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Background. The crackles in patients with interstitial pulmonary fibrosis (IPF) can be difficult to distinguish from those heard in
patients with congestive heart failure (CHF) and pneumonia (PN). Misinterpretation of these crackles can lead to inappropriate
therapy. The purpose of this study was to determine whether the crackles in patients with IPF differ from those in patients with
CHEF and PN. Methods. We studied 39 patients with IPE, 95 with CHF and 123 with PN using a 16-channel lung sound analyzer.
Crackle features were analyzed using machine learning methods including neural networks and support vector machines. Results.
The IPF crackles had distinctive features that allowed them to be separated from those in patients with PN with a sensitivity of 0.82,
a specificity of 0.88 and an accuracy of 0.86. They were separated from those of CHF patients with a sensitivity of 0.77, a specificity
of 0.85 and an accuracy of 0.82. Conclusion. Distinctive features are present in the crackles of IPF that help separate them from the
crackles of CHF and PN. Computer analysis of crackles at the bedside has the potential of aiding clinicians in diagnosing IPF more

easily and thus helping to avoid medication errors.

1. Introduction

Crackles are a common finding in patients with interstitial
pulmonary fibrosis (IPF). Their presence in a patient is often
the first clue that the disease is present. Unfortunately, they
can be misinterpreted as being due to congestive heart failure
(CHF) or pneumonia (PN), and as a consequence patients
may receive inappropriate therapy. On occasion, this can
lead to serious, unwanted side effects such as dehydration
due to the inappropriate administration of diuretics or an
adverse reaction to an antibiotic that was not indicated in
the first place. In an attempt to reduce these complications,
we studied the sound patterns of patients with these diseases
using a multichannel lung sound analyzer (STG16) to
determine if such analysis could help differentiate IPF from
CHF and PN.

Using advanced statistical techniques we compared fea-
tures of IPF crackles to those in patients with CHF and PN.
Our goal was to determine if there are features of the lung
sounds in IPF patients that would help to distinguish them
from the lung sounds of patients with CHF and PN.

2. Materials and Methods

Patients were selected for this study from a pool of patients
who had undergone lung sound analysis as a part of a
broader study of the correlation of disease processes with
lung sounds patterns. To acquire patients into this study,
we identified hospitalized patients and outpatients of a
community teaching hospital who were diagnosed as having
a specific cardiopulmonary disease or were considered
to be normal by their caregivers. The studies were not
made on consecutive patients; this is a convenience sample
and we currently have over 1,000 patients for whom we
have both the diagnosis and the lung sound analysis. The
diagnostic category of each of the patients was that of
the clinicians caring for these patients. The CHF and
PN patients were inpatients in a teaching hospital, and
diagnoses were confirmed by board certified specialists.
The IPF patients were outpatients and were all seen by
pulmonary specialists. There were 39 patients with IPE
95 with CHF, and 123 with PN. All patients were exam-
ined using a multichannel lung sound analyzer (STG16).
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FiGURE 1: The waveform of a typical crackle (a). The crackle analysis starts by identification of the crackle’s highest deflection highest peak.
The half-period to the left of the highest peak is marked as T;. The half-period to the right of the highest peak is marked as T,. Crackle pitch
is calculated from 4 consecutive half-periods, with T as a 1st half-period. The amplitude is determined separately for each half-period and
marked as A;, A,, and As. Crackle polarity (b) crackle polarity is defined positive if the highest peak is upward (c). Crackle polarity is defined

negative if the highest peak is downward.

TABLE 1

Individual crackle features Definition

Number of zero line crossings (ZXS)

T, First half-period, Figure 1(a)

Crackle pitch
T,/T,
Half-period duration variability (%)

Crackle timing (timing)

The number of times the crackle waveform crossed the baseline

Crackle pitch (spectral frequency) calculated from 4 half-periods: Ty, T>, T3, and Ty, Figure 1(a)
Ratio of the 2nd and 1st half periods
(Standard deviation {T}, T5, T5,..., T} X 100%)/(mean {14, T>, T5,..., Tp})

Crackle timing is defined as follows: 1 for early inspiration, 2 for mid-inspiration, 3 for late
inspiration, 4 for early expiration, 5 for mid-expiration, 6 for late expiration

The degree of crackling sound transmission through the ipsilateral chest, as calculated from

Crackle transmission coefficient (CTC)

crackle family observation by multiple microphones. The CTC has a value of 0% in the absence of
any transmission and 100% when there is equal transmission to all ipsilateral channels see [7] for

detailed description and discussion.

Amplitude
Ay/A See Figure 1(a)
As/A, See Figure 1(a)

Half period amplitude variability (%)
Crackle polarity (polarity)

Amplitude of the highest peak (arbitrary units)

(Standard deviation {A;, A5, As,..., A} X 100%)/ (Mean {A,A,, As,...,A,})
Direction of the highest peak, Figures 1(b) and 1(c) see [8] for detailed description and discussion

The details of this device have been described [1]. In brief,
patients are asked to lie on a soft foam pad, which has
stethoscope chest pieces embedded in it. Each of these
chest pieces contains a microphone. The sounds detected
by these microphones are amplified, filtered, and input into
a computer for analysis. In our usual practice, patients
are asked to perform several breathing maneuvers: normal
breathing, deeper than normal breathing, coughing, and a
vital capacity maneuver. In this study, we chose the data
obtained during the deeper than normal breathing maneu-
Ver.

Crackles were defined in accordance with accepted
criteria [2, 3]. The STG software automatically identified

crackles in all full breaths. The validation of the use of
the device as a crackle counter has been reported [4]. A
single recording lasted 20 seconds and typically contains a
minimum of 3 breaths. To develop algorithms for testing, the
crackle features shown in Table 1 were assessed.

Crackle features were calculated separately for inspira-
tory crackles and for expiratory crackles. Figure 1 demon-
strates the process of calculating features of the crackle.
In addition to these features, we combined the individual
crackle features in the form of a median (median T1, median
pitch, etc.)

In addition to features based on individual crackle prop-
erties we captured information reflecting the distribution
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TABLE 2

Aggregate crackle features

Definition

Number of crackles per breath (Cr/breath)

Number of crackles per breath per quadrant
(top left, top right, bottom left, bottom right)

Percentage differences between crackle quadrants
(6 total)

The total number of crackles per breath as detected by the computer

These 4 features count the total number of crackles observed in each quadrant
of the chest. Together they add up to the total number of crackles per breath

Calculated from the 4 features described above, these features represent a
comparison between quadrants. Each percentage is a pairwise comparison of
all 6 possible combinations of quadrants

Distances between crackles in 3-dimensional space. There are separate

Maximum distances (x,,z)

features for x, y, and z planes. One feature also records a maximum distance

across all 3 dimensions

These features are similar to those described above, except that they are

Channel distances

defined based upon which channel microphone picked up the crackle.

Distances are defined accordingly

of the patient’s crackles. Diseases differ in the pattern of
crackles distribution over the chest. Distribution informa-
tion required aggregation of data on a per-breath level and
led to the development of aggregate crackle features shown
in Table 2.

To perform classification and prediction we utilized
supervised learning nonparametric classifiers: neural net-
works and support vector machines [5, 6]. Supervised
learning can teach the system to nonlinearly map the input
features to the associated label of disease. We divided the data
into a training set, used for feature extraction and model
building, and a validation set, used for evaluation of the
results. Validation data set performance indicates how well
the features generalize to the unseen data. We used a fivefold
cross-validation to increase the pool of validated data.

We used individual crackle features to distinguish crack-
les of IPF from CHF crackles and PN crackles. Once indi-
vidual crackles were classified as IPF, CHF, or PN, majority
voting was used to classify the patient into one of the three
disorders. To incorporate features of crackle distribution, we
performed majority voting among individual breaths during
the single recording; for example, if a patient had 6 breaths,
and 3 of them were classified as IPF, 2 as CHE, and 1 as
PN, then the patient would be classified as having IPE. The
final classification of IPF versus CHF and IPF versus PN was
performed using this breath majority voting.

The study was approved by the Institutional Review
Board of the Brigham and Women’s/Faulkner Hospitals.

3. Results

Figure 2 shows crackle analysis in the three representative
patients with IPF, CHFE, and PN. The left panels show three-
dimensional models of the thorax with crackles overlaid
on the three-dimensional display. Crackles are displayed as
cubes. The size of each cube is proportional to the crackle
density. The patient with IPF had over 100 crackles recorded
over 20 seconds, panel (a). The crackles localized in three-
dimensional space are distributed uniformly. The patient
with CHF had over 50 crackles distributed with accentuation
toward lung bases, panel (c). The patient with PN had over

70 crackles localized to the left lower lobe where radiography
revealed opacifications, panel (e).

The display of a single crackling event reveals that
the crackling sound is transmitted differently in the three
diseases. The right panels in Figure 2 show time-expanded
sound waveforms that were recorded by the 14 microphones
positioned over the posterior chest. The waveforms are
superimposed on a body plot. Each waveform is positioned
on the part of the body where the sound was recorded.

In the patient with CHF, panel (d), a prominent crackle
is seen on the tracing from channel 6 (indicated by a large
triangle). At the same time the crackling sound was also
detected in all ipsilateral microphones 1, 2, 3, 4, 5, and
7 (marked by triangles). The set of crackles generated by
a single event and recorded by multiple microphones is
referred to as a crackle family [7, 8]. The crackle waveforms
corresponding to the crackle family are shown in the stack
mode in the insert in the upper-right corner. Notice that
the crackle recorded by microphone 6 (the most prominent
crackle or mother crackle) occurs earlier than the other
crackles.

The crackle transmission coefficient was calculated for
each crackle family. In the crackle family shown in the CHF
patient (Figure 2(d)), the CTC was 50%. (The CTC has a
value of 0% in the absence of any transmission and 100%
when there is equal transmission to all ipsilateral channels.)
In the crackle family shown in the PN patient, Figure 2(f),
the CTC was 16%. In contrast, the crackle in the IPF patient
was detected at only a single microphone (Figure 2(b)). The
CTC of this crackle family was 1%. The low CTC is typical in
IPF patients.

In addition to the CTC, note the difference in the pitch
of the crackles shown in Figure 2, right panels: 588 Hz in
IPF versus 218 Hz in CHF and 364 Hz in PN. Also note the
difference in the number of zero crossings: 15 in IPF versus 5
in CHF and 5 in PN.

The observations in single patients shown in Figure 2 are
supported by statistical analysis of all available data. Table 3
shows crackle rate and individual crackle features in IPF,
CHE, and PN. Note that multiple individual crackle features
are significantly different between IPF and the other two
diseases.



Pulmonary Medicine

Interstitial pulmonary fibrosis

\ { <7 Crackle pitch (Hz)
/ mEErTrEIrTE

200 300 400 500 600
Coarse cr. Fine cr.

Congestive heart failure

Pneumonia

(d)
/
Left ///
/
T \
/ “\\
N9
v
\\ 10
\ e
12/
\ /T
15" 14 wyi3

Left /

10 Jf(" /
\ 12 A /m
15 XWZ—/"WT?W _W%M\TT%L
.

(b)

o122 /o

()

Ficure 2: Examples of lung sound analysis in three individual patients. Left panel: based on arrival time differences at the microphones all
crackles were localized inside the chest. Crackles are displayed as cubes overlaid on the three-dimensional display. The size of each cube is
proportional to the crackle density. Crackle pitch is color coded: the insert shows the legend. Right panel: to illustrate the difference in crackle
transmission, an individual crackle is shown in the right panel. Sound waveforms are shown as detected in the microphones arrayed over the
posterior chest. The IPF crackle is only detected by one microphone, while the CHF and PN crackles are detected by several microphones.
The insert shows the crackle waveforms in stacked mode to facilitate examination of arrival times at the various microphones.

In order to perform classification of patients into one of
the three diseases we utilized two statistical methods: neural
networks and support vector machines. Table 4 presents the
results of binary comparisons of individual crackles in IPF

versus CHF and IPF versus PN. As seen in Table 4, the sen-
sitivity, specificity, and overall accuracy are over 70%, con-
sistent with the conclusion that individual IPF crackles have
features that differ from those of patients with PN and CHF.
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TasBLE 3: Crackle rate and individual crackle features in IPF, CHE, and PN. The results are presented as means + SD. Student’s ¢-test was used
to compare the variables between the groups. Values of P that are less than.05 are shown in bold.

Crackle Features IPF (n=39) CHF (n=95) PN (n=123) IPFversus CHF IPF versus PN
Crackle rate (crackles per breath) 18 + 14 7+5 7+4 P <.0001 P <.0001
Crackle pitch (Hz) 416 + 88 302 + 64 284 + 60 P <.0000001 P <.0000001
T (s) 1.2+0.2 1.4 +0.2 1.5+0.3 P <.0000001 P <.0000001
Number of zero line crossings (ZXS) 9+2 6+1 6+1 P <.0000001 P <.0000001
T,/ T, 1.2+0.1 1.5+0.3 1.5+0.2 P <.00001 P <.00001
Half-period duration variability (%) 38+8 37+9 37+7 P =.57 P =.57
Inspiration  Crackle timing (Timing) 2.1+0.3 2.1+0.3 20+04 P =98 P=.29
Crackle transmission coefficient (CTC) 16 £5 23+6 23+7 P <.0000001 P <.0000001
Amplitude 9+9 6+5 7+7 P =.06 P=.34
Ay/A, 1+0.1 1+0.1 1+0.1 P=.24 P=.02
As/A, 0.5+0.1 0.4+0.1 0.4+0.1 P <.0000001 P <.0000001
Half-period amplitude variability (%) 68 =11 53 +12 48 =12 P <.0000001 P <.0000001
Crackles with positive polarity (%) 74+ 13 67 =20 70 =19 P=.02 P=.18
Crackle rate (crackles per breath) 9+7 5+3 5+5 P=.01 P =.07
Crackle pitch (Hz) 411+ 71 289 + 65 264 +77 P <.000001 P <.000001
T, (s) 1.2+0.3 1.6 £0.3 1.8 £0.3 P <.000001 P <.000001
Number of zero line crossings (ZXS) 10 +2 7+1 7+2 P < .000001 P <.000001
T,/T, 1.3 +0.1 1.4+0.2 1.4+0.3 P =.001 P =.002
Half-period duration variability (%) 43+ 14 39+38 37+9 P=.17 P=.05
Expiration  Crackle timing (Timing) 52+0.3 5.1+ 0.4 5.0+0.3 P=.25 P=.13
Crackle transmission coefficient (CTC) 18+7 25+9 27+9 P <.001 P <.00001
Amplitude 5+7 5+4 6+5 pP=.72 P=.44
Ay/A, 1.0 £ 0.1 1.1 0.1 1.1 £0.1 P=.11 P=.01
As/Ay 0.5+0.1 0.4 +0.1 0.4+0.2 P =.006 P =.002
Half-period amplitude variability (%) 70 = 14 49 + 14 46 =13 P <.00001 P <.0000001
Crackles with positive polarity (%) 34+ 17 44 + 25 33 +24 P=.10 P =.80
TasLE 4: Crackle classification for IPF versus PN and IPF versus CHF using individual crackle features.
SVM Neural networks
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
PN 0.80 0.71 0.74 0.74 0.78 0.75
CHEF 0.79 0.73 0.78 0.78 0.77 0.78

TaBLE 5: Breath classification for IPF versus PN and IPF versus CHF
using individual crackle features. The model was created using NNs
and voting over classifications of individual crackles in a breath.

Crackle only

Sensitivity Specificity Accuracy
PN 0.76 0.84 0.83
CHF 0.78 0.84 0.83

The accuracy increased to 83% (Table 5) on the appli-
cation of majority voting to the classification of individual
breaths based on crackle features. The addition of aggregate
crackle features improved the accuracy to 86% (Table 6).
Finally, we used majority voting to classify patients based

TABLE 6: Breath classification for IPF versus PN and IPF versus
CHF using individual and aggregate crackle features. The model
was created using NNs and voting over classifications of individual
crackles in a breath.

Crackle and distribution

Sensitivity Specificity Accuracy
PN 0.76 0.87 0.86
CHF 0.78 0.89 0.88

on crackle features (Table7). The performance of per-
breath and that of per-patient classification are quite similar
suggesting that most breaths of the same patients are
classified in a similar manner.
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TABLE 7: Patient classification for IPF versus PN and IPF versus CHF using individual and aggregate crackle features and majority voting.

SVM voting Neural networks voting
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
PN 0.82 0.88 0.86 0.77 0.91 0.88
CHF 0.77 0.85 0.82 0.78 0.88 0.85

4. Discussion

This study shows that the crackles of IPF have features
that help distinguish them from the crackles of patients
with CHF and PN. As noted, we believe that the crackles
of IPF are not infrequently misinterpreted. They are most
commonly considered to be due to CHE and diuretics are
administered inappropriately. There is not much literature
to support this observation, but it is our personal experience
and an informal survey of clinicians confirmed this opinion.
In addition to providing evidence that helps in accurately
identifying IPF crackles, computerized lung sounds analysis
also quantifies them. It has long been noted that crackles of
IPF become more widespread when the disease progresses.
Thus crackle quantification can be important in assessing the
severity of IPF, and this could be useful in providing evidence
of response to therapy.

We focused on the difference between crackles of IPF
and those of CHF and PN. Baughman et al. took a
different approach. They showed that the presence of crackles
could help clinicians in distinguishing sarcoidosis from IPF
[9]. Crackles were much less numerous in patients with
sarcoidosis than in those with roentgenologically equivalent
severity of changes due to IPF.

Among features that are significantly different between
IPF and CHF/PN is the crackle pitch (P < .0000001). This is
consistent with the commonly held believe that the crackles
of IPF are generated in smaller airways than those of CHF
and PN. The distinctive features of crackles of IPF have been
long recognized. For example, the crackles of pulmonary
fibrosis caused by asbestos, described in early as 1930 by
Wood and Gloyne to be a prominent feature of this industrial
disease, were described by Smither as “characteristic in their
sound and distribution” [10, 11]. He also pointed out that
they are present first at the bases in the midaxillary line and
then tend to spread to the posterior bases. As the disease
progresses, crackles become audible higher on the chest.
In one study a technician was able to screen workers for
asbestosis by detecting crackles. The technician correctly
identified all workers in whom the diagnosis was most
certain, that is, those with all the clinical, physiological,
and roentgenologic criteria used in the study [12]. Using
time-expanded waveform analysis, Kawamura et al. studied
18 patients with IPF and 23 patients with crackles who
did not have this disease. Two crackle parameters (initial
deflection width and two cycle duration) were shorter in the
IPF patients. This finding correlated with HRCT findings in
these patients [13]. British investigators have reported that
detecting crackles on time-expanded waveform analysis was
equivalent to CT scans in detecting asbestosis [14]. Finnish
investigators also showed a significant positive correlation

with frequencies of lung sounds and pulmonary fibrosis
detected on HRCT [15]. Of course in industrial settings, in
contrast to ER’s and ICU’s, neither CHF nor PN crackles are
likely to be confounding variables.

To perform classification and prediction, we utilized
well-established supervised learning nonparametric classi-
fiers: neural networks and support vector machines [5,
6]. Neural networks (NNs) are the name for non-linear
statistical data modeling tools. They are used to model
complex relationships between inputs and outputs and are
an attempt to build an architecture similar to the one of
the human brain. NNs consist of an interconnected group
of artificial neurons that learns and updates its internal
structure using a connectionist approach to computation.
NN utilize a data-driven approach where changes in internal
structure are based on external or internal information that
flows through the network during the learning phase. In
this study, we used a back propagation neural network.
Support Vector Machines (SVM) are one of the newest
methods in the supervised learning field. Generally speaking,
a support vector machine seeks to create a hyperplane in a
high-dimensional space that separates the two data classes.
Not only does the hyperplane separate the data, but also
it is oriented in such a fashion that creates the maximum
“margin” on both sides of it ensuring the largest possible
separation between the two classes. The algorithm proved to
be fast and very efficient. We note here that both NN and
SVM classification achieved similar results.

The technology for this study came about in part because
there has been resurgence in interest in lung sounds. This
has been stimulated by the development of computerized
techniques. A number of investigations demonstrating the
usefulness of computerized lung sound analysis have been
reported [16-21]. While crackle pitch can be assessed by
a clinician using an acoustic stethoscope, other crackle
features that are significantly different between IPF and
CHEF/PN can only be gained with the use of a computerized
stethoscope. And some crackle features such as crackle
transmission coefficient can only be calculated with the use
of a multichannel lung sound analyzer.

Computerized lung sound analysis can now be done at
the bedside. The examinations are easy to do and can be
performed in a few minutes. They have been shown to help
in the detection of pneumonia [22]. Unfortunately, devices
capable of doing this are not currently widely available.
However, it is likely that this will change as the advantages
of this technology become more widely known. Used in
the context of a complete medical evaluation, we believe
that this information could help avoid misinterpretation of
IPF crackles and thus potentially decrease the occurrence of
inappropriate treatment.
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