.	For	example,	who	 is	 responsible	when	an	algo-
rithm	recommends	a	treatment,	but	the	patient	does	not	
respond	well	to	that	treatment?	Alternatively,	is	a	human	
clinician	responsible	for	a	poor	outcome	that	might	be	at-
tributed	 to	not	administering	a	 treatment	 that	 is	 recom-
mended	by	a	“black	box”	AI	system?

Medical	 AI	 algorithms	 are	 developed	 from	 clinical	
data	and	may	faithfully	learn	all	the	biases	of	healthcare	
services	 and	 human	 clinicians.	 Using	 historical	 data	 to	
develop	 predictive	 models	 may	 encode	 racial	 and	 socio-
economic	 biases.94	 For	 example,	 an	 AI-	powered	 tool	 to	
prevent	 long	hospital	stays	may	discriminate	against	 the	
most	vulnerable	patients,	who	need	the	most	care.95

For	some	applications,	particularly	those	involving	de-
cision	support,	there	are	additional	unanswered	questions	
regarding	 acceptability.	 Although	 there	 are	 many	 tech-
nologies	in	routine	use	that	are	not	fully	understood	(e.g.,	
exact	mechanism	of	action	of	some	psychiatric	drugs),	it	
is	not	clear	how	best	to	make	decision	support	tools	based	
on	statistical	AI	acceptable	to	clinicians.	Questions	such	
as:	 “Will	 the	 output	 have	 to	 include	 ‘explainable	 AI’?”;	
“Will	it	have	to	improve	upon	human	judgment	by	a	large	
margin?”;	and	“Does	it	have	to	meet	certain	generalizabil-
ity	criteria?”	will	have	to	be	addressed.	There	are	multiple	
systems	that	have	shown	parity	with	human	judgment	or	
even	improvement	upon	human	performance.4,5	However,	
these	are	rarely	(if	ever)	used	in	practice.96,97

We	recognize	the	distinction	articulated	between	trans-
lational	 research	 (i.e.,	 “endeavor	 to	 traverse	 a	 particular	
step	of	the	translational	process	for	a	particular	target	or	
disease”)	 and	 translational	 science	 (i.e.,	 “field	 of	 investi-
gation	focused	on	understanding	the	scientific	and	opera-
tional	principles	underlying	each	step	of	the	translational	
process”).98	We	note	that	a	specific	project	can	contribute	to	
both	translational	research	and	translational	science.	For	
example,	the	National	COVID	Cohort	Collaborative	(N3C,	

https://ncats.nih.gov/n3c),	 has	 already	 contributed	 to	
translational	science	(e.g.,	advancing	regulatory	structure	
for	 conducting	 large-	scale,	 data-	enabled	 research	 across	
institutions)	 and	 translational	 research	 (e.g.,	 advancing	
our	understanding	of	coronavirus	disease	[COVID]).

We	also	recognize	that	a	great	deal	of	relevant	progress	
has	been	made	outside	of	academia.	Start-	up	companies	
and	the	pharmaceutical	industry	have	a	great	deal	to	con-
tribute.	However,	these	contributions	can	be	challenging	
to	 evaluate	 and	 attribute	 based	 on	 the	 published	 litera-
ture	 as	 well	 as	 work	 done	 at	 academic	 medical	 centers.	
Further,	there	has	been	a	great	deal	of	work	to	apply	AI/
ML	to	identify	candidate	molecules	for	drug	development,	
predict	 structure,	 and	 how	 proteins	 fold.	 For	 scope	 rea-
sons,	we	excluded	such	“bioinformatics”	work	from	this	
manuscript.

In	conclusion,	the	clinical	and	translational	research	
community	 may	 benefit	 from	 the	 strong	 message	 in	
Friedman’s	 “fundamental	 theorem”	 for	 biomedical	 in-
formatics,	 “…a	 person	 working	 in	 partnership	 with	 an	
information	(computing or AI)	resource	is	“better”	than	
that	 same	 person	 unassisted…”99	 Clearly,	 medicine	 is	
primed	to	take	advantage	of	this	“third	wave”	of	AI	and	
will	 assist	 the	 clinical	 and	 translational	 research	 to	 at-
taining	the	vision	of	a	learning	health	ecosystem	fueled	
by	 mobile	 computable	 knowledge.100	 Realizing	 the	 po-
tential	 for	AI	 in	clinical	and	translational	research	will	
require	 collaboration	 between	 methodologists	 who	 de-
sign	 increasingly	 effective	 algorithms	 with	 clinicians	
and	informaticians	who	can	implement	these	algorithms	
into	practice.
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