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Abstract
Artificial intelligence (AI) is transforming many domains, including finance, 
agriculture, defense, and biomedicine. In this paper, we focus on the role of AI 
in clinical and translational research (CTR), including preclinical research (T1), 
clinical research (T2), clinical implementation (T3), and public (or population) 
health (T4). Given the rapid evolution of AI in CTR, we present three comple-
mentary perspectives: (1) scoping literature review, (2) survey, and (3) analysis 
of federally funded projects. For each CTR phase, we addressed challenges, suc-
cesses, failures, and opportunities for AI. We surveyed Clinical and Translational 
Science Award (CTSA) hubs regarding AI projects at their institutions. Nineteen 
of 63 CTSA hubs (30%) responded to the survey. The most common funding 
source (48.5%) was the federal government. The most common translational 
phase was T2 (clinical research, 40.2%). Clinicians were the intended users in 
44.6% of projects and researchers in 32.3% of projects. The most common compu-
tational approaches were supervised machine learning (38.6%) and deep learning 
(34.2%). The number of projects steadily increased from 2012 to 2020. Finally, we 
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INTRODUCTION AND 
BACKGROUND

Artificial intelligence (AI) has experienced multiple 
“boom and bust” cycles since the term was first coined 
by computer and cognitive scientist John McCarthy in 
1955. Historically biomedical AI applications (Figure  1) 
included symbolic systems (e.g., HELP system1 and sub-
sequent Arden Syntax,2 MYCIN,3 and INTERNIST-I4) and 
statistical or “subsymbolic” (e.g., Leeds abdominal pain 
system5).

Perhaps the most popular symbolic approaches were 
rule-based systems (including the Arden syntax and 
MYCIN) that implemented “if-then” rules. For example, 
consider the following MYCIN rule3:

IF: 1) The gram stain of the organism is gram neg, and
2) The morphology of the organism is rod, and
3) The aerobicity of the organism is anaerobic

THEN: There is suggestive evidence (0.6) that the iden-
tity of the organism is bacteroides.

Rule-based approaches are intuitively easy to under-
stand, but may not work well for complex applications 
typical in biomedicine. Large collections of rules (“rule 
bases”) can be difficult to maintain and explicitly encod-
ing the many exceptions that are common in biomedicine 
(e.g., oral temperature may not be reliable if the patient 
just drank a hot beverage) is impractical.6

Most recent approaches are statistical and are often 
referred to as “machine learning” (ML). Many statistical 
systems implement some version of supervised ML where 
the algorithm requires a “training set” of labeled exam-
ples (e.g., patients with vs. without a particular disease). 
The algorithm learns to differentiate between positive and 
negative examples based on “features” (e.g., laboratory test 
results and clinical findings) that are associated with the 
outcome of interest (e.g., presence of the disease). In con-
trast, unsupervised ML algorithms cluster similar cases 
together without the need for a labeled training set. Thus, 
an unsupervised algorithm can report that “these cases are 
similar to each other,” but not what the similarity means.

More recently, a particular class of ML models called 
“deep learning” has become popular due to the models’ 
ability to solve problems that cannot be defined precisely, 
such as differentiating malignant from benign skin lesions 
based on images of the lesions.7 Deep learning models rely 
on multilayer (thus “deep”) neural networks. Although 
neural networks were described over 60 years ago,8 they 
became much more useful with modern computers ap-
plied to very large data sets that were not previously avail-
able. We are currently in an “AI boom” phase, fueled by 
increased availability of large clinical and research data 
sets (“big data”), rapid development of novel statistical al-
gorithms that leverage big data, and the ubiquitous access 
to faster, cheaper, and ever more powerful computers.

At least two communities are involved in biomedical 
AI. The first group is comprised of “methodologists,” 
including statisticians, machine learning experts, and 
computer and “data” scientists. The second community 
is comprised of “domain experts,” including biomedi-
cal scientists, clinicians, and healthcare administrators 
who understand the problems and the data but too often 
are working separately from the methodologists. These 
communities have very different perspectives, including 
largely separate literatures, conferences, academic pro-
motion criteria, and cultures. A particular challenge is 
to identify specific important problems that can be ad-
dressed by AI given available data and algorithms where 
the results can meaningfully impact clinical care.9 This 
may be one reason why multiple research and clinical 
applications have been developed, but relatively few 
applications have successfully transitioned from algo-
rithms that perform well on standardized data sets to 
operational systems demonstrated to improve clinical 
outcomes.

Since 2006, the CTSA program has included efforts 
to bring methodologists and domain experts together in 
service of translational science and clinical application. 
CTSA institutions or “hubs” have explicitly been commit-
ted to clinical and translational science and each CTSA 
hub includes defined efforts in biomedical informatics 
as well as biostatistics. These efforts ideally include both 
methodologists and domain experts. Thus, the CTSA hubs 

1306-04608, the Reynolds and Reynolds 
Professorship in Clinical Informatics, 
and the Cancer Prevention Research 
Institute of Texas (CPRIT) Data Science 
and Informatics Core for Cancer 
Research (RP170668).

analyzed 2604 AI projects at CTSA hubs using the National Institutes of Health 
Research Portfolio Online Reporting Tools (RePORTER) database for 2011–2019. 
We mapped available abstracts to medical subject headings and found that nerv-
ous system (16.3%) and mental disorders (16.2) were the most common topics 
addressed. From a computational perspective, big data (32.3%) and deep learning 
(30.0%) were most common. This work represents a snapshot in time of the role 
of AI in the CTSA program.
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are likely to be leaders in the application of AI to clinical 
and translational science.

Motivated by the desire to facilitate clinically rele-
vant applications of AI, we present three complementary 
“views” onto this rapidly evolving field. First, we con-
ducted a scoping review10 of biomedical AI efforts in the 
published literature. We adopted the National Center for 
Advancing Translational Science (NCATS) vision of trans-
lational science,11 to identify challenges and opportunities 
for AI across the translational science spectrum. However, 
the published literature provides an incomplete view. For 
example, applications implemented and maintained by 
the clinical enterprise may not be described in publica-
tions. Thus, we surveyed CTSA hubs to self-identify exist-
ing, funded AI projects at CTSA hubs. Finally, to identify 
additional projects and ongoing work, we analyzed bio-
medical AI projects at CTSA hubs funded by the US 
National Institutes of Health (NIH) and the US National 
Science Foundation (NSF).

SCOPING REVIEW METHODS

The search strategy was created by the reference team at 
the Houston Academy of Medicine–Texas Medical Center 
(HAM-TMC) library. Customized search queries were cre-
ated for each phase of clinical and translational science 
(T1–4). Searches were executed during the week of August 
10, 2020, using Ovid (https://www.ovid.com) that includes 
MEDLINE-indexed literature as well as additional PubMed 
articles. Ovid was available via the HAM-TMC library. 
Supplementary Material SA describes the precise queries.

Inclusion criteria were difficult to define precisely. 
For example, how to determine whether a publication 
described a quality improvement project that was later 
published or a clinical application (i.e., T2 or T3 research). 
Thus, the first author reviewed all titles/abstracts to cate-
gorize references as “not relevant,” “possibly relevant,” or 
“relevant” (see table in Supplementary Material SA). In 
addition, the results for each section were independently 
reviewed by a second author for inclusion. Section authors 

were also free to add references outside of the systematic 
search strategy. The section authors made the final deci-
sion to include or exclude a particular reference.

PRECLINICAL RESEARCH (T1)

Challenges

Early drug development is a prototypical and challenging 
preclinical research area. Important areas in early drug de-
velopment include methods to interpret high throughput 
data for target discovery or target selection, in silico mod-
eling for drug discovery, prioritizing potential compounds 
for synthesis, and experimental validation. Some of the 
methods and databases in this space have recently been re-
viewed by Rifaioglu et al.12 Once potential drug candidates 
are synthesized, there is a pressing need to increase effi-
ciency and speed of drug screening as well as to optimize 
the most promising compound (the lead compound) that 
has activity against the target, to increase efficacy, decrease 
toxicity, and achieve optimum pharmacokinetics (i.e., lead 
optimization). Specific challenges include: (1) rapidly test-
ing combination therapies with the lead compounds early 
in drug development, (2) identifying new targets for ex-
isting compounds for drug repurposing, (3) model phar-
macokinetics and pharmacodynamics to predict optimal 
dose, (4) identify and validate relevant biomarkers, and (5) 
assess safety and efficacy during early in vivo studies.

There are several reports of predicting drug response 
using ML or deep neural networks, often integrating mo-
lecular features.13–15 Chen and Zhang did a recent survey 
and systematic assessment of four classical methods and 
13 computational methods for drug response prediction 
using four public drug/response datasets. They hypothe-
sized that drug response prediction can be framed as a su-
pervised learning problem, and that given a training drug/
response dataset with cell lines and drugs, a response can 
be learned and subsequently used to predict the response 
to: (1) a known drug (in the training dataset) in a new cell 
line, (2) a new drug in a known cell line, or (3) a new drug 

F I G U R E  1   A Artificial intelligence 
(AI) concepts

Ar�ficial Intelligence (AI)

Symbolic AI Sta�s�cal (or Subsymbolic) 
AI or Machine Learning

Rule-based systems

Supervised learning Unsupervised learning 
(clustering)

https://www.ovid.com
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in a new cell line. The performance of different classes of 
computational models varied, but the overall performance 
suggested that there is still much room for improvement. 
They also found with existing methods, mutation, copy 
number variants, and methylation profiles of cell lines 
and drug grouping contributed little to drug response pre-
diction when added to the gene expression profile. How 
to best integrate omics data remains an open question. In 
addition, we know that each cell line is unique and AI ap-
proaches that can “personalize” treatments to individual 
molecular profiles may be useful.

Successes

Processing and interpreting data from high-throughput 
studies is an important area. For example, proteomics 
based on liquid chromatography with tandem mass spec-
trometry (LC-MS/MS) is a well-established approach for 
biomarker discovery and target validation. This technology 
generates massive data sets that are almost impossible to 
interpret manually. Zohora et al. proposed a deep learning-
based model, Deepiso, that combines convolutional and 
recurrent neural networks to detect peptide features of dif-
ferent charge states, as well as to estimate their intensity.16 
They demonstrated that the peptide feature list reported 
by Deepiso matched with 97.43% of high-quality MS/MS 
identifications in a benchmark dataset, which was higher 
than several widely used tools. The model also could be 
“retrained” with missed features to evolve and improve.

Failures

There is a growing body of literature describing AI appli-
cations for target or drug discovery, to identify biomarkers 
of response or to select therapy. Unfortunately, many pre-
clinical papers have predictions with no or limited valida-
tion. Recent applications of deep learning and AI for in 
silico drug discovery are promising. However, due in part 
to the long time required to develop a new drug, few such 
findings have entered clinical trials. Some targets identi-
fied using virtual screening have already failed to achieve 
clinical success.17 Thus overall, AI has not yet delivered 
on its promise as many AI studies have not been trans-
lated into approved drugs, biomarkers, or clinical therapy 
selection algorithms.

Opportunities

Although drug discovery using AI is still in its infancy, this 
area still has much potential, and many pharmaceutical 

companies have started to invest in AI strategies for discov-
ery. Gene function and gene variant annotation, biomarker 
discovery, and literature mining, are all examples of areas 
where data are being generated too rapidly for manual ap-
proaches and AI-based tools will be essential for progress. 
With evolution of new fields, there may be new needs 
emerging that can leverage AI, such as immuno-oncology 
and the need to predict tumor neoantigens.18 In transla-
tional research, there is growing interest in simultaneously 
assessing multiple markers, such as use of multiplex im-
munohistochemistry in oncology,19,20 assessing features 
of the tumor as well as the microenvironment.21 Deep 
learning-based image analysis is also being explored.22

Application of AI to basic and translational research 
is a clear opportunity for team science. It is essential that 
basic and translational researchers learn more about the 
capabilities of AI. There are many AI-derived predictions 
of new drugs, new indications for existing drugs, or new 
biomarkers. Commercial (start-up) companies that lever-
age AI to improve drug discovery have an important role 
to play in realizing the potential of AI in preclinical re-
search, sometimes cooperating with academic institutions 
resulting in research alliances. Multidisciplinary teams 
consisting of computer scientists, bioinformaticians, clin-
ical informaticians, basic and translational researchers, 
and clinical domain experts can ensure the clinical poten-
tial of these findings can be assessed, with promising find-
ings moving through preclinical and into clinical testing.

CLINICAL RESEARCH (T2)

Challenges

Perhaps the most important challenge to application of 
AI in clinical research may be the clinical environment 
itself. The rising complexity and cost of development, par-
ticularly developing and testing new therapies, is a major 
challenge for clinical research.23 Specifically, challenges 
related to eligibility screening, data collection, and data 
verification have consistently been reported23–27 as has 
failure of well-controlled clinical trials to generalize to 
real-world practice.28 These challenges continue to urge 
consideration of observational study designs that leverage 
real-world evidence.29 Over the last decade, informatics 
approaches, such as AI, have been called to help address 
these challenges.23,24

Another challenge is the significant human effort re-
quired to construct large training data sets required for 
accurate supervised ML. As an example, a system that 
achieved dermatologist-level classification of skin lesions 
was trained on 129,450 labeled images.7 Further, even when 
training data are available, human expertise is required to 
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implement the model in a particular environment. Thus, 
significant effort has been devoted to decrease the human 
effort and expertise required for ML, including algorithms 
to automate feature selection and optimize hyperparame-
ters (i.e., parameters required by the ML model). A recent 
review identified limitations of existing ML approaches in 
healthcare, such as inability to consistently perform across 
the size and variety of data within biomedicine, and lim-
ited demonstration in health care.30

Successes

Of the 100 distinct articles identified in our search, 39 
described development or application of AI in clinical re-
search. An additional 23 described clinical uses of AI, such 
as outcome prediction or classification that could also be 
applied in clinical studies. Promising approaches leverag-
ing the complementary strengths of humans and comput-
ers have been developed.31 These approaches recognize 
that computers can support, rather than replace, human 
decision making. For example, relevant data can be se-
lected using AI and presented to a human who can use a 
resulting visualization to make better decisions. Signal pro-
cessing (e.g., electroencephalography32), electronic health 
record (EHR) phenotyping (i.e., identifying patients with 
specific conditions or characteristics, such as smoking sta-
tus33), various predictive models (e.g., sepsis34 and breast 
cancer progression35) have been developed, validated, and 
found to perform well on the validation data set.

Failures

Clinical research poses multiple challenges to ML. For 
example, computer programs used to process data sub-
mitted for regulatory decision making require validation, 
as described in the code of federal regulations.36 If the 
requirements in the US Food and Drug Administration 
(FDA) guidance on patient-reported outcomes37 were ap-
plied to AI, developers would be required to demonstrate 
validity or comparable performance in the data set and 
the patient population under study. The potential for bias 
due to under-representation of groups during model de-
velopment is well-known. In other words, ML models are 
limited by the data used for development. These data may 
differ in unexpected ways from additional data in which 
they will be applied. Over- or under-fitting has the poten-
tial to cause inaccuracy or bias in study data. Operation at 
scale is also particularly challenging in clinical research 
settings. For example, the variety of data sources used in 
clinical studies has significantly increased the challenge of 
achieving and verifying performance in new data sources 

and new data sets.38,39 Further, the data used in a clinical 
study are specific to the research question. As such, in-
formation systems used for clinical studies require some 
level of customization to support the study, including spe-
cific data elements, data flow, or workflow. Study-to-study 
variation poses challenges to the use of general AI pipe-
lines. Simultaneously, time pressures require application 
of existing or at least easily configurable solutions.

Opportunities

Resource constrained academic settings favor grant-
funded AI development and demonstration rather than 
AI infrastructure implemented at scale. Further, dem-
onstration of new technology in industry funded clinical 
studies have historically been less rigorous and published 
in the trade literature, or viewed as trade secrets and in-
frequently published.40 A recent industry meeting on AI 
in clinical research hosted by the European Medicines 
Agency featured presentation of multiple opportunities 
for application of AI in clinical research, including clini-
cal data management—such as data cleaning, fraud de-
tection, protocol violation trend detection, building and 
validation of synthetic control arms, and classification 
of clinical events, conditions, or findings. Demonstration 
projects for each were presented, only one of which was 
published in the peer-reviewed literature.41,42

There is an opportunity to identify “digital biomarkers” 
based on algorithms processing various data sets, perhaps 
derived from wearable technology, such as smart watches, 
smart phones, or pedometers.43 For example, output of 
wearables, such as pedometers that count steps, could be 
useful to monitor vulnerable elderly patients at risk for 
rapid deterioration. However, AI may be useful to distin-
guish variation due to new or worsening illness from other 
causes (e.g., fewer steps while travelling).

There are multiple opportunities for AI to facilitate 
clinical research processes. For example, AI has the po-
tential to make previously subjective assessment more 
objective (e.g., assessment of conjunctival hyperemia44) 
and automatically identify potentially eligible patients for 
clinical trials.45

CLINICAL IMPLEMENTATION (T3)

Challenges

A fundamental challenge is to translate the many promis-
ing AI advances that could potentially transform health-
care into clinical practice. Clinical implementation 
requires validation to assess algorithm performance in 
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“real-world” clinical settings. However, these are often 
lacking.46 These studies are important to ensure patient 
safety and reliability by building trust and accountabil-
ity.47,48 Ultimately, healthcare providers and patients must 
both accept and trust the recommendations provided by 
the system.48

Another challenge is the human-computer interac-
tions, which ensure that the technology is user-friendly 
with interpretable and actionable output.31 Additional 
challenges include the inability of existing EHR work-
flows to integrate the technology as well as legal and 
ethical issues, especially those relating to accountability 
and privacy.47,48 These challenges must be overcome and 
often require an interdisciplinary team in all phases of 
implementation.49

Successes

Successful clinical implementation of AI technology into 
existing workflows include the machine learning model, 
Sepsis Watch, occurring in three phases over 2  years at 
Duke Health.47 Another example is the IDx-DR device 
used in patients with diabetes to detect greater than mild 
diabetic retinopathy and macular edema. After complet-
ing a successful clinical trial with 900 patients, the FDA 
approved IDx-DR in 2018 making it the first commercially 
available, autonomous AI diagnostic medical device.50 
FDA approval of AI-based medical devices and algorithms 
since 2010 includes 64 devices and algorithms approved 
with a 510K clearance (85.9%), de novo clearance (12.5%) 
and premarket approval (1.6%), mostly in radiology, cardi-
ology, and internal medicine.51

Failures

Failures of clinical implementation are largely attrib-
uted to the lack of meaningful validations,47 as well as 
legal, regulatory, and ethical issues, including patient 
privacy. Patients must be aware that their data may be 
used for algorithm development and/or stored in alter-
nate locations.48,52 These technologies must also address 
adaptation strategies to the healthcare landscape, in-
cluding changes to the EHR, payments, diagnosis, and 
treatment.48 Another important consideration is the po-
tential “learning” bias that could impact many patients 
within diverse and under-represented populations.53 
FDA approval of AI technologies is challenging due to 
the opacity of black-box algorithms that (1) lack expla-
nations for their predictions or recommendations and 
(2) permit continued learning of algorithms adapting to 
new information.54,55

Opportunities

Opportunities include improving methods to validate 
AI technologies with implementation into healthcare 
workflows. Peer-reviewed journals can assist in facilitat-
ing clinical validations by emphasizing important factors 
focusing on diagnostic accuracy and efficacy.46 AI appli-
cations should be evaluated for usability by tracking key-
strokes, mouse clicks, eye tracking, etc.31 Multidisciplinary 
teams of researchers, providers, and regulators should be 
engaged to address regulatory hurdles of validation and 
continued algorithm learning while providing transpar-
ency.54 Regulatory requirements should include algorith-
mic stewardship to provide ongoing oversight that ensures 
safety, effectiveness, and fairness in diverse populations.53 
In fact, clinical validations and successful implementation 
of AI into clinical workflows will enhance development of 
best practices.47 AI has great potential to provide low-cost, 
superior predictive models decreasing clinician cognitive 
load once issues of acceptability, fairness, and transpar-
ency have been addressed.56

PUBLIC (POPULATION) HEALTH 
(T4)

Challenges

Challenges to the use of AI for population health include 
data quality and quantity, technology performance, as 
well as implementation and process change. Population 
health usually involves data from multiple resources at 
different levels of granularity. For example, to characterize 
and forecast an infectious disease outbreak in a region, we 
may get weekly, state-level counts of laboratory confirmed 
cases from the National Notifiable Diseases Surveillance 
System57; a daily number of cases from healthcare systems 
that may serve populations across state boundaries; pop-
ulation information in census tracts; internet search ac-
tivities (zip code level); and interaction information from 
social media, like Facebook and Twitter (random samples 
from a region). Linking these data and handling the hier-
archical relationships is still challenging.

Many other challenges arise in deploying AI for popu-
lation health. For example, natural language processing 
(NLP), can automatically retrieve clinical and behav-
ioral findings from free-text medical reports, which 
greatly enriches the clinical features in epidemiology re-
search (e.g., lifestyle exposure for Alzheimer’s disease58). 
However, some misclassification is inevitable and may 
increase when applying NLP to new medical docu-
ments different from those that were used to train the 
tool. Furthermore, generalizability is still a challenge for 
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machine learned models: a predictive model that is well-
developed using data from one region may not perform 
well in another region that has a different population 
served by a different healthcare system.59–61 Regarding 
its application, the success of AI depends not just on sci-
ence, but also on real-world implementation and process 
change (e.g., public health decision making).62

Successes

AI has been successfully applied to population surveil-
lance. Examples include novel syndromic surveillance sys-
tems that use medical NLP and Bayesian network models 
to process free-text medical reports, infer infectious res-
piratory disease outbreaks, and detect emerging diseases 
in populations.63,64 The openly available public health 
intelligence system Health-Map integrates data from dis-
parate sources to produce a global view of infectious dis-
ease threats.65 NLP tools can automatically analyze public 
tweets, monitor population medication abuse,66 and ad-
verse drug reactions.67 Integrative spatiotemporal-based 
analytical methods for population cohort studies of opi-
oid poisoning in New York State reveal trends that reflect 
gender, age, economics, and location.68

AI for epidemiology studies is also promising. Text 
knowledge engineering tools facilitate automatic cohort 
identification for research.69 NLP tools successfully ex-
tract stage, histology, tumor grade, and therapies from the 
EHRs of patients with lung cancer70 and unsupervised ML 
can facilitate discovery of latent disease clusters and pa-
tient subgroups from EHRs.71 These discoveries may help 
researchers detect underlying patterns of diseases, which 
is a growing trend in epidemiology research.

Other successes involve environmental health, popula-
tion genomics, death registration, etc. A recent study has 
determined with high accuracy the effects of severe aerial 
urban pollution on facial images.72 ML-based curation 
systems have classified genomic translational research 
through a Public Health Genomics Knowledge Base.73 
Finally, a deep neural network-based model successfully 
coded causes of death in French death certificates.74

Failures

No existing AI system is error-free. For example, Google 
Flu Trends was wrong for 100 out of 108 weeks between 
2011 and 2013,75 and it missed the 2009 swine flu (H1N1) 
pandemic. System errors can lead to severe consequences 
for populations. Therefore, policy makers should still view 
AI technology as a complementary to human experts, not 
as replacements.

Opportunities

AI methods enable retrieval of health and non-health data 
about populations and communities at different levels of 
granularity. For population-level epidemiology studies, 
collaborative efforts demonstrate the value of AI, such as 
the Observational Health Data Sciences and Informatics 
Program (over half a billion patient records)76; the Accrual 
to Clinical Trials Network (over 16 states)77; the All of Us 
Program (over one million or more people from across 
the United States)78; the PaTH Network79 of the National 
Patient-Centered Clinical Research Network (348 health 
systems and over 857K care providers); and the National 
Mesothelioma Virtual Bank includes over 10 years of speci-
mens to support the nationwide research of this rare and 
lethal disease.80 For healthcare policy and management, 
probabilistic record linkage of de-identified administrative 
claims and electronic health records at the patient level81 
will facilitate cost-effectiveness analysis. For population sur-
veillance, social media, such as Twitter, is becoming a useful 
tool for population health surveillance and research involv-
ing the Affordable Care Act, health organizations, obesity, 
pet exposure, sexual health, transgender health, and vacci-
nation.82 For community intervention, AI technology is en-
abling smart interventions—using wearable devices, smart 
phones to monitor patients’ health status,83 diet,84 and medi-
cation adherence.85 Moreover, ML may improve both pre-
dictive models and causal inference that can identify new 
and more effective approaches to reduce inequalities and 
improve population health.86 Translational health dispari-
ties research is being enhanced by big data approaches, in-
cluding linking structured data, harmonizing data elements, 
fostering citizen science, developing large longitudinal co-
horts, and mining internet and social media data.87

AI AND ML APPLICATIONS 
ACROSS THE CTSA CONSORTIUM

Not all AI/ML projects are reflected in the published liter-
ature. For example, operational projects within a health 
system may not reliably yield MEDLINE-indexed publi-
cations. In addition, the field is moving so quickly that 
ongoing projects may be different from published work. 
To provide an additional perspective, we conducted 
a survey of 63 CTSA hubs about their AI/ML projects, 
including translational phase, funding, intended users, 
and AI approach (see Supplementary Material SB). The 
survey was administered using REDCap88 hosted at The 
University of Texas Health Science Center at Houston. 
Informatics component directors at each CTSA site were 
the points of contact (POCs). POCs were contacted via 
email and asked to coordinate the survey response on 
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behalf of their institution. After 2 weeks, POCs for hubs 
without responses were contacted again and asked to 
complete the survey.

As a complement to the survey, we retrieved all funded 
federal grants to the 63 CTSA hubs for the years 2011–
2019 using NIH Research Portfolio Online Reporting 
Tools (RePORTER, https://repor​ter.nih.gov/, March 17, 
2021). Years 2020–2021 were excluded because abstracts 
were not available via the RePORTER API. We then used 
the Medical Text Indexing software89,90 to tag each result 
with MeSH terms that allowed us to categorize the proj-
ects according to the disease or syndrome addressed (if 
any) and the computational approach.

Results

Survey

Nineteen of 63 hubs responded to the survey (30% response 
rate) describing 63 distinct AI/ML projects. Multiple re-
sponses were allowed for each project. For example, a 
project could be funded by a combination of federal and 
institutional funds.

Responding hubs varied in the number of reported proj-
ects from one to 11 with a mean of four projects per hub. 
Federal funding was most common at 48.5% (Figure 2a). 
The most common translational phase was T2 (clinical re-
search) at 40.2%, followed by T3 (clinical implementation) 
at 27.2% (Figure  2b). The most common AI approaches 
were supervised ML at 38.6% and deep learning at 34.2% 
(Figure  2c). The intended users were usually either cli-
nicians at 44.6% or researchers at 32.3% (Figure 2d). The 
number of projects has been increasing over the past 
8 years (Figure 2e).

Some projects (24 of 63) could be mapped to disease 
categories (Figure 3). Infections and neoplasms were the 
most commonly addressed.

Federally funded projects (NIH RePORTER)

A total of 2604 funded projects were retrieved that con-
tained either “machine learning” or “artificial intelli-
gence” as keywords. Manual review of 200 results; 100 
that were most likely to be related to AI and 100 that were 
least likely to be related showed that these keywords were 
accurate indicators of the project being related to AI.

F I G U R E  2   Artificial intelligence 
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Of these, 1379 could be mapped to disease categories. 
Again, a single project could address zero, one, or multiple 
disease categories. Nervous system diseases at 16.3% and 
mental disorders at 16.2% were most commonly addressed 
(Figure  4). Based on manual review, many projects that 
could not be mapped to a disease category were conduct-
ing basic science, such as “-omics” work.

With respect to categories of computational ap-
proach, 697 of 2604 projects (26.8%) could be mapped to 
one or more computational category. The most common 

computational issues addressed were big data at 32.3% 
and deep learning at 30.0% (Figure 5).

SUMMARY AND PATH FORWARD

In general, AI applications face the same challenges 
as other biomedical innovations, including validation 
using important outcomes (e.g., improved survival), 
rather than process measures or intermediate end points. 

F I G U R E  3   Disease categories of AI/
ML Projects (Survey)
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Generalizability, or lack thereof, is a recurrent theme. 
Medical AI algorithms may work well under ideal con-
ditions, but perform poorly in the real world, at another 
institution or with a different population. For example, 
surgical skin markings confused a deep learning algorithm 
for melanoma detection in which it classified benign nevi 
as malignant.91 As another example, an AI system rec-
ommended “unsafe and incorrect” cancer treatments.92 
Similarly, a sepsis prediction algorithm implemented in 
a widely used EHR system performed poorly in practice.34 
Most algorithms were tested at a single institution, but 
validation studies at other institutions are rare.

The black box nature of algorithms, especially deep 
learning algorithms, makes it difficult to understand the 
reasoning of the AI algorithm.93 With a weak explain-
able model, it is difficult to create actionable intervention 
plans. Moreover, weak explanation can complicate legal 
liability. For example, who is responsible when an algo-
rithm recommends a treatment, but the patient does not 
respond well to that treatment? Alternatively, is a human 
clinician responsible for a poor outcome that might be at-
tributed to not administering a treatment that is recom-
mended by a “black box” AI system?

Medical AI algorithms are developed from clinical 
data and may faithfully learn all the biases of healthcare 
services and human clinicians. Using historical data to 
develop predictive models may encode racial and socio-
economic biases.94 For example, an AI-powered tool to 
prevent long hospital stays may discriminate against the 
most vulnerable patients, who need the most care.95

For some applications, particularly those involving de-
cision support, there are additional unanswered questions 
regarding acceptability. Although there are many tech-
nologies in routine use that are not fully understood (e.g., 
exact mechanism of action of some psychiatric drugs), it 
is not clear how best to make decision support tools based 
on statistical AI acceptable to clinicians. Questions such 
as: “Will the output have to include ‘explainable AI’?”; 
“Will it have to improve upon human judgment by a large 
margin?”; and “Does it have to meet certain generalizabil-
ity criteria?” will have to be addressed. There are multiple 
systems that have shown parity with human judgment or 
even improvement upon human performance.4,5 However, 
these are rarely (if ever) used in practice.96,97

We recognize the distinction articulated between trans-
lational research (i.e., “endeavor to traverse a particular 
step of the translational process for a particular target or 
disease”) and translational science (i.e., “field of investi-
gation focused on understanding the scientific and opera-
tional principles underlying each step of the translational 
process”).98 We note that a specific project can contribute to 
both translational research and translational science. For 
example, the National COVID Cohort Collaborative (N3C, 

https://ncats.nih.gov/n3c), has already contributed to 
translational science (e.g., advancing regulatory structure 
for conducting large-scale, data-enabled research across 
institutions) and translational research (e.g., advancing 
our understanding of coronavirus disease [COVID]).

We also recognize that a great deal of relevant progress 
has been made outside of academia. Start-up companies 
and the pharmaceutical industry have a great deal to con-
tribute. However, these contributions can be challenging 
to evaluate and attribute based on the published litera-
ture as well as work done at academic medical centers. 
Further, there has been a great deal of work to apply AI/
ML to identify candidate molecules for drug development, 
predict structure, and how proteins fold. For scope rea-
sons, we excluded such “bioinformatics” work from this 
manuscript.

In conclusion, the clinical and translational research 
community may benefit from the strong message in 
Friedman’s “fundamental theorem” for biomedical in-
formatics, “…a person working in partnership with an 
information (computing or AI) resource is “better” than 
that same person unassisted…”99 Clearly, medicine is 
primed to take advantage of this “third wave” of AI and 
will assist the clinical and translational research to at-
taining the vision of a learning health ecosystem fueled 
by mobile computable knowledge.100 Realizing the po-
tential for AI in clinical and translational research will 
require collaboration between methodologists who de-
sign increasingly effective algorithms with clinicians 
and informaticians who can implement these algorithms 
into practice.
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