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Simple Summary: In recent years, research on biofluids using Raman and SERS has expanded
dramatically, indicating the enormous promise of this technology as a high-throughput tool for
identifying cancer and other disorders. In the investigations thus far, researchers have concentrated
on a specific illness or condition, but the techniques employed to acquire experimental spectra prevent
direct comparison of the data. This necessitates comparative research of a variety of diseases and an
increase in scientific cooperation to standardize experimental conditions. In our study, positive results
were reached by applying a combined SERS multivariate analysis (MVA) to the urgent problem of
prostate cancer diagnosis that was directly linked to real-world settings in healthcare. Moreover,
in comparison to the prostate-specific antigen (PSA) test, which has a high sensitivity but limited
specificity, our combined SERS-MVA method has greater specificity, which may assist in preventing
the overtreatment of patients.

Abstract: It is possible to obtain diagnostically relevant data on the changes in biochemical elements
brought on by cancer via the use of multivariate analysis of vibrational spectra recorded on biological
fluids. Prostate cancer and control groups included in this research generated almost similar SERS
spectra, which means that the values of peak intensities present in SERS spectra can only give
unspecific and limited information for distinguishing between the two groups. Our diagnostic
algorithm for prostate cancer (PCa) differentiation was built using principal component analysis
and linear discriminant analysis (PCA-LDA) analysis of spectral data, which has been widely used
in spectral data management in many studies and has shown promising results so far. In order to
fully utilize the entire SERS spectrum and automatically determine the most meaningful spectral
features that can be used to differentiate PCa from healthy patients, we perform a multivariate
analysis on both the entire and specific spectral intervals. Using the PCA-LDA model, the prostate
cancer and control groups are clearly distinguished in our investigation. The separability of the
following two data sets is also evaluated using two alternative discrimination techniques: principal
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least squares discriminant analysis (PLS-DA) and principal component analysis—support vector
machine (PCA-SVM).

Keywords: prostate cancer; Raman; SERS; multivariate analysis

1. Introduction

Prostate cancer is a major public health problem. It represents the second most
diagnosed neoplasm and occupies sixth place in terms of mortality. In 2018, there were
approximately 1.3 million cases and 359,000 deaths worldwide due to prostate cancer
(PCa). In Europe, the estimated incidence of PCa in the same year was 449,800 cases and
107,300 deaths. This trend is stationary in many countries and is in a slow decline in
high-income countries [1].

Before the discovery of prostatic specific antigen (PSA) in the 1970s and screening
studies in the late 1980s, there was no way of screening for prostate cancers. Most of the
patients first presented with metastatic disease, because nonmetastatic tumors are asymp-
tomatic. Once PSA was discovered and used on a global scale, PCa became curable [2]. As
such, urologists introduced new PSA-based screening procedures for PCa detection and
soon started overdiagnosing and overtreating not only aggressive cases but cases that later
proved to be indolent cancers. Unfortunately, PSA is organ-specific and not disease-specific,
having high sensitivity but low specificity. PSA-based screening tests identify a lot of
indolent cancers and have minimal impact on identifying aggressive tumors. To this day,
PSA represents the cornerstone of prostate cancer diagnosis [3], and the ultimate goal
remains to identify and treat only aggressive cancers [4,5].

The classical PCa detection scenario, based on PSA and prostate biopsy, has a detection
rate of 20–40% accuracy [6], which is quite low compared to the incidence of this disease.
In recent years, a lot of new alternative diagnostic modalities aroused such as blood and
urine tests, and imaging modalities. Some of them even proved to be superior to PSA in
detecting significant PCa cases [7]. Still, the challenge is to find a reliable, affordable, and
accurate biomarker [8].

On the other hand, one of the most promising tools in the arsenal of developing
new strategies for PCa diagnosis is Raman and its counterpart, surface-enhanced Raman
spectroscopy (SERS). Raman spectroscopy has the capacity to provide specific molecular
data (molecular fingerprint) that could have a major impact in the medical field, such as
assisting new biomarker identification regarding cancer development [9]. These optical
techniques are based on the inelastic scattering of the photons after the monochromatic
laser beam interacts with specific molecules present in the biological sample. The difference
between the energy of the photons before and after interacting with the sample, measured
in wavenumbers, represents the Raman shift. These shifts, taken together, form the Raman
spectrum, with each peak being assigned to a specific vibrational mode encountered in
the sample [10]. Although Raman spectroscopy is able to detect a considerable number of
biological molecules and offers support in the medical diagnosis area, its applicability can
be limited by analyte concentration, which affects the intensity of the signal. Moreover,
depending on the protocol strategy, the distribution of the molecules will not be homoge-
nous, and the spectral bands will be preponderately assigned to proteins and other high
molecular weight biomolecules present in the sample [11].

In the case of SERS, the procedure implies the use of metallic plasmonic substrates
whose role is to enhance the Raman signal of the molecules present in the very close
vicinity (<10 nm) of the plasmonic nanoparticles that compose the substrates. Depending
on the adsorption geometry of the sample molecules onto these surfaces, their bands’
intensity varies, which slightly complicates spectra interpretation. Several SERS-based
cancer studies performed on blood samples derivatives reported an accuracy of over 90% in
differentiating between PCa groups and controls [12–14]. Silver and/or gold nanoparticles



Cancers 2022, 14, 3227 3 of 17

are widely used as plasmonic substrates for such investigations. By carefully engineering
substrates’ composition and morphology, it was shown that SERS has the capacity to
identify nanoscale molecular interactions responsible for chiral discrimination [15–17]. The
use of low concentrations analytes is another major advantage of SERS analysis. However,
similar to in most of the cases, these advantages come with a cost, and in the case of
SERS performed on biological samples, the most important drawback is the lack of signal
reproducibility. Very recently, our research group developed a new type of plasmonic solid
substrate based on tangential flow filtered (TFF) silver nanoparticles capable of generating
reproducible spectra that have been further analyzed by means of multivariate analysis
(MVA) in order to develop an early-stage diagnostic tool for breast cancer [18].

In the last years, our research group has demonstrated that a combined SERS-MVA
analysis can be successfully applied for the diagnosis of different types of solid tumors [19],
including prostate cancer [11], using serum samples collected from cancer patients. More-
over, such implementations have been extensively involved in various statistical algorithms
used to differentiate between normal and cancerous tissue from biopsies [20,21]. It has
been shown that a SERS analysis on serum samples was able to discriminate between
prostate cancer and benign prostatic hyperplasia (BPH) in an attempt to decrease the num-
ber of unnecessary biopsies [12]. In these cases, the SERS substrate was used in a colloidal
formulation.

However, many difficulties can be encountered in the case of biofluid analysis due to
their complex molecular composition. Very recently, Fornasaro et al., 2021, have shown that
ergothioneine, which is a dietary amino acid present in different biological samples, has a
great impact on the SERS spectra collected on various biofluids (e.g., erythrocytes lysates,
serum, gingival crevicular fluid, seminal plasma, cerebrospinal fluid). This phenomenon
may occur due to its high affinity for the plasmonic substrates, highlighting once more the
major role played by the nanoscale interactions of the biomolecules with the plasmonic
nanostructure in SERS analysis [22].

To overcome this drawback and to try to understand the influence of different molec-
ular species on cancer discrimination using the here-proposed SERS-MVA analysis, in
this study, we have employed a twofold strategy. Firstly, we have recorded, using our
solid plasmonic substrates, very reproducible SERS spectra on serum and plasma samples
collected from healthy (Controls) and prostate cancer donors (Patients) that were further
compared and analyzed by means of MVA. Secondly, complete MVA studies have been
performed not only on the entire spectra but also on specific spectral regions where the
most intense vibrational bands have been assigned to proteins and/or other biomolecules
in order to understand if these vibrational bands can be used for proper discrimination
between cancer and control samples. In the end, the separability of the two data sets was
evaluated using the following two alternative discrimination techniques: principal least
squares discriminant analysis (PLS-DA) and principal component analysis—support vector
machine (PCA-SVM).

To the best of our knowledge, such a comprehensive SERS-MVA analysis of vibrational
spectra collected on plasma and serum for cancer discrimination has not been reported so
far in the scientific literature.

2. Materials and Methods
2.1. Sample Collection

Between July 2018 and March 2020 we collected blood and prostate tissue samples
from 103 patients treated in the Institute of Oncology “Prof. Dr. Ion Chiricuta” in Cluj-
Napoca, Romania, in conformity with the ethical accordance 119/20 March 2020 from
the University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca. All patients
were previously diagnosed with prostate cancer through prostate biopsy. We excluded
patients with other known diseases or those who had previous prostate cancer treatment
(radiotherapy or androgen deprivation therapy). Regarding the PCa patient’s cohort, the
average age was 61 (min 52, maximum 68). In the case of the healthy donors’ cohort,
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were selected individuals who were referred by the general practitioner to perform routine
urological check-ups with an average age of over 50 years old.

Collected blood samples were immediately processed. For the processing of plasma,
blood samples were immediately centrifuged for 10 min at 4000 rpm and the resulting
supernatant (plasma) was transferred to a new tube that was stored at −80 ◦C until further
processing. For serum, the blood collection tubes were left at room temperature for 30 min
and then centrifuged for 10 min at 4000 rpm. The supernatant was transferred to a new
tube and stored at −80 ◦C until further processing. All tubes were anonymously annotated
based on patient’s codes and additional variables.

2.2. Synthesis of Silver Nanoparticles

The silver nanoparticles were synthesized using the protocol developed by Leopold
and Lendl, 2003 [23]. All the solutions were prepared using ultrapure water (18.2 MΩ × cm,
ELGA Labwater from PURELAB Chorus, Buckinghamshire, UK). Briefly, 5 mL of 30 mM
NH2OH·HCl solution was mixed with 5 mL of 63.5 mM NaOH and 80 mL ultrapure water
under vigorous stirring conditions (400 rpm). Then 10 mL of 10 mM AgNO3 solution
was carefully incorporated, under continuous stirring for 10 min until it was observed a
brown to yellowish coloration. The resulting silver colloid was subjected to tangential flow
filtration (TFF, Pall Corporation, New York, NY, USA) and physical characterization for
further plasmonic substrate assembly.

2.3. SERS Substrates Preparation

Solid plasmonic SERS substrate preparation was performed according to a procedure
described by Stiufiuc et al., 2020 [18]. This included several cleaning steps of CaF2 Raman
grade glass (Crystran, Poole, UK) using acetone, ethanol, and ultrapure water. After 15 min,
the port-probe was heated at 40 ◦C using a plate heater and 1 µL of concentrated silver
colloids was added to this site and let dry for 2 min. The obtained solid substrates were
ready to use for SERS analysis after cooling down at room temperature.

2.4. SERS Measurements

For SERS measurements, 1 µL of serum, respectively, 1 µL plasma, were poured on
the top of plasmonic substrates and were left to dry for 30 min at room temperature before
acquiring the SERS signal. Both spectra types were recorded at maximum 50 µm distance
from the sample ring edges. The analysis was performed using the Renishaw™ inVia
Reflex Raman (Renishaw plc, Gloucestershire, UK) confocal multilaser spectrometer at
a resolution of 2 cm−1. The spectrograph was equipped with a 600 lines/mm grating
and a charge-coupled device camera (CCD). An internal silicon reference was used for
calibration. The 50× (N.A = 0.75) objective lens was used to record the spectra. A 785 nm
diode laser was used for excitation. In the case of SERS, the acquisition time was set at
20 s (exposure time 5 s and 4 accumulations) while the laser power to the surface of the
sample was 2 mW. Baseline correction was applied to all SERS spectra in order to eliminate
the fluorescence background. The baseline correction was performed by using the Wire
4.2 software provided by Renishaw (Gloucestershire, UK) and final data processing was
performed with aid of OriginPro 2019 software platform. The final spectrum represents the
average of 20 spectral acquisitions.

2.5. Data Analysis

To inspect whether there is a separation between patient and control sample sets,
we use a multivariate approach that is suitable for comparing high-dimensional objects
such as spectral data. Thus, we apply principal component analysis—linear discriminant
analysis (PCA-LDA) to the spectra, a method that combines dimensionality reduction with
multivariate classification.

As a preprocessing step for the multivariate analysis, we align the spectra by sampling
at equal 1 cm−1 intervals and normalizing them using the standard normal variate method,
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where each spectrum’s intensities are scaled and offset such that they have zero mean and
unit standard deviation.

Due to the curse of dimensionality, high-dimensional objects cannot be reliably com-
pared in small samples. For this reason, we show that most of the information contained
within our data is contained in a small number of dimensions—the principal components
obtained via principal component analysis (PCA). Thus, by using PCA, we project the
data onto a low-dimensional space by filtering out the noisy dimensions. This allows
us to proceed with linear discriminant analysis (LDA), a method that finds a plane that
separates data points belonging to different classes by optimizing for the maximum ratio of
between-class and within-class variances.

The resulting LDA plane separates the projected spectra into two classes—patient and
control. To assess the quality of this separation, we employ a leave-one-out cross-validation
(LOOCV) scheme to efficiently use our relatively small dataset.

For completeness, we also evaluate the separability of the following two spectra sets
(in LOOCV fashion) using alternative discrimination techniques: principal least squares dis-
criminant analysis (PLS-DA), and principal component analysis—support vector machine
(PCA-SVM).

We also perform a univariate analysis, where we test the separability hypothesis at
each sampled wave number using a t-test. To account for multiple testing, we also apply a
Benjamini-Hochberg correction with the false discovery rate set at 5% [24].

3. Results
3.1. Subject Data and Pathological Classification

One hundred and three patients were screened for enrolment in the study. After apply-
ing the exclusion criteria based on previous treatments and additional pathological status,
as well as sample technical eligibility, 29 PCa patients were included. The clinical data for
the patients are summarized in Table 1. The control cohort was formed of 14 samples. For
all donors, both serum and plasma samples were analyzed.

Table 1. Clinical data of patients group.

Number of Patients: 29

Age (years old)

Min. Max. Mean

52 68 61

PSA (ng/mL)

Min. Max. Mean

5.8 39.82 13.36

Pre-operative Gleason Score

6 9 patients

7(3 + 4) 12 patients

7(4 + 3) 5 patients

8 1 patient

9 2 patients

Post-operative Gleason Score

N+ 2 patients

M+ 0 patients

L+ 2 patients

R+ 4 patients
Legend: N+ (node positive); M+ (positive metastases); L+ (lymphatic invasion); R+ (tumoral margins).
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3.2. SERS Analysis of Plasma and Serum Samples

Plasma and serum SERS spectra were recorded at a maximum 50 µm distance from
the analyte ring edges and normalized to the integrated area under the curve in the
350–2200 cm−1 spectral interval. Figure 1 shows the average SERS spectra recorded on
blood plasma samples collected from healthy and PCa patients. One can notice that the
spectra are dominated by the following vibrational peaks: 390, 498, 596, 642, 728, 815,
893, 1010, 1075, 1136, 1209, 1256, 1336, 1369, 1406, 1447, 1508, 1577, 1617, and 1662 cm−1.
From these, 1256, 1336, 1506, 1617, and 1662 cm−1 bands are more intense in the case of
the healthy group compared to the PCa group. Three prominent peaks that display the
strongest SERS signal among both groups are located at 642, 1136, and 1662 cm−1.
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Figure 1. The average SERS plasmatic spectra obtained from PCa patients (n = 27, blue spectrum)
and healthy donors (n = 14, green spectrum), using a 785 nm laser.

The SERS spectra of the serum samples, recorded using exactly the same experimental
conditions and substrates, are presented in Figure 2. It can be noticed that the same three
peaks dominate the spectra, as in the case of plasma samples. A distinct vibrational band
located at 1099 cm−1 can be remarked only in the case of serum spectra collected from PCa
patients. Moreover, slight differences can be observed regarding the intensity of several
bands, which are more prominent for the healthy group (728, 1334, 1447, 1506, 1580, and
1662 cm−1) than for the patients’ group.

When visually comparing the plasmatic and serum SERS spectra, one can observe that
serum samples offer a better separation between control and PCa groups.

3.3. Data Analysis

The PCA-LDA analysis uses two principal components for projecting the spectra. The
number of components was chosen for the robustness to noise and amount of information
contained within (explained variance). For plasma samples, the two components explain
76% of the variance (99% is explained by 14 components), while for serum samples, the
two components explain 78% of the variance (99% is explained by 13 components).

The spectra projected onto the two principal components (PCs) are used as input
for the discrimination step of the PCA-LDA analysis. For the plasma set of samples, our
dataset consists of 14 controls and 27 patients, while for the serum samples it consists of
14 controls and 29 patients. The results of the PCA-LDA analysis, as evaluated using the
LOOCV strategy, are shown in the following table (Table 2).
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Figure 2. The average serum SERS spectra of PCa patients (n = 29, magenta spectrum) and healthy
donors (n = 14, green spectrum), using a 785 nm laser.

Table 2. PCA-LDA results on plasma and serum samples.

Sample Accuracy Precision Sensitivity Specificity True Pos. True Neg. False Pos. False Neg.

Plasma 87.8% 86.7% 96.3% 71.4% 26 10 4 1

Serum 97.7% 100.0% 96.6% 100.0% 28 14 0 1

Additionally, we also performed a PCA-LDA analysis under the same set-up on a
restricted band of wavenumbers, between 1200 cm−1 and 1700 cm−1. Table 3 shows the
obtained results.

Table 3. PCA-LDA results on plasma and serum samples for 1200–1700 cm−1 spectral region.

Sample Accuracy Precision Sensitivity Specificity True Pos. True Neg. False Pos. False Neg.

Plasma 80.5% 85.2% 85.2% 71.4% 23 10 4 4

Serum 93.0% 96.4% 93.1% 92.9% 27 13 1 2

We ran experiments with more principal components as well, and adding more PCs
generally improves the obtained results. Nevertheless, given the size of our dataset,
we decided to use a small number of PCs to avoid the potential overfitting of complex
multivariate models to our data. Specifically, with two PCs, we see negligible differences
in the classification performance obtained via LOOCV and the training folds (Figure 3).
With larger numbers of PCs, this difference is more pronounced, suggesting that the more
complex PCA models do not generalize as well from our limited data set.
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Table S2 shows the accuracy obtained with different models (PCA-LDA and PLSDA)
for both train and test samples. We used accuracy for ease of measurement and clarity—the
same relative train/test differences can be observed across other metrics as well.

Finally, to validate further the observed separations, we also classify the spectra using
principal least squares discriminant analysis (PLSDA) with two intermediate dimensions,
similar to our PCA-LDA setup. The following table (Table 4) shows the obtained results.

Table 4. PLSDA results on plasma and serum samples.

Sample Accuracy Precision Sensitivity Specificity True Pos. True Neg. False Pos. False Neg.

Plasma 90.2% 89.7% 96.3% 78.6% 26 11 3 1

Serum 95.3% 100.0% 93.1% 100.0% 27 14 0 2

The use of the PLSDA method allowed us to compute the importance of wavenumbers
in the classification decision by using the variable importance in projection (VIP) score,
which measures the relative contribution of each variable (wavenumber) in the classification
decision. A VIP score greater than 1.0 is conventionally considered to be the threshold for
selecting important variables. In the following figures (Figures 3 and 4), we show the bands
of important variables as instructed by the VIP score, as well as the bands of wavenumbers
where the univariate difference in mean intensity between the patient and control sets is
deemed significant by a Benjamini-Hochberg (BH)-corrected t-test using a false discovery
rate (FDR) set at 5%.
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We also mark the significant peaks identified in these mean spectra. The identified
peaks can differ slightly between the class-wise and grouped charts since the control and
patient mean spectra can have peaks that do not perfectly overlap (in the charts only one of
the peaks is shown for figure legibility), and these will determine a different peak in the
grouped spectrum.

For the plasma samples, we see significant peaks around the 390, 1012, 1210, 1260,
1622, and 1666 cm−1 spectral regions (Figure 4).
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For the serum samples, we see significant peaks around the 390, 499, 643, 729, 815, 892,
1012, 1100, 1137, 1210, 1331, 1368, 1412, 1511, 1582, and 1660 cm−1, and in the range above
1700 cm−1 spectral bands (Figure 5).
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We observe that for both plasma and serum samples, there is a significant overlap be-
tween the wavenumbers considered important in the univariate and multivariate analysis.

The classification results of PCA-SVM using 2 PCs and a linear kernel for the SVM,
SVM using a linear kernel and no dimensionality reduction, and LDA with no dimension-
ality reduction are presented in Table S3. Figures S1 and S2 show the mean spectrum and
the first two principal components of the plasma and serum samples.

4. Discussion

Liquid biopsies, including plasma, serum, or urine, offer a valuable platform in
determining new biomarkers for prostate cancer diagnosis, leading to time efficiency and
enlarging the treatment options, therefore improving the quality of life for such patients.

Cell-free nucleic acids (cfNA), which may be detected in the blood plasma, have been
the subject of most liquid biopsy investigations aimed at identifying biomarkers that are
predictive, diagnostic, and/or prognostic in cancer [25]. Other elements, such as circulating
proteins, analytes, and exosomes, have received less research attention, however. Cancer
patients’ circulating DNA, tumor cells, and exosomes may all be detected using liquid
biopsy methods that have yet to be used in the clinical setting [26–28].

This study’s aim was to explore the outstanding properties of univariate and multi-
variate analysis performed on plasmatic and serum SERS spectra in discriminating between
PCa patients and healthy donors. We also wanted to investigate the role of the most impor-
tant vibrational bands, assigned to different biomolecules present in blood samples, in the
discrimination process.

SERS is an ultrasensitive technique that can achieve a diagnostic value by enabling
the spectral analysis of biological samples and molecules. Most of the SERS analyses on
blood samples are performed on colloidal nanoparticles. The affinity of the molecules
toward the plasmonic substrate plays a crucial role in the recording process of SERS spectra.
Very recently, it has been shown that there is a strong possibility that much of the SERS
spectra collected on blood samples reported so far in the literature are dominated by a
dietary amino acid (ergothioneine) that has a great affinity for the plasmonic substrates
used in SERS experiments [22]. In order to reduce the possibility of the occurrence of such
experimental artifacts, all the spectra included in this study have been recorded on solid
plasmonic substrates prepared using a procedure developed in our laboratory that proved
their capacity to generate specific and reproducible SERS spectra of blood plasma and
serum based on their ability to act as a “spectroscopic filter” [18].

The multivariate analysis of these spectral data offers the advantage of determining
more accurately and realistically the factors that influence the variability between the two
groups of samples. In addition, the univariate analysis represents a strong descriptive
method that can clearly elucidate the differences between the two types of samples investi-
gated in this study. Moreover, such algorithms are still needed to be implemented in the
diagnosis steps for a better correlation with molecular modifications associated with cancer
development and progression.
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Our multivariate analysis, performed on the entire spectral window (350–2200 cm−1),
supports the idea that the use of serum samples instead of plasma ones can improve the
discrimination process between PCa patients and healthy donors. The results obtained
on serum samples offered a better accuracy (97.7% vs. 87.8%), precision (100% vs. 86.7%),
sensitivity (96.6% vs. 96.3%), and specificity (100% vs. 71.4%) as compared to those obtained
on plasma samples.

We have performed a univariate analysis, where we test the separability hypothesis at
each sampled wavenumber using a t-test. To account for multiple testing, we also applied
a BH correction with the FDR set at 5%. In other words, we have tested the hypothesis that
the mean intensity is significantly different between the two groups (control and patients)
at each individual wave number. The univariate nature of the analysis is due to the lack
of interaction between the different variables (wavenumbers) in the analysis. We have
reported our results as charts of the mean spectrum (both class-wise and grouped), where
we have emphasized the regions of wave numbers that were identified as being significant
with respect to the BH-corrected t-test.

Plasma sample spectral data analysis detected 6 major regions in the SERS spectra
corresponding to 350–400, 740–870, 990–1030, 1220–1300, 1390–1410, and 1750–1760 cm−1

bands, achieving an AUROC (area under the receiver operating characteristic curve) value
of 0.9 or higher. In addition, we also identified three other isolated spectral windows
(centered at 970, 1180, and 1710 cm−1) that could play a role in discrimination. On the other
hand, our univariate analysis identified the presence of the following 6 major peaks relevant
for SERS-based discrimination between PCa and controls: 390, 1012, 1210, 1260, 1622, and
1666 cm−1. They can be assigned as follows: ~390—uric acid [29], ~1012—breathing mode
of aromatic amino acids and nucleic acids [18,30–33], ~1210—proteins, aromatic amino
acids [34–38], ~1260—proteins, amide III [29,32,36,39], ~1666 cm−1—proteins, amide I
α-helix [11,30,35,40,41].

Concerning serum samples, the univariate analysis reveals a broad area
(350–1750 cm−1) in the spectra that can be used successfully in differentiating PCa from
controls. This region is composed of the following 3 windows: 350–1550, 1600–1700, and
1750 cm−1. The univariate analysis indicates the presence of the following 16 important
peaks for PCa and normal sample differentiation, located at: 390, 499, 643, 729, 815, 892,
1012, 1100, 1137, 1210, 1331, 1368, 1412, 1511, 1582, 1660 cm−1. These can be assigned as
follows: 390—uric acid [29], 499—proteins, amino acids [29,40,42,43], 643—DNA bases,
ring stretching of uric acid and hypoxanthine [18,31,36,37,43], 729—DNA/RNA bases, ring
stretching in uric acid and hypoxanthine [30,31,43,44], 815—collagen, uric acid [18,41,45],
892—deoxyribose phosphate backbone, glutathione, uric acid [18,43,46], 1012—aromatic
amino acids and nucleic acids [18,30–33], 1100—proteins, phospholipids and carbohy-
drates [36,38,43,46], 1137—aminoacids, phopsholipids [18,41,42,45], 1210—aromatic amino
acids [34–38], 1331—nucleic acid bases, phospholipids, proteins, amide
linkages [18,35,36], 1368—pyridine bases, amide III, phospholipids [36,47], 1412—collagen,
lipids and phospholipids [31,36], 1511—DNA/RNA bases, amide II, phenylalanine [36],
1582—phenylalanine [18,31,36,43], DNA/RNA bases, 1660 cm−1—amide I α-helix [11,30,
35,40,41]. Most of these bands are attributed to nucleic acid bases and proteins, which
may indicate that a PCa complex metabolism has a crucial role in disease development.
For a more accurate determination, we have prepared a tentative assignment in Table S1
for all the recorded SERS spectra of plasma and serum samples according to the available
literature [19,29–67].

498, 642, 815, 893, 1010, 1137, 1210, 1368, and 1412 cm−1 vibrational bands show high
intensities in PCa serum samples compared to normal samples. On the other hand, we
notice that 729, 1100, 1331, 1511, 1582, and 1660 cm−1 show higher intensities in normal
samples compared to PCa samples.

At first glance, we can observe that the following 4 major peaks are common in both
serum and plasma samples: 390, 1010, 1210, and 1662 cm−1. The 1010 and 1210 cm−1

followed a similar increased pattern regarding intensities in PCa samples, while the
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390 and 1662 cm−1 bands’ increased intensity is specific for normal samples. Moreover,
an overview of both SERS spectra considering the results obtained from the univariate
analysis indicates a very uniform tendency respecting the bands’ intensities.

In the case of PCa plasma and serum samples, 1010 cm−1 symmetric ring breathing
mode of phenylalanine and 1210 cm−1 protein bands showed an increased signal than
those of normal samples. On the other hand, the amide I bands (1600–1700 cm−1) were
lower compared to normal plasma and serum samples. A slight difference can be observed
in the case of amide III regions regarding the relevant peaks in discriminating between PCa
patients and healthy donors. The 1260 cm−1 peak was determined to be relevant for normal
plasma samples, where it presents a higher intensity than PCa samples. Concerning serum
samples, the 1368 cm−1 peak showed an increased behavior for PCa compared to normal
samples. Analyzing both SERS spectra, these two peaks followed similar intensities in both
types of samples investigated.

These similarities between both plasma and serum samples may be due to abnormal
metabolism associated with cancer, implying the activation of alternative metabolic systems
to create ATP, proteins, nucleosides, and lipids for cellular growth [68]. Cancers of the
peripheral prostatic epithelium may have a similar, citrate-oriented metabolism to that of
normal prostate tissue. The oxidative phosphorylation in primary prostate tumors seems to
be increased, although glycolysis is restricted. Prostate cancer also seems to be connected
with the synthesis of fatty acids in the form of lipogenesis [69]. Advanced castrate-resistant
prostate cancer is characterized by increased glycolysis. Maintaining the amino acid pool
and converting it to glucose, lipids, and precursors of nitrogen-containing metabolites such
as purines or pyrimidines for nucleic acid synthesis are all important aspects of amino acid
metabolism in prostate cancer growth [70].

PCa has been previously linked to a buildup of cholesterol and has been shown to
synthesize fatty acids by means of de novo lipid synthesis [71]. It is well known that freshly
generated fatty acids enhance cellular pathways that promote cell growth and survival in
cancer patients [72,73]. Lipogenesis has been demonstrated to increase the saturation of
membrane lipids, which has implications for membrane dynamics and the absorption and
effectiveness of chemotherapy [74].

The bands situated between 900 and 1300 cm−1 are mostly generated by carbohydrates
and phosphates found in nucleic acids [36]. Carbohydrates are represented by the C-COO−

stretching vibration at the band 915 cm−1 [39,53]. Biopsies of prostate cancer tissue and
cervical cancer tissue have shown that glycogen concentration is lower in prostate cancer
tissue and cervical adenocarcinoma cells [75]. It is known that in malignant cells, the cause
of decreased glycogen can be an implication of increased metabolic activity [75–77].

Due to the C=O and C-N stretching vibrations, the amide I band (1600–1700 cm−1)
gives information on the secondary structure of proteins [78–80], which has been thoroughly
studied in several research studies. There is, however, a correlation between the peak
at 1617 cm−1 assigned to C=O, C=C, and NH2 stretching vibrations [30,42,59] and the
existence of protein aggregates [79,81]. Protein misfolding and subsequent aggregation
are caused by conditions that cause cancer cells to be subjected to stress [82]. Cancer cells
and tumors may develop protein aggregates of the tumor suppressor gene p53 [83–85],
which may play an essential role in the development of cancer [86]. It has been shown
that the loss of proteostasis in cancer growth is linked to platinum resistance and the
stem cell characteristics of certain ovarian cancers [87]. As an example, PNT1A and PNT2
normal prostate cell lines are characterized by spectral assignments of 1653 and 1636 cm−1,
respectively, which are associated with α-helices and parallel sheets [71]. There are fewer β-
sheets in proteins that are generally more soluble and less prone to congregating [88], which
may be due to the fact that most proteins have a combination of β-sheets and α-helices as
secondary structures [80].
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5. Conclusions

The discrimination between PCa and healthy donors based on liquid biopsy still
remains a challenging analysis since it needs multiple examinations. However, to our
knowledge, this is the first study that has evaluated blood plasma and serum provided
by PCa patients and healthy donors using a combined SERS, multivariate and univariate
analyses in order to establish which analyte can offer a better diagnostic value. Our results
show that serum samples have a better diagnostic capacity compared to plasma samples.
The best values have been obtained when performing the multivariate analysis of the full
spectrum as well as the two spectral intervals of 825–1050 and 1506–1750 cm−1.

The spectrum is dominated by aromatic amino acids (tryptophan, tyrosine, phenylala-
nine, serine) and protein vibrational bands, which have been shown to achieve a valuable
potential as biomarkers [70,89]. There are several studies that engaged the use of chro-
matography and mass spectrometry techniques to determine the free amino acid profiles
from liquid samples such as urine, serum, or plasma [89–95]. These are indicating that the
amount of some specific amino acids in such biological samples may gain more insights
into PCa diagnosis purposes. Therefore, we believe that a combination between SERS
and proteomics and metabolomics methods together with multivariate and univariate
analyses tools will elevate the standard diagnostic (PSA level evaluation and prostate tissue
biopsy) properties.

There are some drawbacks to this research, the most significant of which being the
limited number of patients included in the study. In order to obtain the most accurate results,
we only included individuals with prostatic adenocarcinoma confirmed by biopsy. Our
study also eliminated individuals with other chronic illnesses, patients with unconfirmed
tumors, or patients with confirmed tumors but not eligible for surgery (advanced cancers),
since their serology would have remained unchanged. However, since this is a pilot study
whose major goal is to estimate average values and variability in order to design larger
later investigations, we believe that the sample sizes were sufficient.

Our study shows promising results since SERS analysis can be performed on small
amounts of liquid samples with high specificity and reproducibility as a direct consequence
of the use of our solid plasmonic substrate [18]. Moreover, the implementation of multivari-
ate and univariate analysis allowed us to determine that serum samples offer more accurate
results in discriminating between PCa patients and healthy donors when compared to
plasma samples. Another advantage of this design refers to the minimal invasiveness of the
technique, which is supported by easy handling and fast results generation. At the same
time, there is still a need for such investigations on large cohorts in order to establish the
necessity of needle biopsy and histopathological examination.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14133227/s1, Table S1: The SERS peaks tentative assignments of major vibrational
bands in plasma and serum samples from PCa patients and healthy donors. Table S2: Different
models (PCA-LDA and PLSDA) for both train and test samples. Table S3: The classification results of
PCA-SVM, SVM, and LDA analyses. Figure S1: Mean spectrum and first two principal components
for plasma spectra. Figure S2: Mean spectrum and first two principal components for serum spectra.
Reference [96] is cited in the supplementary materials.
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